慈竹CBF1基因克隆及其耐寒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CBF/DREB1是一个布冷驯化过程中起关键作用的转录因了家族,该转录因子操控很多抗逆相关基因的表达,是抗寒相关基因启动表达的总开关。本研究通过RACE技术,克隆了丛生经济竹种之一慈竹的CBF1基因全长序列克隆,同时构建慈竹CBF1基因的过表达载体和RNA干涉载体,并通过农杆菌介导法转入模式植物烟草,研究慈竹CBF1基因功能,为进一步研究慈竹耐寒机理奠定基础。主要研究结果如下:
     1.以慈竹叶片为材料,根据已报道的CBF1(CRT-Binding factor1)基因的cDNA序列设计简并引物,通过TD-PCR技术,得到1条新的CBF1基因保守区片段。以这条保守区片段为模板,结合5'RACE和3'RACE得到一条新的CBF1基因全长序列,命名为NaCBF1,并提交Genbank注册,注册号为JN896707.生物信息学分析结果表明,该序列编码区(coding sequence, CDS)全长为663bp,编码221个氨基酸,其序列中存在PKRRAGRTKFKETRHP和LNFADS两大CBF1氨基酸保守域。
     2.成功构建RNAi干扰载体pBI121-NaCBF1-RNAi和NaCBF1基因过表达载体pBI121-NaCBFl,并将后者通过叶盘法进行烟草转化研究。通过预培养、侵染、筛选、生根等步骤得到大量转化幼苗。常规PCR检测获得了含有NaCBF1基因的转基因烟草阳性植株,初步证明该表达载体已导入烟草叶片基因组中;半定量RT-PCR检测结果表明,NaCBF1基因在转基因烟草(如OE1、OE2和OE3株系)中的表达量与未转化的对照相比,明显增加。
     3.为检测NaCBF1基因过表达对转基因烟草耐寒性影响,本研究对野生型烟草(WT)和T2代过表达NaCBF1转基因烟草(OE1、OE2和OE3),在不同温度胁迫(25℃、15℃、4℃、0℃和-2℃)下处理0h、3h、6h、12h和24h,测定其叶绿素荧光参数,及其逆境响应相关生理指标。结果表明,随着胁迫温度的降低,与野生型烟草相比,过表达NaCBF1转基因烟草的叶绿素荧光参数除NPQ值增大外,Fv/Fm、ΦPSⅡ、ETR, qP、和Fv/Fo值都减小,降幅缓慢,表明NaCBF1过表达的转基因烟草叶片的光系统受损较小,PSH反应中心丌放度增大,光合电子传递活性增强,对逆境胁迫具有更强的抗性。不同温度胁迫下,转基因烟草的MDA和RC相对较低,抗氧化酶系统(SOD、POD、CAT)均保持较高的活性,同时渗透保护物质脯氨酸、可溶性糖含量也明显担高,表明转基因烟草电解质外渗量相对较小,膜脂过氧化程度相对较低,活性氧的清除能力提高,有利于维护细胞膜结构和功能,从而缓解温度胁迫的伤害,可见NaCBF1在烟草中过表达可增加转基因烟草的耐寒性。
     4.相关性分析表明,过表达NaCBF1转基因烟草的POD活性与各叶绿素荧光参数呈显著或极显著的正相关,表明其在低温或冷冻胁迫下仍能保持较高光合能力,可能与其POD活性的提高有关
CRT-binding factor/Dehydration responsive element binding (CBF/DREB1) is a small family of transcription factors which plays an important role in response to cold. It controls expressions of genes involved in cold-resistance of plant. In our study, a Neosinocalamus affinis CBF1gene (NaCBF1) was cloned by RACE. Then, a NaCBF1overexpression vector and an RNAi expression vector were generated. Furthermore, the NaCBFl overexpression vector (pBI-NaCBF1) was transformed into tobacco by A. tumefaciens-mediated transformation, which lays a foundation for studying the mechanism of cold-resistance of bamboo. Main results are as follows:
     1. According to several known CBF1cDNA sequences, a pair of degenerate primer was designed. Then, a conserved sequence of CBF1gene was cloned from Neosinocalamus affinis. With the cloned fragment as the template, a full-length CBF1gene sequence from Neosinocalamus affinis was obtained through5'RACE and3'RACE, and designated as NaCBFl (Genbank:JN896707). The results of bioinformatics analysis indicated that the length of NaCBFl was663bp, encoding221amino acids with the conserved amino acid blocks PKRRAGRTKFKETRHP and LNFADS.
