高、低温环境下典型微结构动态特性及测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在MEMS器件商品化的过程当中,动态测试技术扮演着十分重要的角色。对于很多微传感器和微执行器来说,其功能主要是通过内部微结构的微小位移和变形来实现的,因此对微结构的动态特性进行测试和研究已成为开发MEMS产品的关键环节之-特别是随着MEMS产品应用领域的不断拓展,对不同环境条件影响下的微结构动态特性及相应的测试技术进行研究变得越来越重要。因此,本文针对高、低温环境下MEMS中典型微悬臂结构的动态特性进行研究,从理论和实验两个方面研究了微悬臂结构固有频率随温度的变化规律,并对高温和低温环境下微结构的动态测试技术进行了研究。
     针对两种典型的MEMS微悬臂结构,矩形等截面微悬臂梁和梁-质量块结构的梯形微悬臂梁,建立了它们固有频率的温度系数模型,从模型中可以看出,微悬臂结构固有频率随温度变化的根本原因在于材料弹性模量的变化和结构尺寸的改变。
     对微结构的冲击底座激励方法进行了研究。首先研究了基于压电陶瓷的冲击底座激励方法,并对压电陶瓷的冲击响应特性进行了分析。该方法可以在低温环境下对微结构进行激励,不过由于受到压电陶瓷居里温度的限制,该方法无法应用在高温环境下;为了解决在高温环境下对微结构进行激励的难题,提出了一种基于激波的冲击底座激励方法,通过高压电容在空气中放电的方式实现了对微结构的冲击激励,并分析了放电回路参数对激励装置输出特性的影响。
     对低温环境下微结构的激励方法、微结构振动响应的检测方法以及低温环境的实现方法进行了分析,建立了包括基于压电陶瓷的冲击底座激励装置、真空环境腔体、低温冷阱和激光多普勒测振仪等的动态测试系统,实现了在-55℃~室温的低温环境下对微结构的动态特性测试。
     对高温环境下微结构的激励方法、微结构振动响应的检测方法以及高温环境的实现方法进行了分析,建立了高温环境微结构动态特性测试系统。采用了电阻加热的方法,并通过热传导的方式来实现对微结构的升温,采用基于激波的冲击底座激励装置实现了对微结构的激励,使用激光多普勒测振仪来获取微结构的振动响应,实现了在室温-500℃的高温环境下对微结构的动态特性测试。
     利用所研制的MEMS动态特性测试系统在-55℃-500。C的温度下对单晶硅微悬臂的动态特性进行了测试,使用自由衰减法获取了微悬臂梁的动态特性参数。实验结果表明无论是等截面矩形单晶硅微悬梁,还是梯形单晶硅微悬臂梁,它们的固有频率都随着温度的升高而减小,且近似的呈线性关系,此外,微悬臂梁固有频率的温度系数与微悬臂梁的结构尺寸无关,其数值在-3.35×10-5/℃和-2.95×10-5/℃之间,这个结果与通过理论模型获得的结果具有很好的一致性。
The dynamic characteristics measurement techniques play an important role in the process of commercialization of MEMS devices. Because the performance of most MEMS sensors and actuators are embodied mainly by the displacement and deformation of internal microstructures, testing and research on the dynamic characteristics of microstructures have become a key part of the MEMS products development. Especially, with the application field of MEMS products to be expanded, it become increasingly important to study the dynamic characteristics and measurement techniques of microstructure by considering the influence of different environmental parameters. Therefore, in this research, the dynamic characteristics of the typical microcantilevers under the high and low temperature environment were studied to find out the temperature dependence of natural frequency. Furthermore, the corresponding measurement techniques were also studied.
     As for the two typical MEMS microcantilevers, the rectangular uniform cross-section microcantilever and the T-shaped microcantilever with end mass, the temperature coefficient model of the natural frequency was established. It can be seen that the changes of the elastic modulus and the physical dimensions result in the variation of the natural frequency when the environmental temperature is changed.
     The impact base excitation method for microstructures was studied. The impact base excitation method with PZT was studied, and the impulse response characteristics of piezoelectric ceramics were analyzed. This method can be used to excite microstructures in low temperature environment, but due to the limitation of PZT's curie temperature, cann't be used in high temperature environment. In order to excite microstructures in high temperature environment, an impact base excitation method with shock wave was proposed. The microstructure can be excited through the high-voltage capacitors discharge in the air. The relationship between the discharge circuit parameters and the output performance of excitation device was analyzed.
