认知无线网络频谱资源管理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的无线频谱资源的基本分配完毕与已分配频谱资源的利用率不高造成了目前的频谱资源危机,也促进了一种对授权频段进行二次利用的新型技术——认知无线电(Cognitive Radio,CR)技术。认知无线电赋予认知用户/设备智能性,通过感知周围的无线环境,在不影响或者在主用户所能承受的干扰范围内,允许认知用户在时间、空间、频率等多个维度上全方位使用频谱资源。认知无线电为解决当前的频谱危机提供了较好的解决方案,受到国际学术界和产业界的普遍关注,并且被公认为是无线通信领域的“下一个大事件”。
     由于认知用户是在授权用户空闲时伺机利用频谱机会,所以当主用户回归时必须及时清空信道。这种授权信道可用机会的高度动态变化特性使得认知网络中的频谱资源管理面临一系列新的挑战,频谱机会的管理被认为是与频谱机会的获取具有同等重要的意义。为了能有效地发现、整理并利用感知出来的无线频谱机会,本文依托国家863探索导向类项目“基于行为预测的认知网络资源优化分配技术”,本着提高无线资源利用率的优化目标,在保证授权用户服务质量的前提下,对认知无线网络的频谱管理展开研究,研究内容包括频谱资源的感知、决策、共享和切换,主要研究成果及创新点如下:
     (1)提出了一种感知有效性和可靠性联合折中优化的频谱感知方法。基于聂曼-皮尔逊准则推导了感知优化模型,该模型能在充分保护主用户遭受次用户碰撞限制的前提下将频谱感知的两个关键参数即检测时间和检测周期建模为二维目标最优化问题进行联合优化,并基于能量检测建立了联合优化的数学模型,进行了理论推导和分析,给出了可使认知网络系统频谱利用率最大的检测时间和检测周期的求解方法。与主流文献中固定虚警概率最大化检测概率的优化方法不同,本方法基于聂曼-皮尔逊准则推导时采用了固定漏检概率以最小化虚警概率的原则以期较好地将次用户对主用户造成的干扰限制在指定的范围内。对于一组给定的网络参数(目标检测概率、接收信噪比、主用户行为等),该方法都可以找到最优的检测周期和检测时间。仿真结果表明,该方法在保证检测可靠性的前提下有效地提高了频谱利用率。
     (2)提出了一种衰落信道上噪声功率不确定环境下的协作频谱感知方法,该方法综合考虑信道的衰落特性和噪声功率的不确定性,并采用感知性能相对较好的协作频谱感知方法以补偿信道衰落和噪声功率浮动带来的检测性能下降。针对认知网络中接收单元射频前端的复杂无线环境,将次用户接收机前端面临的热噪声、次用户之间的干扰、主用户对次用户造成的干扰等噪声综合建模为功率动态变化的随机过程,并进一步考虑到无线信道的衰落特性,推导出了噪声功率在指数分布条件下瑞利衰落信道、莱斯衰落信道和Nakagami-m衰落信道上的频谱感知检测概率的闭式表达式。为了进一步提高感知可靠性,克服无线信道衰落和噪声不确定性带来的不利影响,提出了基于D-S理论的协作频谱感知方法,使用改进的高斯概率分布函数作为D-S合并算法的基本概率赋值函数,推导出了相应协作频谱感知的判决准则。仿真结果表明,虽然噪声功率不确定带来的不利影响无法彻底消除,但协作感知还是有效地提高了频谱感知的可靠性。
     (3)提出了一种时延最优的负载均衡频谱决策方法。面对频谱感知收集的多个可用频谱资源(机会),认知用户需要选取某种度量准则下最优的信道接入。如果不加以控制,所有认知用户都选择此信道接入,必然会使该最优信道变得拥挤甚至造成频谱利用率的降低(热点信道效应)。本文所提的时延最优频谱决策方法将次用户业务按照信道可用度将负载均衡地分配至各个可用信道,在综合考虑了频谱的异质特性、底层的感知错误以及信道的失效特性引起的性能下降基础上,首先提出了基于概率的负载均衡频谱决策方法,并基于“抢占-恢复”式优先级排队模型展开分析,推导出了次用户驻留时间最短的可用信道资源的概率分配向量;然后,为了克服概率预测的非实时性,将瞬时的感知结果引入频谱决策,提出了一种基于感知的频谱决策方法,该方法在主用户回归时允许次用户重新感知可用信道以实现通信的连续性;最后,基于上述两种方法,提出了一种时延最优的负载均衡频谱决策方法。该方法能在均衡负载的前提下,自适应地选择基于概率还是基于感知的决策方法,以实现次用户驻留时间的最优化。仿真结果表明,相比于随机信道接入,该方法具有较好的频谱利用率和负载均衡效果。
     (4)提出了一种频谱覆盖共享模式下的次用户接入控制方法。根据感知的结果和决策的判断,认知用户选择出某种准则意义上的最优信道接入。实际中,由于感知错误等原因,难免会与主用户发生碰撞并造成主用户通信质量的下降。对于频谱覆盖式共享方法,一旦发生分组碰撞,主用户必须重传整个分组,所以对主用户干扰的控制就转换为对发送时机的限制。通过借鉴IEEE802.11链路层协议中分布协调功能(Distributed CoordinationFunction,DCF)的“p-坚持”接入控制思想,提出了一种保护主用户通信质量的次用户信道接入控制方法,该方法以主用户与次用户发生碰撞导致的重传从而引起的时延扩展(比)作为主用户的干扰限制,然后以次用户的平均驻留时间的最大值作为约束,并以此推导出认知用户的控制接入概率的表达式,从而避免了次用户的贪婪接入引起的主用户通信质量下降。本方法的推导并未对其它网络条件加以限制,网络模型的求解可以任意改变对主用户通信过程不同保护程度下的控制接入概率。理论分析和仿真结果表明,该方法能在保障主用户通信质量的同时兼顾了次用户通信质量,实现了较高的频谱利用率。
     (5)提出了一种频谱铺垫式共享模式下次用户传输时间优化方法。与前述频谱覆盖式共享优化方法不同的是,该方法对模型的假设条件进一步放宽,并且在频谱覆盖式条件下展开研究。该方法允许次用户在主用户占用信道时以小于噪声的极低功率继续发送数据,但是次用户发送数据时造成的干扰必须加以严格限制来保证主用户的通信质量(信息传输速率要求)。与传统的将干扰约束为约束次用户的发射功率来限制对主用户干扰不同的是,本方法以主用户和次用户在发送数据时的重叠时间作为干扰的度量,以主用户的最大数据传输速率(信道容量)门限值为约束条件,以最大化次用户信息发送速率为优化目标,将次用户对主用户的干扰体现在信道容量公式里的信噪比上,辅以次用户业务的队列稳定性作为服务质量的约束条件,给出了重叠时间干扰度量与传输时间的关系表达式,通过约束次用户的发送时间实现对干扰的控制。该方法将主用户的业务行为模型建模为交替更新过程,而且不要求主用户网络为时隙网络系统,前条件较为宽松,能在主用户业务行为先验条件未知的情况下得到通用的闭式解。理论分析和仿真结果表明,该方法能在干扰约束前提下提高次用户的信息发送速率。
     (6)提出了一种混合式频谱切换模式下的备用信道列表生成方法。次用户经过感知、决策并在共享策略下接入某个授权信道后,由于主用户可能在任意时刻重新占据信道,被打断的次用户只能重新选取授权信道以便继续传输未完成的通信过程(在碰撞造成的干扰范围内)。为了保证次用户通信的连续性和透明性,提出了时延意义上最优的次用户通信过程被中断后的备用切换信道生成方法,该方法以最短次用户在认知网络中的最短驻留时间为优化目标,将次用户在系统中的驻留时间定义为正常传输所需的时间与由于经历主用户多次打断而引起的信道切换时延之和,推导出了平均意义上次用户的一次通信过程中驻留时间的数学模型,该模型在综合考虑主用户业务统计特征、次用户的流量特性和信道的异构特性的基础上,基于“抢占-恢复”式优先级排队模型推导出了次用户平均驻留时间的拉普拉斯变换解及其相应的备选信道生成方法。进一步,该方法将无线链路的失效概率考虑到模型中,推导出了固定链路失效概率条件下次用户平均驻留时间的变换解表达式以及相应的备选信道列表生成方法。理论分析和仿真结果表明,相比于随机切换方法,该备用信道切换方法具有较好的时延性能。