     2. In order to analyze the function of NaCBF1, an RNAi plant expression vector (pBI-NaCBF1-CBFl) and an overexpression vector (pB1-NaCBFl) of NaCBF1gene were generated. Then, the pB1-NaCBFl vector was transformed into tobacco by A. tumefaciens-mediated transformation. Several transformation plants obtained were further confirmed by PCR and RT-PCR testing. The results showed that the expression of NaCBF1gene in OE1, OE2and OE3lines of transgenic tobaccos were higher than that of untransformed wild type tobaccos.
     3. In order to detect the effects of NaCBF1overexpression on cold-resistance of transformed tobacco, wild-type and transgenic tobaccos were treated by the different temperature treatments (25℃,15℃,4℃,0℃and-2℃) with different times (0h,3h,6h,12h and24h). The results showed that under chilling or cold stress, the levels of maximal photochemical efficiency of PS II (Fv/Fm), actual photochemical efficiency of system Ⅱ (ΦPS Ⅱ), electron transport rate(ETR), photochemical quenching (qP) and potential activity of PS Ⅱ (Fv/F0) in the overexpressing NaCBFl transgenic tobacco were significantly decreased compared to wild type tobacco. However, the level of non-photochemical quenching (NPQ) in transgenic tobacco was higher than wild type tobacco under chilling stress or cold stress, which indicated that the cold resistance of transgenic tobacco with overexpressing NaCBF1was improved compared with wild type tobacco. The results also showed that, under the conditions of chilling-stress or cold-stress, the contents of relative conductivity(RC) and MDA in transgenic tobacco plants were lower than that of wild-type tobacco plants, which resulted in the decrease of electrolyte leakage and the extent of the membrane lipid perioxidation. Furthermore, in all stresses, the transgenic tobacco plants with overexpression of NaCBFl always sustained higher activities in SOD, POD and CAT, which resulted in more increase of scavenging active oxygen and less injury. Under chilling stress or cold stress, in transgenic tobacco plants with overexpression of NaCBFl gene, more prolines, soluble sugars and soluble protein were accumulated compared with wild type tobacco plants, which were favorable to maintain the function of cell membrane and improve cold resistance in transgenic tobacco.
     4. Correlation analysis showed in the transgenic tobacco plants with overexpression of NaCBF1gene, POD activity was significantly correlated with chlorophyll fluorescence parameters. This result indicated that under the condition of chilling or cold stress, higher photosynthetic capacity in the transgenic tobacco plants with overexpression of NaCBF1gene was correlated with increased POD activity.
引文
[1]刘庆,何海,沈昭萍.成都地区慈竹生长状况及其与环境因子关系的初步分析[J].四川环境.2001,20(4):43-46.
    [2]徐小林,江心,杨冬生,等.慈竹生态环境及培育技术初步研究——(Ⅰ)生态环境[J].四川林业科技,1990,11(3):21-28.
    [3]徐小林,江心,杨冬生,等.慈竹生态环境及培育技术初步研究——(Ⅱ)培育技术[J].四川林业科技,1990,11(4):15-21.
    [4]贾举庆,胡尚连,孙霞,等.四川两种丛生竹木质素和纤维含量的研究[J].西北植物学报,2007,27(1):197-200.
    [5]吴萌,车国宣.慈竹丰产结构的研究[J].四川林业科技,1985(1):7-10.
    [6]谭宏超,贺帮钊.慈竹丰产栽培及效益分析[J].云南林业,2003,24(1):16.