     As for the low temperature environment, through the analysis of the excitation method of microstructures, the dynamic measurement techniques and the realization of the low temperature environment, the dynamic characteristics measurement system for low temperature environment was established which mainly included the impact base excitation device with PZT, the vacuum environment chamber, the cold trap and the Laser Doppler Vibrometer. The dynamic characteristics testing experiment can be carried out in low temperature environment ranging from-55℃to room temperature.
     As for the high temperature environment, through the analysis of the excitation method of microstructures, the dynamic measurement techniques and the realization of the low temperature environment, the dynamic characteristics measurement system for high temperature environment was established. The resistance heaters were used to heat the microstructure by way of heat conduction. The testing microstructures can be excited by the impact base excitation device with shock wave. The vibration responses of microstructures were obtained by the Laser Doppler Vibrometer. The dynamic characteristics testing experiment can be carried out in high temperature environment ranging from room temperature to500℃.
     The dynamic characteristics of silicon microcantilevers were tested from-55℃to500℃using the established measurement systems. The vibration parameters of microcantilevers were obtained by free damping test method. The results show that the natural frequencies of silicon microcantilevers slightly and almost linearly decrease with the increasing temperature. Furthermore, for all silicon microcantilevers, the temperature coefficients of natural frequencies have nothing to do with their dimensions. The value is about from-3.35×10-5/℃to-2.95×10-5/℃, which is in good agreement with the theoretical model.
引文
[1]王立鼎,刘冲.微机电系统科学与技术发展趋势[J].大连理工大学报,2000,40(5):505-508.
    [2]温诗铸.关于微机电系统研究[J].中国机械工程,2003,14(2):159-163.
    [3]石庚辰,郝一龙.微机电系统技术基础[M].北京:中国电力出版社,2006.
    [4]MALUF N., WILLIAMS K.. An introduction to microelectromechanical systems engineering [M].2nd ed. Boston:Artech Print on Demand,2000.
    [5]BRENDLEY K. W., STEEB R.. Military applications of microelectromechanical systems [M]. New Mexico:RAND,1993.
    [6]STAUFER U., AKIYAMA T., GULLO M. R., et al. Micro- and nanosystems for biology and medicine [J]. Microelectronic Engineering,2007,84:1681-1684.
    [7]WEN H. K.. Trends and frontiers of MEMS [J]. Sensors and Actuator A,2007,136:62-67.
    [8]葛文勋,丛鹏.微机电系统发展动向[J].纳米技术与精密工程,2007,5(3):182-189.
    [9]张冬至,胡国清.微机电系统关键技术及其研究进展[J].压电与声光,2010,32(3):513-520.
    [10]王立鼎,褚金奎,刘冲,等.中国微纳制造研究进展[J].机械工程学报,2008,44(11):2-12.
    [11]孔祥东,张玉林,宋会英.微机电系统的微细加工技术[J].微纳电子技术,2004,11:32-38.
    [12]KHOSHNOUD F., SILVA C. W.. Recent advances in MEMS sensor technology mechanical applications [J]. Instrumentation and Measurement Magazine of IEEE,2012,15(2): 14-24.
    [13]MASAKO T.. An industrial and applied review of new MEMS devices features [J]. Microelectronic Engineering,2007,84:1341-1344.
    [14]王涛,王晓东,王立鼎,等MEMS中微结构动态测试技术进展[J].中国机械工程,2005,16(1):83-88.
    [15]姜岩峰,黄庆安MEMS领域中微结构机械参数在线测量方法的研究和进展[J].微纳电子技术,2003,4:34-39.
    [16]LIN R. M., WANG W. J.. Structural dynamics of Microsystems-current state of research and future directions [J]. Mechanical Systems and Signal Processing, 2006,20:1015-1043.
    [17]GEORGE T., SON K. A., CASTILLO L., et al. Harsh environment microtechnologies for NASA and terrestrial applications [C], Proceedings of IEEESensors,2005, 1253-1258.
    [18]TANNER D. M.. MEMS reliability:Where are we now? [J]. Microelectronics Reliability, 2009,49:937-940.