The total wireless spectrum available has been currently allocated to designated agency butmuch of the allocated spectrum is largely underutilized, which leads to the spectrum resourcecrisis. Cognitive radio is a key enabling technology capable of collecting unused part of thespectrum opportunity and serves as a remedy for plausible spectrum shortage problem. Cognitiveradio incorporates intelligence into cognitive users/devices through consistent monitoring ofsurrounding wireless environment, then identifies spectrum holes in the domain of time, spaceand frequency etc., and allows cognitive user to access in an opportunistic way. All theprocedures aforementioned should takes interference to primary users into consideration,threshold of interference caused by cognitive user should be met and ideally no interference at allis desirable. As a promising solution for current spectrum crisis, cognitive radio has been widelyacknowledged and closely followed by academic institutions and industrial agencies.Internationally, cognitive radio is generally regarded as a “Next Big Thing” for the possibilityand feasibility of solving the spectrum-related problems nowadays.
     Since cognitive user opportunistically exploits spectrum bands when primary users areabsent, immediate vacancy from temporarily-accessed channels should be performed as soon asthe primary user returns. Spectrum opportunity fluctuation, however, is hard to capture due to therandom behavior of primary service traffic, which poses many brand-new challenges forspectrum management in cognitive radio networks. In supporting and finishing nationalhigh-tech exploration-oriented project-‘Optimization techniques of wireless resource allocationin cognitive radio networks based on behavior prediction’, this thesis investigates the spectrummanagement techniques of cognitive radio networks in terms of four successive problems,namely identifying spectrum opportunities, collecting and scheduling of identified opportunities,sharing hierarchically with primary users and vacant timely from on-transmitting channels, allpursuing at improving spectrum utilization. We identify the above four questions to fourfunctions within spectrum management framework, namely spectrum sensing, spectrum decision,spectrum sharing and spectrum mobility, all of which taking end-to-end goal of primary user intoconsideration. With maximizing in mind, we perform systematical research on the four functionsof spectrum management with constrained interference to primary users, main contributions andinnovations of this dissertation are summarized as follows:
     (1) An efficiency-reliability tradeoff algorithm for spectrum sensing is proposed to optimizesensing parameters such as sensing duration and sensing period. Based on Neyman-Pearsoncriterion, spectrum sensing model of maximizing spectrum utilization is formulated. Theproposed sensing model offers sufficient QoS guarantees to primary users by means of posingstrict restriction on missed detection probability. Instead of optimized a single parameter, wemodel the sensing problem in a two-dimensional manner and joint optimization of both sensing duration and sensing period is conducted. Energy-based detection method is employed to obtaindetailed mathematical analysis together with theoretical deduction and spectrum utilization isoptimized. Differing from methods adopted in most popular literature focusing on fixed falsealarm rate to maximize detection probability, we fix probability of missed detection to minimizeprobability of false alarm using Neyman-Pearson criterion, which causes no explicit harm toprimary users within the define of specified value. For a given configuration of cognitive radionetworks, i.e., target detection probability, received signal-to-noise ratio of cognitive user,primary user behavior, optimal sensing duration and sensing period can be obtained withspectrum utilization greatly improved and spectrum reliability safely guaranteed. Simulationresults reveal that the proposed tradeoff algorithm proves to be efficient with sufficientprotection to primary user.