    [7]王琼,苏智先,雷泞菲,等.慈竹母株大小对克隆生长的影响[J].植物生态学报,2005,29(1):116-121.
    [8]王小红.水竹和慈竹开花研究[D].雅安:四川农业大学,博士论文.2007.
    [9]蔡伟国.北京植物园的抗寒竹种[J].竹子研究汇刊,1989,8(4):66-71.
    [10]张文娥.中国葡萄属野生种抗寒性鉴定与抗寒基因的RAPD标记[D].杨凌:西北农林科技大学,硕士论文,2005.
    [11]周芳纯.竹林培育学[M].北京:中国林业出版社,1998:15.
    [12]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出社,1996:801-819.
    [13]任艳军.刚竹属(Phyllostachys)邵分观赏种间亲缘关系的RAPD标记研究[D].雅安:四川农业大学,硕士学位论文,2004.
    [14]陆伯益.竹笋中甾醇类化合物的研究[D].杭州:浙江大学,博士学位论文,2007.
    [15]苏智先.四川慈竹资源及其开发利用[J].林业调查规划,1991,(1):36-38.
    [16]吴乃虎,刁丰秋.植物转录因子及发育[J].科学通报,1998,43(20):2133-2139.
    [17]曹云飞,张海娜,肖凯.CBF转录因子介导的植物低温信号转导研究进展[J].棉花学报,2007,19(4):304-311.
    [18]Liu Q, Kasug M, Sakuma A Y,et al. Two transcrition factors DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression,respectively inArabidopsis[J]. Plant Cell,1998,10:1391-1406.
    [19]Van B, Heather A, Thomashow M F. Arabidopsis transcription factors regulating cold acclimation[J].Physiologia Plantarum,2006,126:72-80.
    [20]李芳,李先文,黎定军.AP2/EREBP转录因子及其在植物抗逆中的作用[J].江西农业学报,2008,20(1):44-47.
    [21]Medina J., Bargues M., Terol J., Perez-Alonso M., and Salinas J.. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-con taining proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration[J]. Plant Physiol., 1999,119:463-469.
    [22]Haake V, Cook D., Riechmann J.L., Pineda O., Michael F.. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol.,2002,130(10):639-648.
    [23]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45:1465-1474.
    [24]Wessler S R. Homing into the origin of the AP2 DNA binding domain[J]. Trends Plant Sci., 2005,10:54-56.
    [25]Magnani E, Sjolander K, Hake S. From endonucleases to transcription factor:evolution of the AP2 DNA binding domain in plants[J]. Plant Cell,2004,16:2265-2277.
    [26]Chinnusamy V, Ohta M, Kanrar S, et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes and Development,2003,17:1043-1054.
    [27]Yang J S, Wang R, Meng J J, et al. Overexpressionof Arabidopsis CBFI gene in transgenic tobacco alleviates photoinhibition of PS Ⅱ and PS Ⅰ during chilling stress under low irradiance[J]. Journal of Plant Physiology,2010,167:534-539.
    [28]Zou J, Liu C F, Liu A L, et al. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice[J]. Journal of Plant Physiology,2012.
    [29]Kodaira S K, Qin F, Tran P S-L, et al. Arabidopsis Cys2/His2 Zinc-Finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions[J]. Plant Physiology,2011,157:742-756.
    [30]孟慧,张霞,曾目中,等.转录因子ABP9基因过表达对植物生长发育的影响[J].农业生物技术科学,2007,23(6):94-98.
    [31]刘汉梅,张怀渝,谭振波,等.玉米抗寒基因的克隆与表达研究[J].玉米科学,2007,15(2):26-30.
    [32]周小云,马盾,危小薇.筛选转抗寒基因析花的简便力法[J].生物技术,2008,18(4):36-38.
    [33]张微微,车代弟,张兴,等.CBF1转录因子基因的克隆及两种启动子调控下的植物表达载体的构建[J].2005,3(4):493-497.