    [19]DANELLE M. T., JEREMY A. W., KAREN H., et al. MEMS reliability in shock environment [C]. IEEE International Reliability Physics Symposium,2000,129-138.
    [20]PATTON S. T., ZABINSKI J. S.. Failure mechanisms of a MEMS actuator in very high vacuum [J]. Tribology International,2002,35:373-379.
    [21]CHUNG G. S.. Characteristics of SiCN microstructures for harsh environment and high-power MEMS applications [J]. Microelectronics Journal,2007,38:888-893.
    [22]LIN T. H., STEPHEN P., SUSAN L., et al. A study on the performance and reliability of magnetostatic actuated RF MEMS switchs [J]. Microelectronics Reliability, 2009,49:59-65.
    [23]PEDERSEN C., JESPERSEN S. T., JACOBSEN K. W., et al. Highly reliable Oring packaging concept for MEMS pressure sensors [J]. Sensors and Actuators A,2004,115: 617-627.
    [24]ZHANG J. C., CARRARO C., ROGER T. H., et al. Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments [J]. Surface & Coatings Technology,2007,201:8893-8898.
    [25]MEHREGANY M., CHRISTIAN A. Z.. SiC MEMS:opportunities and challenges for applications in harsh environments [J]. Thin Solid Films,1999,335:518-524.
    [26]CHANG W. B., KIM Y. K., YOOMIN A., et al. Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures [J]. Sensors and Actuators A,2005,117:17-27.
    [27]顾利忠,苏菲,赵颉,等.静电激振法测量微机械材料的杨氏模量[J].材料科学与工程,2001,7(74):9-11.
    [28]XIONG X. G., WU Y. L., JONE W. B.. A dual-mode built-in self-test Technique for capacitive MEMS devices [J]. IEEE Transaction on Instrument and Measurement,2005, 54(5):1739-1750.
    [29]ADRIANA C., ROBERT P.. Electrostaic actuation as a self-test method for silicon pressure sensors [J]. Sensors and Actuators A,1997,60:32-36.
    [30]ERIC C., JEROME J., SYLVIE G., et al. Actuation of resonant MEMS using short pulsed forces [J]. Sensors and Actuators A,2004,115:118-125.
    [31]HU Y. C., CHANG C. M., HUANG S. C.. Some design consideration on the electro-statically actuated microstructures [J]. Sensors and Actuators A,2004,112 (1): 55-61.
    [32]ATTIA P., HESTO P.. Dependence of the resonant frequency of micromachined gold microbeams on polarization voltage [J]. Journal of Microelectron,1998,29(54): 3-6.
    [33]MINNE S. C., MANALIS S. R., QUATE C. F.. Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and intergrated piezoelectric actuators [J]. Applied Physics Letters,1995,12(67):3918-3920.
    [34]WANG B. T., WANG C. C.. Feasibility analysis of using piezoceramic transducers for cantilever beam modal testing [J]. Smart Materials and Structures,1997,6:106-116.
    [35]SWEI S. M., GAO P., LIN R. M.. A dynamic analysis for the suspension structure in hard disk drives using piezofilm actuators [J]. Smart Materials and Structures, 2001,10:409-413.
    [36]韩建强,朱长纯,刘君华.电热激励微谐振器及谐振式传感器[J].微纳电子技术,2002,8:31-35.
    [37]HAN J. Q., ZHU C. C., Shi Y. S.. A novel voltage-controlled oscillator realized with a microresonator [J]. Solid-State Electronics,2005,49:63-66.
    [38]ROBERTO V., JACKY S. H., SUN Y., et al. An in-plane bi-directional electrothermal MEMS actuator [J]. Journal of Micromechanics and Microengineering,2006, (16):2067-2070.
    [39]樊尚春,刘广玉.热激励谐振式硅微结构压力传感器[J].航空学报,2000,21(5):474-476.
    [40]BENOIT C., SALVADOR M., FABIEN P., et al. Generation of electrically induced stimuli for MEMS self-test [J]. Journal of Electronic:Theory and Application, 2001,17:459-470.
    [41]VENKATES S., CULSHAW B.. Optically activated vibrations in a micromachined silica structure [J]. Electronics Letters,1985,11:315-317.
    [42]刘月明,刘君华,张少君.镀膜硅微机械谐振器光热激励的实验研究[J].光学学报,2003,23(5):529-533.