     (2) A cooperative spectrum sensing method is proposed with noise power fluctuationwireless channel fading taken into consideration. Noise power uncertainty and channel fadingdegrades the performance of spectrum sensing, cooperative spectrum sensing, which gives betterreliability performance compared with local sensing, is adopted to mitigate the adverse effect ofchannel fading and noise power fluctuation. Since radio frequency front-end of secondary user isexposed to a number of interference such as thermal noise of transceiver, interference fromprimary users and peer secondary users, we model the overall effect of the aggregatedinterference as additive white Gaussian noise with average power fluctuated. Furthermore,fading characteristics of wireless channel is also incorporated into mathematical modeling andclosed-form expression of detection probability are conducted on Rayleigh channel, Ricianchannel and Nakagami-m channel with noise power exponentially distributed. To further offsetthe performance degeneration caused by noise power fluctuation and improve the reliability ofspectrum sensing, cooperative sensing based on D-S combination theory is employed. ImprovedGaussian distribution function is borrowed to serve as basic probability assignment function anddecision criterion is obtained to determine whether the licensed channel is busy or not.Simulation results show that although sensing reliability cannot be mitigated, cooperativesensing still gives better reliability performance compared with local spectrum sensing.
     (3) A delay-optimal spectrum decision method with traffic load balancing is proposed. Onfinding multiple available spectrum opportunity, secondary user needs to decide which channel ismost suitable to access according to specified optimization criterion. All the traffic load rushed tothe best channel, if no control measure is taken, and the best channel would soon turn out to bethe most crowded, underutilized channel (Hotspot channel effect). The proposed methodbalances aggregated traffic load to multiple spectrum opportunities according to availability ofeach channel. Sensing errors, spectrum heterogeneity and outage effect of channel areincorporated into the formulation and analysis of the problem. Firstly, a probability-basedspectrum decision is proposed to evenly distribute traffic load of secondary user and detaileddeduction based preemptive-resume priority queuing theory is performed. Probability allocationvector of spectrum opportunity is obtained to minimize residual time of secondary user. Secondly,to overcome the lack of real-time knowledge of channel state, a sensing based spectrum decision method is proposed. In order to guarantee seamless communication for secondary user, thesensing based method allows secondary user to freely select channel after collision with primaryuser occurs. Finally, based on the aforementioned two spectrum decision method, adelay-optimal spectrum decision is presented with traffic load reasonably balanced. Base stationof secondary user selects suitable decision method to realize optimization of residual time.Simulation results reveals, compared with random decision method, our proposed method givesbetter delay performance as well as load balancing effect.
     (4) An access control method in the spectrum-overlay sharing environment is proposed.Based on sensing results and decision policy, the most available channel is selected according tospecified optimization criteria. In practice, due to sensing errors and other underlying layerrelated problems, it is inevitable to collide with primary user, causing QoS degeneration for bothprimary user and secondary user. As for the spectrum-overlay sharing mode, once collided, thewhole packet/frame needs to be re-transmitted. So, in order to restrict collision rate, it is of greatsignificance to choose the proper sending instant of secondary user. Borrowed from IEEE802.11Distributed Coordination Function with p-persistent transmission policy, a control access methodis proposed to sufficiently protect the communication process of primary user. Subjected toextended transmission time (ratio) restriction of primary user caused by collision with secondaryuser and average residual time restriction of secondary user, access probability for secondaryuser is obtained and greedy access is prohibited to further protect the transmission of primaryuser. The construction of the optimization problem is of general purpose and no otherassumptions are demanded. Furthermore, solution-solving process of formulated problem isquite generic, arbitrary extent of protection for primary user can be set and access probability canbe thus obtained. Simulation results show that spectrum utilization is improved while QoS ofboth primary user and secondary user is guaranteed.
     (5) A transmission time optimization method is proposed in the spectrum-underlay sharingenvironment. Unlike spectrum-overlay sharing method mentioned above, the proposed methodfurther relaxes restrictions and conducts research in a spectrum-underlay fashion, which allowssecondary user continue sending with ultra-low transmission power, but interference caused bysecondary transmission to primary user should be strictly restricted to ensure that no explicitharmful disturbance comes into being. Differing from classical interference-controlling measurethat pushes hard restriction on transmission power of secondary user, our proposed methoddefines interference in terms of overlapped transmission time of primary user and secondary user.With guaranteed maximal data rate (channel capacity) of primary user, we aim to maximize datarate of secondary user. We convert quantified interference to signal-to-noise ratio of Shannoninformation formula within the stability condition of secondary user service queue. Relationbetween transmission time of secondary user and overlapped time interference to primary userare derived. Our proposed method models primary user behavior by alternative renewal processand no slot system requirement is demanded. With constraints relaxed and solutionclosed-formed, the proposed method still works even if no prior information of primary userbehavior were available. Theoretical analysis and simulation results verify our proposal that maximal data rate of secondary user can be achieved with maximal data rate of primary userguaranteed.
     (6) An optimal target channel sequence generation method is proposed in hybrid spectrumhandoff environment. Finishing sensing, decision and sharing of spectrum opportunity, spectrumaccess is permitted and multiple disruptions may occur due to the random return of primary user.Once collision occurs, the interrupted secondary transmission should immediately preserve thecontext of communication process and find another channel available to resume unfinishedtransmission (the extent primary user are exposed to secondary user’s collision is severelyrestricted). To maintain seamlessness and transparency, target channel sequence of secondaryuser experiencing disruption is researched in pursuit of minimal residual time spent in cognitivenetworks. Our proposed method attempts to shorten the average residual time composed ofnormal transmission time of each secondary user and handoff delay caused by multiple spectrumhandoffs. Mathematical modeling of average residual time of each transmission is conductedbased on preemptive-resume priority queuing theory and long-terms statistics of primary userand secondary users as well as spectrum heterogeneity are involved. For the sake ofmathematical heterogeneity, only Laplacian transform solution of average residual time isobtained but optimal target channel sequence is obtained. Furthermore, channel outageprobability is introduced to the analysis and derivation and average residual time with constantoutage probability is then obtained in a Laplacian transform expression, and correspondingoptimal target channel sequence is also obtained. Theoretical analysis and simulation resultsreveal that, compared with random handoff mechanism, our proposed handoff method offersbetter delay performance.