    [34]Benediet C, Skinner J S, Meng R, et al. The CBFI-dependent low temperature signalling pathway regulon and increase in freeze tolerance are conserved in Populus spp[J]. Plant cell and environment,2006,29(7):1259-1272.
    [35]Manu Agarwal, Yujin Hao, Avnish Kapoor, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. The journal of biological chemistry,2006,281(49):37636-37645.
    [36]Tyrel Denesik. Quantitative expression analysis of four low-temperature-tolerance-associated genes during cold acclimation in wheat (Triticum aestivum L.)[D]. University of Saskatchewan,2007.
    [37]开国银,陈国峰,周伟,等.油菜抗冷相关BnCOR14的克隆及序列分析[J].西北植物学报,2007,27(1):9-15.
    [38]Chen M, Wang Q Y, Chen X G,et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications,2007,353(2):299-305.
    [39]Dong C H, Hu X Y, Tang W P, Zhu J K. A putative Arabidopsis nucleoporin,AtNUP160, is critical for RNA export and required for plant tolerance to cold stress[J]. Mol Cell Biol,2006, 26(24):9533-9543.
    [40]Gong Z, Dong C H, Lee H, et al. A export and important for development and stress responses in Arabidopsis[J]. Plant Cell,2005,17:56-267.
    [41]Owttrim G W. RNA helicases and abiotic stress[J]. Nucleic Acids Res,2006,34(11): 3220-3230.
    [42]Jianhua Zhu, Chun-Hai Dong, Jian-Kang Zhu.et al. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation[J]. The plant biology,2007,10:290-295.
    [43]Patrick Achard, Fan Gong, Soizic Cheminant, et al.The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J]. The plant cell,2008,20:2117-2129.
    [44]周德宝,张二红.植物抗寒性与抗寒基因的表达和调控[J].生物技术通报,2006,(增刊):15-17.
    [45]金建凤,高强,陈勇,等.转移拟南芥CBF1綦因引起水稻植株脯氨酸含量提高[J].细胞生物学杂志,2005,27(1):73-76.
    [46]Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant Cell Physiol, 2006,47(1):141-153.
    [47]Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J].The Plant Cell,2006,18: 1292-1309.
    [48]SEO E, LEF, H, JEON J, et al. Crosstalk between cold response and fllowering in Arabidopsis mediated through the fllowering-time gene SOCl and its upstream negative regulator FLC[J]. Plant cell,2009,21:3180-3197.
    [49]MA Q B, DAI X Y, Xu Y, et al. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes[J]. Plant Physiology,2009.150:244-256.
    [50]Tian Y, Zhang H. Pan X, et al. Overexpression of ethylene response lector TERF2 confers cold tolerance in rice seedlings[J].Transgenic Res.,2010,10,1007/s11248-010-94639.
    [51]Mohamed Badawi, Yedulla Venkat Reddy, Zahra Agharbaoui, et al. Structure and Functional Analysis of Wheat ICE (Inducer of CBF Expression) Genes[J]. Plant cell Physiol.,2008, 49(8):1237-1247.
    [52]杨玉珍,王列富,彭方仁.蛋白质的变化与植物抗寒性的关系研究进展[J].生物技术通讯,2007,18(4):711-714.
    [53]杨凤萍,梁荣奇,张立全,等.抗逆调节转录因子CBF1基因提高多年生黑麦草的抗早能力[J].华北农学报,2006,21(1):14-18.
    [54]Viswanathan C, Jianhua Zhu, Jiankang Zhu. Cold stress regulation of gene expression in plants[J]. Trends in plant science,2007,12(10):444-451.
    [55]Lee B H, Henderson D A, Zhu J K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1[J]. The plant cell,2005,17:3155-3175.
    [56]丁秀英,张军,崔霞,等.低温胁迫下IPT诱导水稻幼苗根中RNA差别显示分析[J].作物学报,2001,27(6):935-940.
    [57]Horvath D P, Olson P A.Cloing and characterization of cold-regulated glycine-rich RNA-binding protein genes from leafy spurge(Euphorbia esulas L.) and comparison to heterologous genomic clones[J]. Plant Mol Biol,1998,38:531-538.