    [43]顾利忠.光激励微硅梁谐振机理研究[J].中国激光,2000,3(27):253-255.
    [44]NICKOLAY V. L., PANOS G. D.. Femtogram mass detection using photothermally actuated nanomechanical resonators [J]. APPLIED PHYSICS LETTERS,2003,4(82):2697-2699.
    [45]顾利忠,左铭旺,苏菲.声激励共振测量微机械材料的杨氏模量[J].声学技术,2000,19(4):187-189.
    [46]YACINE M. A., NICK A. J. L.. Noncontacting excitation and measurement of light structures [J]. Journal of Vibration and Acoustics,2003,1(125):114-119.
    [47]THOMAS M. H., BRADLEY C. A., DANIEL C. M.. Mode-selective noncontact excitation of microcantilevers and microcantilever arrays in air using the ultrasound radiation force [J]. Applied physics letters,2010,97:214-217.
    [48]JAMES S. B., ALUN J. H., DAVID W., et al. A system for the dynamic characterization of microstructures [J]. Journal of Microelectromechanical System,1997,12(6): 322-328.
    [49]GUO N., CAWLEY P.. Transient response of piezoelectric discs to applied voltage pulses [J]. Ultrasonics,1991,29:208-216.
    [50]OZDOGANLAR O. B., HANSCHE B. D., GARNE T. G.. Experimental modal analysis for micro -electromechanical systems [J]. Society for Experimental Mechanics,2005 45(6) :498-506.
    [51]王涛.高g值环境典型微结构动态特性及测试技术研究[D].大连:大连理工大学机械工程学院,2008.
    [52]谢勇君MEMS微结构动态测试方法及关键技术研究[D].武汉:华中科技大学机械工程学院,2006.
    [53]冷长林.基于激光多普勒技术的微机电系统运动检测[D].天津:天津大学精密仪器与光电子工程学院,2006.
    [54]FRIEDER L., PETER H.. Magnetic direct generation of acoustic resonances in silicon membranes [J]. Measurement Science and Technology,2006,17:719-726.
    [55]TABIB A. M., SUTAPUM B., HUFF M.. Applications of Ti-Ni thin film shape memory alloys in micro-opto-electro-mechanical systems [J]. Sensors and Actuators A, 1999,77:34-38.
    [56]MIU D. K., FREES G. M., GOMPERTZ R. S.. Tracking dynamics of read/write head suspensions in high performance small form factor rigid disk drives [J]. Journal of Vibration and Acoustics,1990,112:33-39.
    [57]REMBE C., MULLER R. S.. Measurement system for full three-dimensional motion chara-cterization of MEMS [J]. Journal of Microelectromechanical System,2002,11(5) :479-488.
    [58]REMBE C., KANT R., MULLER R. S.. Optical measurement methods to study dynamic behavior in MEMS [C]. Proceeding of SPIE,2001,4400:127-137.
    [59]REMBE C., CATON P., WHITE R. M., et al. Stroboscopic Interferometry for character-ization and improvement of flexural plate-wave transducers [C]. Proceeding of SPIE,2001,4558:108-116.
    [60]HART M. R., CONANT R. A.. Stroboscopic Interferometer system for dynamic MEMS chara-cterization [J]. Journal of Microelctromechanical System,2000,9(4):409-418.
    [61]MATTHEW H., ROBERT C.. Stroboscopic phase-shifting interferometry for dynamic char-acterization of optical MEMS [C]. Proceeding of SPIE,1999,3749:468-469.
    [62]郭彤,胡春光,胡晓东,等.频闪干涉仪在微机电系统动态表征中的应用[J].纳米技术与精密工程,2004,2(4):294-298.
    [63]郭彤.基于显微干涉术的微机电系统动态测试方法与系统的研究[D].天津:天津大学精密仪器与光电子工程学院,2004.
    [64]DAVIS C. Q., FREEMAN D. M.. Using a light microscope to measure motions with nanometer accuracy [J]. Optical Engineering,1988,37(4):1299-1304.
    [65]DAVIS C. Q., FREEMAN D. M.. Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching [J]. Optical Engineering, 1988,37 (4):1290-1298.
    [66]LAWRENCE E. M., SPELLER K. E., YU D. L.. MEMS characterization using Laser Dopper Vibrometry, reliability, testing, and characterization of MEMS/MOEMS II [C]. Proceeding of SPIE,2003,4980:51-62.