引文
[1] Mitola J. and Maguire G. Q. Cognitive Radio: Making Software Radios More Personal [J]. IEEEPersonal Communications, vol.6, pp.13-18, Aug.1999.
    [2] Mitola. J. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio [D]. KTHRoyal Institute of Technology. Stockholm, Sweden,2000.
    [3] Haykin S. Cognitive Radio: Brain-empowered Wireless Communications [J]. IEEE Journal on SelectedAreas in Communications, vol.23, no.2, pp.201-220, Feb.2005.
    [4] Akyildiz I. F., Lee W-Y and Chowdhury K. CRAHNs: Cognitive Radio Ad Hoc Networks [J]. Ad HocNetworks, vol.7, no.5, pp.810-836,2009.
    [5] Akyildiz I. F., Lee W-Y and Chowdhury K. Spectrum Management in Cognitive Radio Ad HocNetworks [J]. IEEE Network, vol.23, pp.6-12, July/August2009.
    [6] Mikko A. Uusitalo. Global Vision for the Future Wireless World from the WWRF [J]. IEEE VehicularTechnology Magazine, vol.1, no.2, pp.4-8,2006.
    [7] National Telecommunications and Information Administration. U.S. Frequency Allocation Chart[EB/OL]. http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf.
    [8] The Federal Communications Commission. Spectrum Policy Task Force Report [R]. ET Docket No.02-135, Nov,2002.
    [9] The Federal Communications Commission. Second Report and Order and Memorandum Opinion Order[R]. ET Docket No.08-260, Nov,2008.
    [10] The Federal Communications Commission. Second Memorandum Opinion and Order [R], ET DocketNo.04-186, Sep,2010.
    [11] The Federal Communications Commission. Third Memorandum Opinion and Order [R]. ET Docket No.02-380, April,2012.
    [12] Cabric D., Mishra S. M. and Brodersen R. W. Implementation Issues in Spectrum Sensing for CognitiveRadios [C]. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems andComputers, pp.772-776,7-10Nov.2004.
    [13] McHenry M. A., Tenhula P. A., McCloskey D., Roberson D. A. and Hood C. S. Chicago SpectrumOccupancy Measurements and Analysis and A Long-Term Studies Proposal [C].20061stInternationalWorkshop on Technology and Policy for Accessing Spectrum (TAPAS2006), pp.1-12, Boston, USA,Aug.2006.
    [14] Mchenry M. A. and Mccloskey D. New York City Spectrum Occupancy Measurements September2004[EB/OL]. http://www.sharedspectrum.2004.
    [15] Taher T. M., Bacchus R. B., Zdunek K. J. and Roberson D. A. Long-term spectral occupancy findings inChicago [C].2011IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN2011), pp.100-107,3-6May2011.
    [16] Erpek T., Lofquist M. and Patton K. Spectrum Occupancy Measurements: Loring Commerce Centre,Limestone, Maine [R]. Sep.18-20,2007.
    [17] Valenta V., Mar álek R., Baudoin G., Villegas M., Suarez M. and Robert F. Survey on SpectrumUtilization in Europe: Measurements, Analyses and Observations [C].20105thInternational Conferenceon Cognitive Radio Oriented Wireless Networks&Communications (CROWNCOM2010), pp.1-5,9-11June2010.
    [18] Islam M. H., Koh C. L., Oh S. W, Xianming Qing, Lai Y. Y., Cavin Wang, Ying-Chang Liang, Toh B. E.,Chin F., Tan G. L. and Toh W. Spectrum Survey in Singapore: Occupancy Measurements and Analyses
    [C].20083rdInternational Conference on Cognitive Radio Oriented Wireless Networks andCommunications (CrownCom2008). pp.1-7,15-17May2008.
    [19] Chiang R. I. C., Rowe G. B. and Sowerby K. W. A Quantitative Analysis of Spectral OccupancyMeasurements for Cognitive Radio [C].2007IEEE65thVehicular Technology Conference(VTC-Spring), pp.3016-3020,22-25April2007.
    [20] Mary E. Griswold. Spectrum Management Key to the Future of Unmanned Aircraft Systems [M]. AirUniversity Press, Maxwell Air Force Base, Alabama. May2008.
    [21] The Federal Communications Commission. Facilitating Opportunities for Flexible, Efficient andReliable Spectrum Use Employing Cognitive Radio Technologies [R]. ET Docket No.03-108. Dec,2003.
    [22] Mitola J. Software Radios: Survey, Critical Evaluation and Future Directions [C].1992NationalTelesystems Conference (NTC-92), pp.13/15-13/23,19-20May1992.
    [23] Mitola J. The software radio architecture [J]. IEEE Communications Magazine, vol.33, no.5, pp.26-38,May1995.
    [24] IEEE802.22Working Group on Wireless Regional Area Networks [EB/OL].http://www.ieee802.org/22/.
    [25] IEEE802.16Working Group on Broadband Wireless Access [EB/OL]. http://www.ieee802.org/16/.
    [26] DARPAATO. Next Generation (XG) Program [EB/OL]. http://www.darpa.mil/ato/programs/xg/.
    [27] Microsoft. This New Wireless Market Is worth Billions and We're Going to Get Our Share [EB/OL].http://www.businessinsider.com/microsoft-this-new-wireless-market-is-worth-multi-billions-and-were-going-to-get-our-share-2011-12.
    [28] European Commission. The Seventh Framework Programme (2007-2013)[EB/OL].http://ec.europa.eu/research/fp7/.
    [29] Weiss T. A. and Jondral F. K. Spectrum Pooling: An Innovative Strategy for the Enhancement ofSpectrum Efficiency [J]. IEEE Communications Magazine, vol.42, no.3, pp.8-14, Mar2004.
    [30] Thomas R., Friend D. H. and DaSilva L. A. Cognitive networks: Adaptation and Learning to AchieveEnd-to-End Performance Objectives [J], IEEE Communications Magazine, vol.44, no.12, pp.51-57, Dec.2006.
    [31] Akyildiz I. F., Lee W-Y, Vuran M. C. and Mohanty S. A Survey on Spectrum Management in CognitiveRadio Networks [J]. IEEE Communications Magazine, vol.46, pp.40-48, April2008.