    [58]邹中伟,房婉萍,张定,等.低温胁迫下茶树基因表达的差异分析[J].茶叶科学,2008,28(4):249-254.
    [59]郑银英,崔百明,常明进,等.转拟南芥ICE1基因增强烟草抗寒性的研究[J].西北植物学报,2009,29(1):75-79.
    [60]Maruyama K, Sakuma Y, Kasuga M, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two mocroarray systems[J]. The Plant Journal,2004,38:982-993.
    [61]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of experimental botany,2007,58(2):221-227.
    [62]Xiaoyan Dai, Yunyuan Xu, Qibin Ma, et al. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought and salt stress in transgenic Arabidopsis[J]. Plant Physiology,2007,143:1739-1751.
    [63]陈郁.基因芯片数据分析及在植物基因组研究中的应用[J].氨基酸和生物资源,2008,30(1):33-36.
    [64]王关林,方宏筠.植物基因工程(第二版)[M].科学出版社,2002:188-206.
    [65]陈锐,高之桢,詹树萱,等.2个水稻花发育相关WADS-box基因的全序列cDNA克隆及结构分析[J].复旦学报(自然科学版),2003,42(4):570-575.
    [66]葛荣朝,赵宝存,陈扫平,等.小麦耐盐相关基因TaSTK的克隆[J].作物学报,2007,33(5):857-860.
    [67]张燕子,马锋旺,张军科,等.苹果脱氢抗坏血酸还原酶(DHAR)基因cDNA版段的克隆及序列分析[J].西北农林科技大学学报(自然科学版),2007,35(1):179-183.
    [68]李慧娟,张学成,岳桂东,等.莴苣1-FFT基因的克降及其功能分析[J].高技术通讯,2007,17(4):424-429.
    [69]甘德芳,朱苏文,范军,等.大白菜几丁质酶基因CHB4的克降及序列分析[J].园艺学报,2007,34(1):105-110.
    [70]陈婷婷,李旭凯,王如意,等.棉花GhPME1和GhPME2基因的克隆及表达分析[J].中国农业大学学报,2012,17(5):7-14.
    [71]连青龙,李晓昕,钟熊辉,等.唐菖蒲丙二烯氧化物环化酶的克降与表达分析[J].中国农业大学学报,2012,17(5):46-53.
    [72]高志明,刘青,牟少华,等.绿竹锌指蛋白基因BoBZF克降及功能初步分析[J].林业科学,2012,48(10):49-54.
    [73]白摆,杨国顺,陈石,等.植物系统性RNAi的研究进展[J].基因组学与应用生物学,2009,28(3):607-612.
    [74]马建,刘艺苓,王丕武.植物RNA干扰的研究进展[J].中国油料作物学报,2008,30(2):252-259.
    [75]陈李淼,赵琳,郝迪,等.植物中RNA干扰技术的研究与应用[J].东北农业大学学报,2009,40(10):122-128.
    [76]Aline C S, Nunes G R, Vianna F C, et al. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta,2006,224(1):1432-2048.
    [77]Sin S F, Yeung E C, Chye M L. Downregulation of Solanum americanum genes encoding proteinase inhibitor Ⅱ causes defective seed development[J]. The Plant Journal,2006,45: 58-70.
    [78]Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana[J].PNAS,2000,97(9):4985-4990.
    [79]Hiriart J B, Aro E M, Lehto K. Dynamics of the VIGS-Mediated Chimeric Silencing of the Nicotiana benthamiana ChlH Gene and of the Tobacco Mosaic Virus Vector[J]. The American Phytopathological Society,2003,16(2):99-106
    [80]PintoY M, Kok R A, Bandcombe D C. Nature Biotechnology,1999,17:702-707.
    [81]Tenllado F, Diaz-Ruiz J R. Double-stranded RNA-mediated inter-ference with plant virus infection[J]. J Viro,12001,75 (24):12288-12297.