    [67]DRAIN L. E.. The Laser Doppler Technique [M]. Chichester:Wiley,1980.
    [68]INTEMA D. J., TILMANS H. A.. Static and dynamic aspects of an air-gap capacitor [J]. Sensors and Actuators A,1992,(35):121-128.
    [69]SMITH N. F., TANNER D. M., SWANSON S. E., et al. Non-destructive resonant frequency measurement on MEMS actuators [C]. Proceedings of IRPS,2001, (2):99-105.
    [70]CHOU Y. F., WANG L. C.. On the modal testing of microstructures:its theoretical approach and experimental setup [J]. Journal of Vibration and Acoustics,2001, 123:104-109.
    [71]MAJJAD H., BASROUR S., DELOBELL P., et al. Dynamic determination of Young's modulus of electroplated nickel used in LIGA technique [J]. Sensors and Actuators A,1999, (74):148-151.
    [72]WILSON C. J., BOGY D. B.. Modal analysis of a suspension assembly [J]. Journal of Engineer Industry,1994, (116):377-386.
    [73]BURDESS J. S., HARRIS A., WOOD D., et al. A System for the Dynamic Characterization of Microstructures [J]. Journal of Microelectromechanical System,1997,6(4):322-328.
    [74]NGOI B. K., VENKATAKRISHNAN K., TAN B., et al. Two-axis-scanning laser Dopper vibro-meter for microstructure [J]. Optics Communications,2000,182 (3):175-185.
    [75]张涛,冷长林,钟莹,等.基于激光差动多普勒效应的微机电系统动态测试技术[J].光学学报,2007,27(1):63-67.
    [76]LAWRENCE E. M., SPELLER K. E., YU D. L., et, al. MEMS characterization using Laser Doppler Vibrometry [C]. Proceedings of SPIE,2003,4980:51-62.
    [77]LOKBERG 0. J., SEEBERG B. E., VESTLI K.. Microscopic video speckle interferometry [J]. Optics and Lasers in Engineering,1997,26(4):313-330.
    [78]RITTER R.. Notes on the application of electronic speckle pattern interferometry [J]. Optics and Lasers in Engineering,1997,26(4):283-299.
    [79]LEE C. W., ZHANG X. M., TJIN S. C., et al. Nano-scale displacement measurement of MEMS devices using fiber optic interferometry [C]. Proceedings of SPIE, 2003,5145:196-201.
    [80]RUAN F., ZHOU Y.. A precision fiber optic displacement sensor based on reciprocal interferometry [J]. Optics Communications,2000,176(1):105-112.
    [81]DUMAS N., AZAIS F., LATORRE L., et al. On-Chip Electro-Thermal Stimulus Generation for a MEMS-Based Magnetic Field Sensor [C]. Proceedings of the 23rd IEEE VLSI Test Symposium,2005.
    [82]YANG Z. C., WANG Q. M.. Transient response of piezoelectric thin-film vibration sensor under pulse excitation [J]. Journal of Applied Physics,2006,99:71-75.
    [83]BENOIT C., SALVADOR M., FABIEN P., et al. Generation of Electrically Induced Stimuli for MEMS Self-Test [J]. Journal of Electronic Testing:Theory and Applications,2001,17:459-470.
    [84]PAR-Testing Organization. Solutions for wafer-level MEMS testing:report of Polytec [R]. Berlin:The MEMUNITY Workshop,2006.
    [85]XIE Y. J., SHI T. L., LIU S. Y.. Automatic measurement system for dynamic characterization of MEMS [J]. Advances in Systems Science and Application, 2006,6 (2):312-318.
    [86]WANG X. D., LI N., WANG T., et al. Dynamic characteristic testing for MEMS micro-device with base excitation [J]. Measurement Science and Technology, 2007,18(6):1740-1747.
    [87]BROWN T. G.. Harsh military environments and microelectromechanical (MEMS) devices [C]. Proceedings of IEEE Sensors,2003,2:753-760.
    [88]BENDIDA S., KONING J. J., BONTEMPS J. J. M., et al. Temperature stability of a piezoresistive MEMS resonator including self-heating [J]. Microelectronics Reliability,2008,48:1227-1231.