    [32] Khozeimeh F. and Haykin S. Brain-Inspired Dynamic Spectrum Management for Cognitive Radio AdHoc Networks [J]. IEEE Transactions on Wireless Communications, vol.11, no.10, pp.3509-3517,October2012.
    [33] Salami G., Durowoju O., Attar A., Holland O., Tafazolli R. and Aghvami H. A Comparison Between theCentralized and Distributed Approaches for Spectrum Management [J]. IEEE Communications Surveys&Tutorials, vol.13, no.2, pp.274-290, second Quarter2011.
    [34] Chouinard G. WRAN Reference Model [EB/OL]. http://www.ieee802.org/22/, May2005.
    [35] Akyildiz I. F., Lee W-Y, Vuran M. C. and Mohanty S. NeXt Generation/Dynamic SpectrumAccess/Cognitive Radio Wireless Networks: A Survey [J]. Computer Networks Journal (Elsevier), vol.50, pp.2127-2159, Sep.2006.
    [36] Akyildiz I. F., Brandon F. Lo and Balakrishnan R. Cooperative Spectrum Sensing in Cognitive RadioNetworks: A Survey [J]. Physical Communication, vol4, no.1, pp.40-62. March2011.
    [37] Axell E., Leus G., Larsson E. G. and Poor H. V. Spectrum Sensing for Cognitive Radio: State-of-the-artand Recent Advances [J]. IEEE Signal Processing Magazine, vol.29, no.3, pp.101-116, May2012.
    [38] Danda B. Rawat and Gongjun Yan. Spectrum Sensing Methods and Dynamic Spectrum Sharing inCognitive Radio Networks: A Survey [J]. International Journal of Research and Reviews in WirelessSensor Networks, vol.1, no.1, pp.1-13, March2011.
    [39] Proakis J. G. Digital Communications (Fifth Edition)[M]. McGraw-Hill,2007.
    [40] Beibei W. and Ray K. J. L. Advances in Cognitive Radio Networks: A Survey [J]. IEEE Journal ofSelected Topics in Signal Processing, vol.5, no.1, pp.5-23, February2011.
    [41] Lu L., Zhou X., Onunkwo U. and Li G. Y. Ten Years of Research in Spectrum Sensing and Sharing inCognitive Radio [J]. EURASIP Journal on Wireless Communications and Networking, vol.28, pp.1-16,Jan.2012.
    [42] Urkowitz H. Energy Detection of Unknown Deterministic Signals [J]. Proceedings of IEEE, vol.55, no.4, pp.523–531, April,1967.
    [43]周贤伟,王建萍,王春江.认知无线电[M].北京:国防工业出版社.2008.1.
    [44] Tandra R. and Sahai A. SNR Walls for Signal Detection [J]. IEEE Journal of Selected Topics in SignalProcessing, vol.2, no.1, pp.4-17, Feb.2008.
    [45] Ma J., Li G-Y and Juang B-H. Signal Processing in Cognitive Radio [J]. Proceedings of IEEE, vol.97,no.5, pp.805-823,2010.
    [46] Haykin S., Thomson D. J. and Reed J. H. Spectrum Sensing for Cognitive Radio [J]. Proceedings ofIEEE, vol.97, no.5, pp.849-877,2010.
    [47] Lee W-Y and Akyildiz I. F. Optimal Spectrum Sensing Framework for Cognitive Radio Networks [J].IEEE Transactions on Wireless Communications, vol.7, no.10, pp.3845-3857, October,2008.
    [48] Atapattu S., Tellambura C. and Jiang H. Energy Detection Based Cooperative Spectrum Sensing inCognitive Radio Networks [J]. IEEE Transactions on Wireless Communications, vol.10, no.4,pp.1232-1241, April2011.
    [49] Tandra R. and Sahai A. Fundamental Limits on Detection in Low SNR under Noise Uncertainty [C].2005International Conference on Wireless Networks, Communications and Mobile Computing, vol.1,pp.464-469,13-16June,2005.
    [50] Peh E. C. Y., Ying-Chang Liang, Yong Liang Guan and Yonghong Zeng. Optimization of CooperativeSensing in Cognitive Radio Networks: A Sensing-Throughput Tradeoff View [J]. IEEE Transactions onVehicular Technology, vol.58, no.9, pp.5294-5299, Nov.2009.
    [51] Rong Y., Yan Z., Liu Y., Shengli X., Lingyang S. and Guizani M. Secondary Users Cooperation inCognitive Radio Networks: Balancing Sensing Accuracy And Efficiency [J]. IEEE WirelessCommunications, vol.19, no.2, pp.30-37, April2012.
    [52] Luxi L., Wei J., Haige X., Wu L. Adaptive Spectrum Sensing/Transmission Scheduling for CognitiveRadio [J]. IEICE Transactions on Communications, vol. E95-B, no.2, pp.635-638. Feburay2012.
    [53] Liang Y-C, Zeng Y., Peh E. C. Y. and Hoang A-T. Sensing-Throughput Tradeoff for Cognitive RadioNetworks [J]. IEEE Transactions on Wireless Communications, vol.7, no.4, pp.1326-1337, April2008.
    [54] Pei Y., Liang Y-C, Teh K. C. and Li K. H. Sensing-Throughput Tradeoff for Cognitive Radio Networks:A Multiple-Channel Scenario [C].2009IEEE20thInternational Symposium on Personal, Indoor andMobile Radio Communications (PIMRC2009), pp.1257-1261,13-16September,2009.
    [55] Miao P., Pan L. and Yuguang F. Cooperative Communication Aware Link Scheduling for CognitiveVehicular Networks [J]. IEEE Journal on Selected Areas in Communications, vol.30, no.4, pp.760-768,May2012.
    [56] Peh Edward C. Y., Liang Ying-Chang and Zeng Yonghong. Sensing and Power Control in CognitiveRadio with Location Information [C].2012IEEE International Conference on Communication Systems(ICCS2012), pp.255-259,21-23Nov.2012.