    [82]Tenllado F, Llave C, Diaz-Ruiz J R. RNA interference as a newbiotechnological tool for the control of virus diseases in plants[J]. VirusResearch,2004,102:85-96.
    [83]Fatma Kaplan, Guy Charles L. RNA interference of Arabidopsis beta-amylase prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress[J]. The Plant Journal,2005,44:730-743.
    [84]Shimada T, Otanim, Hamad T, et al. Increase of amylose content of sweetpotato by RNA interference of the starch branching enzyme Ⅱ gene (IbSBE TI). Plant Biotechnology,2006,23: 85-90.
    [85]Ganesan S, LeAnne M C, Lorraine P, et al. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypo[J]. PNAS,2006,103 (48):18054-18059.
    [86]Liang R Q, Yang F P, Zhang L Q, et al. Silencing grain ppo genes expression to improvewheat flourwhiteness byRNAi[C]. In:PlantGenomics in ChinaⅦ, Harbin:Heilongjiang University Press,2006.
    [87]宋恩慧,蔡诚,魏国,等.RNA干扰培育低术质素杨树[J].林业科学,2010,46(2):39-44.
    [88]Horsh R B. A simple and general method for transferring genes into plants[J]. Science,1985, 217:1229-1231.
    [89]林秀锋,郭喜英,刘志明.转CBF1基因提高水稻抗寒能力的初步研究[J].吉林农业科学2008,33(5):6-8,11
    [90]卢翠华,邸宏,李文滨,等.农杆菌介导的cryⅤ、CBF1基因对马铃薯的遗传转化[C].中国植物生理学会.全国“植物生物技术及其产业化”研讨会论文摘要集.广州,2007:70.
    [91]赵辉.橡胶农杆菌转化体系及抗寒转基因种质的研究[D].儋州:华南热带农业大学,2007.
    [92]王萍,高世庆,郭永来.利用农杆菌介导将抗逆相关基因GmDREB导入大豆的研究[J].大豆科学,2008,27(1):47-51.
    [93]周静,张晓丰,马吉春,等.农杆菌介导CBF1基因转化安祖花的研究[J].安徽农业科学,2008,36(8):3136-3137,3173.
    [94]吴关庭,郎春秀,胡张华,等.转CBF1基因增强水稻的耐逆性[J].核农学报,2006,20(3):169-173.
    [95]刘凯,胡春华,魏岳荣,等.拟南芥CBF1基因植物表达载体构建及其对野生蕉的遗传转化[J].湖南农业大学学报(白然科学版),2011,37(3):248-252.
    [96]秦秋琳.水稻转录因子RdreB1的基因克隆和功能分析[D].扬州:扬州大学,硕士学位论 文,2004.
    [97]金万梅,董静,闫爱玲,等.冷诱导转录因子CBF1转化草莓及其抗寒性鉴定[J].西北植物学报,2007,27(2):223-227.
    [98]Palta P, Leep h. Cell membrane properties in relation to freezing injury[J]. Hortscience,1996, 31(1):51-57.
    [99]Lyons J. M. Chilling injury in plants[J], Annu.Rev.Plant Physiol.,1973,24:445-466.
    [100]刘国华,栾以玲,张艳华.自然状态下竹子的抗寒性研究[J].竹子研究汇刊,2006,25(2):10-14.
    [101]朴树燕,丁雨龙.电导法对7种观赏竹的抗寒性测定[J].西北林学院学报,2008,23(1):34-38.
    [102]吴继林.大湖竹园丛生竹种的收集及其耐寒性评价研究[J].竹了研究汇刊,2008,27(1):19-26.
    [103]杜钰娉.五彩柊树的抗寒性研究[D].南京:南京林业大学,硕士论文,2006.
    [104]杨春祥.早熟油桃抗寒性的研究[D].山东农业大学,硕士学位论文,2005.
    [105]麦苗苗.连香树干旱胁迫过程中的生理变化与基因差异表达分析[D].雅安:四川农业大学,博士论文,2009.
    [106]王孝宣,李树德,东惠茹,等.番茄品种耐寒性与ABA和可溶性糖含量的关系[J]·园艺学报,1998,25(1):56-60.