    [89]TANNER D. M., WALRAVEN J. A., HELGESEN K., et al. MEMS reliability in shock environments [C]. IEEE International Reliability Physics Symposium in San Jose, 2000.
    [90]吕劲楠,唐洁影.MEMS微悬臂梁在冲击环境下的可靠性[J].功能材料与器件学报,2008,14(1):103-106.
    [91]ALI S. M., MANTELL S. C., LONGMIRE E. K.. Reliability of microcantilevers in liquid environments [C]. Proceedings of SPIE,2006,6111:1-12.
    [92]张相庭.结构振动力学[M].上海:同济大学出版社,2005.
    [93]郑兆昌.机械振动[M].北京:机械工业出版社,1986.
    [94]严宗元.高等数学[M].上海:同济大学出版社,2009.
    [95]陈忠安,王静.材料力学[M].北京:北京大学出版社,2009.
    [96]PETERSEN K.. Silicon as a mechanical materials [C]. Proceedings of IEEE Electron Devices, San Francisco,1982,420-457.
    [97]MCSKIMIN H. J.. Measurement of elastic constants at low temperature by means of ultrasonic waves data for silicon and germanium single crystals and for fused silica [J]. Journal of Applied Physics,1953,24:988-997.
    [98]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:清华大学出版社,2005.
    [99]PI Corporation. Fundamentals of Piezoelectricity and Piezo Actuators [R].2003.
    [100]张俞.膨胀波与激波[M].北京:北京大学出版社,1983.
    [101]林广义.压电陶瓷液体压力激波发生器系统关键技术基础研究[D].南京:南京航空航天大学机械学院,2006.
    [102]秦曾衍.高压强脉冲放电及其应用[M].北京:北京大学出版社,2000.
    [103]蒋凯,汪炜.激波压力扰动辅助电火花加工高深宽比微细结构方法研究[J].电加工与模具,2005,6:30-33.
    [104]LIANG S. M., CHOW K. H., MANOUSAKAS I., et al. Design and fabrication of a shock wave generator for musculoskeletal disorders [J]. Biomedical Engineering Applications Basis and Communications,2006,18:24-29.
    [105]JAGADEESH G., TAKAYAMA K.. Novel applications of micro-shock waves in biological sciences [J]. Journal of Indian Institute Science,2002,82:12-21.
    [106]肖如泉.高压放电的原理与演示[M].北京:中国水利水电出版社,2004.
    [107]吴弘,周绮帆.回路参数对冲击波特性的影响[J].电工电能新技术,1991,4:18-24.
    [108]于歆杰,朱桂萍,陆文娟.电路原理[M].北京:清华大学出版社,2007.
    [109]吴正业.制冷原理及设备[M].西安:西安交通大学出版社,2010.
    [110]屈金祥,陆燕.小型低温真空光学实验装置设计[J].红外与激光工程,2006,35(4):494-504.
    [111]王仕康.激光多普勒技术[M].北京:清华大学出版社,1985.
    [112]姚欣.激光多普勒振动检测技术的研究[D].天津:天津大学精密仪器与光电子工程学院,2004.
    [113]赵长汉,姜士林.感应加热原理与应用[M].天津:天津科技翻译出版社,1993.
    [114]朱波,钱宇白.材料加热设备及自动控制[M].济南:山东大学出版社,2002.
    [115]汤定元.红外辐射加热技术[M].北京:中国人民大学出版社,1992.
    [116]陈勇平,王金林,李春生,等.高频介质加热在木材胶合中的应用[J].木材加工机械,2007,5:37-41.
    [117]陈连忠,张友华.电弧加热设备的类型及趋势[J].宇航材料工艺.2011,2:34-42.
    [118]孔祥东,韩立,初明璋,等.基于电子束曝光的微区加热技术[J].纳米技术与精密工程,2011,9(5):440-445.
    [119]方大千.实用晶闸管电路[M].北京:中国水利水电出版社,2002.
    [120]胡晓东,宋孝勇,栗大超,等.微结构振动特性的自由衰减测试方法[J].天津大学学报,2006,39(03):338-342.
    [121]LAI W. P., FANG W. L.. Novel bulk acoustic wave hammer to determinate the dynamic response of microstructures using pulsed broad bandwidth ultrasonic transducers [J]. Sensors and Actuators A,2002,96:43-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700