    [57] Van Den Biggelaar O., Dricot J-M., De Doncker P. and Horlin F. A New Distributed Algorithm for theAllocation of Cognitive Radio Sensing Times [C].2012IEEE23rdInternational Symposium onPersonal Indoor and Mobile Radio Communications (PIMRC2012), pp.1208-1213,9-12Sept.2012.
    [58] Luo L. and Roy S. Modelling and Analysis of Detection time Trade-offs for Channel Searching inCognitive Radio Networks [J]. IET Communications, vol.6, no.8, pp.819-827, May222012.
    [59] Kay S. M. Fundamentals of Statistical Signal Processing, Volume2: Detection Theory [M]. PrenticeHall.1998.
    [60] Haykin S. Cognitive Dynamic Systems: Perception--Action Cycle, Radar and Radio [M]. CambridgeUniversity. Press,2011.
    [61]梁之舜,邓集贤,杨维权.概率论及数理统计(第3版)[M].北京:高等学校教材.2005.11.
    [62] Cox D.R. Renewal Theory [M]. London: Methuen,1962.
    [63] Yiyang P., Anh T-H and Liang Y. C. Sensing-Throughput Tradeoff in Cognitive Radio Networks: HowFrequently Should Spectrum Sensing be Carried Out?[C].2007IEEE18thInternational Symposium onPersonal, Indoor and Mobile Radio Communications (PIMRC2007). pp.1-5,3-7Sept.2007.
    [64]冯志勇,张平,郎保真.认知无线网络理论与关键技术[M].北京:人民邮电出版社.2011.1.
    [65]普拉萨德(Ramjee Prasad)(著),陈光桢,许方敏,李虎生(译).认知无线电网络[M].北京:机械工业出版社.2011.1.
    [66] Tandra R., Sahai A. and Mishra S. M. What is a Spectrum Hole and What Does it Take to RecognizeOne?[J]. Proceedings of the IEEE, vol.97, no.5, pp.824-848, May2009.
    [67] Zeng L. and McGrath S. Joint Spectrum Sensing and Power Allocation Algorithm for SpectrumEfficiency Optimization in Ultra Wideband Cognitive Radio Networks [C].2012IEEE VehicularTechnology Conference (VTC Fall), pp.1-5,3-6Sept.2012.
    [68] Tugnait J. K. On Multiple Antenna Spectrum Sensing under Noise Variance Uncertainty and Flat Fading[J]. IEEE Transactions on Signal Processing, vol.60, no.4, pp.1823-1832, April2012.
    [69] Pourgharehkhan Z., Sedighi S., Taherpour A. and Uysal M. Spectrum sensing of correlated subbandswith colored noise in cognitive radios [C].2012IEEE Wireless Communications and NetworkingConference (WCNC2012), pp.1017-1022,1-4April2012.
    [70] Rabbachin A., Quek T. Q. S., Hyundong Shin and Win M. Z. Cognitive Network Interference [J]. IEEEJournal on Selected Areas in Communications, vol.29, no.2, pp.480-493, February2011.
    [71] Yaobin W., Loyka S. and Yongacoglu A. Asymptotic Analysis of Interference in Cognitive RadioNetworks [J]. IEEE Journal on Selected Areas in Communications, vol.30, no.10, pp.2040-2052,November2012.
    [72] Hassan M. H. and Nasr O. A. Adaptive Spectrum Sensing of Wireless Microphones with NoiseUncertainty [C].2011IEEE22ndInternational Symposium on Personal Indoor and Mobile RadioCommunications (PIMRC2011), pp.445-450,11-14Sept.2011.
    [73] Zengmao Chen, Cheng-Xiang Wang, Xuemin Hong, Thompson J. S., Vorobyov S. A., Xiaohu Ge,Hailin Xiao and Feng Zhao. Aggregate Interference Modeling in Cognitive Radio Networks with Powerand Contention Control [J]. IEEE Transactions on Communications, vol.60, no.2, pp.456-468, February2012.
    [74] Derakhshani M. and Tho Le-Ngoc. Aggregate Interference and Capacity-Outage Analysis in a CognitiveRadio Network [J]. IEEE Transactions on Vehicular Technology, vol.61, no.1, pp.196-207, Jan.2012.
    [75] Wang H., Noh G., Kim D., Kim S. and Hong D. Advanced Sensing Techniques of Energy Detection inCognitive Radios (Invited Paper)[J]. Journal of Communications and Networks, vol.12, no.1, pp.19-29, February2010.
    [76] Xin-Lin Huang, Gang Wang, Fei Hu and Kumar S. The Impact of Spectrum Sensing Frequency andPacket-Loading Scheme on Multimedia Transmission over Cognitive Radio Networks [J]. IEEETransactions on Multimedia, vol.13, no.4, pp.748-761, Aug.2011.
    [77] Digham F. F., Alouini M-S and Simon M. K. On the Energy Detection of Unknown Signals over FadingChannels [C].2003IEEE International Conference on Communications (ICC2003), vol.5,pp.3575-3579,11-15May2003.
    [78] Digham F. F., Alouini M-S and Simon M. K. On the Energy Detection of Unknown Signals over FadingChannels [J]. IEEE Transactions on Communications, vol.55, no.1, pp.21-24, January2007.
    [79] Olabiyi S., Alam O. Odejide and Annamalai A. Further Results on the Energy Detection of UnknownDeterministic Signals over Generalized Fading Channel [C]. IEEE GLOBECOM Workshops (GCWkshps2011), pp.908-912,5-9Dec.2011.
    [80] Atapattu S., Tellambura C. and Hai Jiang. Performance of an Energy Detector over Channels with BothMultipath Fading and Shadowing [J]. IEEE Transactions on Wireless Communications, vol.9, no.12,pp.3662–3670, Dec.2010.
    [81] Marshall P. Quantitative Analysis of Cognitive Radio and Network Performance [M]. Norwood, Mass.:Artech House,2010.
    [82]温志刚.认知无线电频谱检测理论与实践(第1版)[M].北京邮电大学出版社.2011.9.