    [107]谢晓金.南京地区引种常绿阔叶树种的抗寒性研究[D].南京:南京农业大学,硕士学位论文,2004.
    [108]左宝峰.自然降温过程中雪松抗寒性及其适应性的研究[D].晋中:山西农业大学,硕士学位论义,2005.
    [109]武维华.植物生理学.北京:科学出版社,2003:430-443.
    [110]罗新义,冯昌军,李红,等.低温胁迫下肇东苜蓿SOD、脯氨酸活性变化初报[J].中国草地,2004,7:79-81.
    [111]张荣华,李拥军,张叶玲.脯氨酸含量对苜蓿抗寒性影响的研究[J].现代化农业,2006,4:17-18.
    [112]马兰涛,陈双林,李迎春.低温胁迫对Guadua amplexfolia抗寒性生理指标的影响[J].林业科学研究,2008,21(2):235-238.
    [113]许瑛.菊花抗寒特性研究及抗寒评价体系的建立[D].南京:南京农业大学,硕士学位论文,2007.
    [114]武雁军,刘建辉.低温胁迫对厚皮甜瓜幼苗抗寒性生理生化指示的影响[J].西北农林科技大学学报(自然科学版),2007,35(3):139-143.
    [115]Van C W, Willekens H, Bowler C. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage[J]. Biotechnology,1996,12:165-168.
    [116]Jiao D M, Ji B H, Yan B, et al. Photosynthetic adaptive modulation of rice to light-stress and its genetic improvement approach. Photosynthesis:from light to biosphere. Volume Ⅳ. Proceedings of the Xth Inter national Photosynthesis Congress [M],1995,171-174.
    [117]姚延涛.混交生物量及营养元素循环的研究.中国青年绿色沦坛[M].中国林业出版社,1995,34-37.
    [118]Breusegem F. van, Slooten L., Stassart J. M., et al. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerace to cold and oxidative stress[J]. J. Exp. Bot., 1999,50(330):71-78.
    [119]Hartug, N D. Flora fena abt.B.,1986,15(7):603-614
    [120]李晓萍,等.黄瓜幼苗的冷锻炼与低温引起的光抑制[J].植物生理学报,1996,22(1):101-104.
    [121]卢从明,等.水分胁迫对小麦叶绿体色素蛋白复合体的影响[J].植物学报,1995,37(12):950-955.
    [122]Schwarz A.M. et al. The role of photosynthesis/light relationships in determining lower depth limits of characeae in South Island, New Zealand Lakes[J]. Fresh-water Biology,1996,35: 69-80.
    [123]Burkhard Jakob, Ulrich Heber. Photoproduction and detoxification of hydroxyl radicals in choloroplasts and leaves and relation to photoinactivation of photosystems 1 and 2[J]. Plant Cell Physiol.,1996,37:629-635.
    [124]田海涛,高培军,温国胜.7种箬竹抗寒特性比较[J].浙江林学院学报.2006,23(6):641-646.
    [125]Pclaudia S. Feijoo et al. Factors in fluencing biomass and nutrient content of the submersed macrophyte egeria densa planch in a pampasic stream [J]. Hydrobiologia,1996,341:21-26.
    [126]Murata N. et al. Genetically engineered alteration in chilling sensitivity of plants[J]. Nature, 1992,356:710-713.
    [127]王丽雪,李荣富,马兰青,等.葡萄枝条中淀粉、还原糖及脂类物质变化与抗寒性的关系[J].内蒙古农牧学院学报,1994,15(4):1-7.
    [128]Biocarta. Charting pathways of life[EB/OL]. http://www.biocarta.com/gene/CellSignaling.asp, 2003-12-012.
    [129]Grill E, Himmelbach A. ABA signal transduction. Current Opinion in Plant Biology,1998, 412(1):418.
    [130]Upinder S, Bballa U S. Iyengar R. Emergent properties of networks of biological signaling pathways. Science,1999:283-381.