    [83] Nhan Nguyen-Thanh and Insoo Koo. Evidence-Theory-Based Cooperative Spectrum Sensing WithEfficient Quantization Method in Cognitive Radio [J]. IEEE Transactions on Vehicular Technology,vol.60, no.1, pp.185-195, Jan.2011.
    [84]岳文静,郑宝玉,孟庆民,崔景伍,解培中.衰落信道下提高协作频谱感知能力的方法.中国科学:信息科学,2011,41(2): pp.207-218,2011.2.
    [85] Gradshteyn I. S. and Ryzhik I. M. Table of Integrals, Series and Products (7thEdition)[M]. AcademicPress.2007.
    [86] Nuttall A. H. Some Integrals Involving the QM-function [R]. Naval Underwater Systems Center(NUSC). May1974.
    [87] Nuttall A. H. Some Integrals Involving the Q-function [R]. Naval Underwater Systems Center (NUSC).April1972.
    [88] Ross S. M. Introduction to Probability Models (Ninth Edition)[M]. Academic Press,2007.
    [89] Shafer G. A. Mathematical Theory of Evidence [M]. Princeton University Press,1976.
    [90] Peng Qihang, Zeng Kun, Wang Jun and Li Shaoqian. A Distributed Spectrum Sensing Scheme Based onCredibility and Evidence Theory in Cognitive Radio Context [C].2006IEEE17thInternationalSymposium on Personal, Indoor and Mobile Radio Communications (PIMRC2006), pp.1-5,11-14Sept.2006.
    [91] Jian Liu, Jing Li and Keping Long. Enhanced Asynchronous Cooperative Spectrum Sensing Based onDempster-Shafer Theory [C].2011IEEE Global Telecommunications Conference (GLOBECOM2011),pp.1-6,5-9Dec.2011.
    [92] Mitola J., Attar A., Zhang H., Holland O., Harada H. and Aghvami H. Special Issue on Achievementsand the Road Ahead: the First Decade of Cognitive Radio [J]. IEEE Transactions on VehicularTechnology, vol.59, no.4, pp.1574-1577, May2010.
    [93] Palicot J. Software and Cognitive Radio Engineering [M]. London Hoboken, NJ: ISTE, Wiley,2011.
    [94] José M. and Edmundo M. Cognitive radio: Survey on Communication Protocols, Spectrum DecisionIssues and Future Research Directions [J]. Wireless Networks, vol.18, no.2, pp.147-164, February2012.
    [95] Masonta M., Mzyece M. and Ntlatlapa N. Spectrum Decision in Cognitive Radio Networks: A Survey[J]. IEEE Communications Surveys&Tutorials, no.99, pp.1-20, Nov.2012.
    [96] Jaiswal N. K. Priority Queues [M]. Academic Press, New York.1968.
    [97] Banaei A. and Georghiades C. N. Throughput Analysis of a Randomized Sensing Scheme in Cell-BasedAd-Hoc Cognitive Networks [C].2009IEEE International Conference on Communications (ICC2009),pp.1-6,14-18June2009.
    [98] Koufos K., Ruttik K. and J ntti R. Voice Service in Cognitive Networks over the TV Spectrum [J]. IETCommunications, vol.6, no.8, pp.991-1003, May222012.
    [99] Gambini J., Simeone O., Spagnolini U., Bar-Ness Y. and Yungsoo Kim. Cognitive Radio withSecondary Packet-By-Packet Vertical Handover[C].2008IEEE International Conference onCommunications (ICC2008), pp.1050-1054,19-23May2008.
    [100] Jihoon Park, Pawelczak P. Gronsund P. and Cabric D. Analysis Framework for Opportunistic SpectrumOFDMA and Its Application to the IEEE802.22Standard [J]. IEEE Transactions on VehicularTechnology, vol.61, no.5, pp.2271–2293, Jun2012.
    [101] Canberk B., Akyildiz I. F. and Oktug S. A QoS-aware Framework for Available SpectrumCharacterization and Decision in Cognitive Radio Networks [C].2010IEEE21stInternationalSymposium on Personal Indoor and Mobile Radio Communications (PIMRC2010), pp.1533-1538,26-30Sept.2010.
    [102] Won-Yeol Lee and Akyldiz I. F. A Spectrum Decision Framework for Cognitive Radio Networks [J].IEEE Transactions on Mobile Computing, vol.10, no.2, pp.161-174, Feb.2011.
    [103] Kaplan M. and Buzluca F. A Dynamic Spectrum Decision Scheme for Heterogeneous Cognitive RadioNetworks [C].200924thInternational Symposium on Computer and Information Sciences (ISCIS2009),pp.697-702,14-16Sept.2009.
    [104] Li-Chun Wang, Chung-Wei Wang and Kai-Ten Feng. A Queueing-Theoretical Framework forQos-Enhanced Spectrum Management in Cognitive Radio Networks [J]. IEEE WirelessCommunications, vol.18, no.6, pp.18-26, December2011.
    [105] Li-Chun Wang, Chung-Wei Wang and Adachi F. Load-Balancing Spectrum Decision for CognitiveRadio Networks [J]. IEEE Journal on Selected Areas in Communications, vol.29, no.4, pp.757-769,April2011.
    [106] Talat Samer T. and Wang Li-Chun. Load-Balancing Spectrum Decision for Cognitive Radio Networkswith Unequal-Width Channels [C].2012IEEE Vehicular Technology Conference (VTC Fall), pp.1-5,3-6Sept.2012.
    [107] Chronopoulos A. T., Musku M. R., Penmatsa S. and Popescu D. C. Spectrum Load Balancing forMedium Access in Cognitive Radio Systems [J]. IEEE Communications Letters, vol.12, no.5, pp.353-355, May2008.
    [108] Ray K. J. L. and Beibei W. Cognitive Radio Networking and Security: A Game-Theoretic View [M].Cambridge, New York: Cambridge University Press,2011.
    [109] Malanchini I., Cesana M. and Gatti N. On Spectrum Selection Games in Cognitive Radio Networks [C].2009IEEE Global Telecommunications Conference (GLOBECOM2009), pp.1-7, Nov.302009-Dec.42009.