    [131]张晗,信月芝,郭惠明,等.CBF转录因子及其在植物抗冷反应中的作用.核农学报[J].2006,20(5):406-409.
    [132]Timothy M. Rose, Emily R. Schultz, Jorja G. Henikoff, et al. Consensus-degenerate hybrid oligonucieotide primers for amplification of distantly related sequences[J]. Nucleic Acids Research,1998,26(7):1628-1635.
    [133]唐宁,杨平.盐芥ThHKT1基因的生物信息学分析[J].药物生物技术.2008,15(6):449-452.
    [134]Smith N A, Singh S P, Wang M B, et al. Total silencing by intron-spliced hairpin RNAs[J]. Nature,2000,407:319-320.
    [135]Wesley S V, Helliwell C A, Smith N A et al. Construct design for efficient, effective and high-throughput gene silencing in plants[J]. Plant Journal,2001,27:581-590.
    [136]Guo H S, Fei J F, Xie Q,et al. A chemical-regulated inducible RNAi system in plants[J]. Plant Journal.2003,34:383-392.
    [137]Raynaud C, Perennes C, Reuzeau C, et al. Cell and plastid division are coordinated through the prereplication factor AtCDT1[J]. Proc. Natl. Acad. Sci. USA,2005,102(23):8216-8221
    [138]胡尚连,曹颖.黄胜雄,等.慈竹4CL基因克隆及其生物信息学分析[J].西此农林科技大学学报(自然科学版),2009,37(8):204-210.
    [139]Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (RESTa) for group-wise comparison and statistical analysis if relative expression results in real-time PCR[J]. Nucleic Acids Research,2002,30:36.
    [140]王学奎.植物生理生化实验原理和技术(第2版)[M].高等教育出版社,2006.
    [141]张志良,瞿伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003.
    [142]陈年来,张玉鑫,安黎哲.NaCl胁迫对甜瓜叶片气体交换和叶绿素荧光特性的影响[J].中国沙漠,2009,29(6):1129-1132.
    [143]Lin S Q, Xu C H, Zhang Q D, et al.The application about chlorophyll flourescence induction kinetics on salt resistance physiology, ecology and modern agriculture. Chinese Bulletin of Botany,1992,9 (1):1-16.
    [144]Papageogiou G. Chlorophyll fluorescence:an intrintic probe of phot osynthesis. In: Gorindjeeed. Bioenergetics of Photosynthesis. New York:Academic Press,1975,319-371.
    [145]Baker N R. Chlorophyll fluorescence:a probe of photosynthesis in vivo[J]. Annu Rev Plant Biol.,2008,59:89-113.
    [146]杨猛,魏玲,庄文枫,等.低温胁迫对玉米幼苗电导率和叶绿素荧光参数的影响[J].玉米科学,2012,20(1):90-94.
    [147]卜庆梅,柏新富,朱建军.4种园林树木叶绿素荧光参数对脱水的响应及耐旱特性分析[J].林业科学,2011,47(10):37-43.
    [148]Katalin J, Eva H, Gabriella S, et al. Salicylic acid may indirectly influence the photosynthetic electron transport[J]. Journal of Plant Physiology,2012,169:971-978.
    [149]李合生.现代植物生理学(第二版)[M].北京:高等教育出版社,2006.
    [150]李召春,张晗,郭慧明,等.转棉花CBF基因烟草的耐逆性生理指标测定[J]·中国农业科技导报,2010,12(4):101-107.
    [151]林元震,张志毅,郭海,等.甜杨PsG6PHD基因超表达对提高烟草抗寒冻性的影响[J].西北农林科技大学报(自然科学版),2010,38(3):125-131.
    [152]张勇.草莓冷诱导转录因了CBF的克隆与结构分析用其抗寒特性研究[D].雅安:四川农业大学,博士学位论文,2009:85-99.
    [153]程汉,安泽伟,蔡海滨,等.转移巴西橡胶树HbCBFl基因提高烟草抗寒能力的研究[J].热带作物学报,2010,31(9):1433-1437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700