    [110] Hsien-Po Shiang and Van der Schaar M. Queuing-Based Dynamic Channel Selection for HeterogeneousMultimedia Applications over Cognitive Radio Networks [J]. IEEE Transactions on Multimedia, vol.10,no.5, pp.896-909, Aug.2008.
    [111] Gang UK Hwang and Roy S. Design and Analysis of Optimal Random Access Policies in CognitiveRadio Networks [J]. IEEE Transactions on Communications, vol.60, no.1, pp.121-131, January2012.
    [112]华兴.排队论与随机服务系统[M].上海:上海翻译出版公司.1987.
    [113] Kleinrock L. Queueing Systems-Volume2: Computer Applications [M]. John Wiley&Sons Inc.,1976.
    [114] Min A.W. and Shin K.G. Exploiting Multi-Channel Diversity in Spectrum-Agile Networks [C].2008IEEE27thConference on Computer Communications (IEEE INFOCOM2008). pp.1921-1929,13-18April2008.
    [115] Hamdaoui B. Adaptive Spectrum Assessment for Opportunistic Access in Cognitive Radio Networks [J].IEEE Transactions on Wireless Communications, vol.8, no.2, pp.922-930, Feb.2009.
    [116] Matinmikko M., Rauma T., Mustonen M. and Del Ser J. Architecture and Approach for ObtainingSpectrum Availability Information [C].2011IEEE73rdVehicular Technology Conference (VTC Spring),pp.1-5,15-18May2011.
    [117] Park J., Paweczak P. and Cabric D. Performance of Joint Spectrum Sensing and MAC Algorithms forMultichannel Opportunistic Spectrum Access Ad Hoc Networks [J]. IEEE Transactions on MobileComputing, vol.10, no.7, pp.1011-1027, July2011.
    [118] Ho Ting Cheng and Weihua Zhuang. Simple Channel Sensing Order in Cognitive Radio Networks [J].IEEE Journal on Selected Areas in Communications,vol.29, no.4, pp.676-688, April2011.
    [119] Zhu Ping, Li Jinglong, Han Kun and Wang Xufa. A New Channel Parameter for Cognitive Radio [C].20072ndInternational Conference on Cognitive Radio Oriented Wireless Networks andCommunications (CrownCom2007). pp.482-486,1-3Aug.2007.
    [120] Qing Zhao and Swami A. A Survey of Dynamic Spectrum Access: Signal Processing and NetworkingPerspectives [C].2007IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP2007), vol.4, pp. IV-1349-IV-1352,15-20April2007.
    [121] Senthuran S., Anpalagan A. and Das O. Throughput Analysis of Opportunistic Access Strategies inHybrid Underlay-Overlay Cognitive Radio Networks [J]. IEEE Transactions on WirelessCommunications, vol.11, no.6, pp.2024-2035, June2012.
    [122] Etkin R., Parekh A. and Tse D. Spectrum Sharing for Unlicensed Bands [J]. IEEE Journal on SelectedAreas in Communications, vol.25, no.3, pp.517-528, April2007.
    [123] Akkarajitsakul K., Hossain E., Niyato D. and Dong In Kim. Game Theoretic Approaches for MultipleAccess in Wireless Networks: A Survey [J]. IEEE Communications Surveys&Tutorials, vol.13, no.3,pp.372-395, third Quarter2011.
    [124] De Domenico A., Strinati E. C. and Di Benedetto M. G. A Survey on MAC Strategies for CognitiveRadio Networks [J]. IEEE Communications Surveys&Tutorials, vol.14, no.1, pp.21-44, first Quarter2012.
    [125] Stotas S. and Nallanathan A. Enhancing the Capacity of Spectrum Sharing Cognitive Radio Networks[J]. IEEE Transactions on Vehicular Technology, vol.60, no.8, pp.3768-3779, Oct.2011.
    [126] Stotas S. and Nallanathan A. On the Outage Capacity of Sensing-Enhanced Spectrum Sharing CognitiveRadio Systems in Fading Channels [J]. IEEE Transactions on Communications, vol.59, no.10, pp.2871-2882, October2011.
    [127] Goldsmith A., Jafar S. A., Maric I. and Srinivasa S. Breaking Spectrum Gridlock with Cognitive Radios:An Information-Theoretic Perspective [J]. Proceedings of the IEEE, vol.97, no.5, pp.894-914, May2009.
    [128] Gao B., Park Jung-Min, Yang Y. and Roy S. A Taxonomy of Coexistence Mechanisms forHeterogeneous Cognitive Radio Networks Operating in TV White Spaces [J]. IEEE WirelessCommunications, vol.19, no.4, pp.41-48, August2012.
    [129] Yuli Yang and Aissa S. Achievable Data Rate in Spectrum-Sharing Channels with Variable-RateVariable-Power Primary Users [J]. IEEE Wireless Communications Letters, vol.1, no.4, pp.312-315,August2012.
    [130] Mihov Y. Y. Cross-Layer QoS Provisioning in Cognitive Radio Networks [J]. IEEE CommunicationsLetters, vol.16, no.5, pp.678-681, May2012.
    [131] Qing Zhao, Lang Tong, Ananthram Swami and Yunxia Chen. Decentralized Cognitive MAC forOpportunistic Spectrum Access in Ad Hoc Networks: A POMDP Framework [J]. IEEE Journal onSelected Areas in Communications, vol.25, no.3, pp.589-600, April2007.
    [132]荣玫,朱世华,李锋.认知无线电网络基于F范数的频谱共享[J].电子学报, vol.39, no.1, pp.95-100,2011.1.
    [133] Xi Zhang and Hang Su. Opportunistic Spectrum Sharing Schemes for CDMA-Based Uplink MAC inCognitive Radio Networks [J]. IEEE Journal on Selected Areas in Communications, vol.29, no.4, pp.716-730, April2011.
    [134]陈宝林.最优化理论与算法(第2版)[M].北京:清华大学出版社.2005.10.
    [135] Cobham A. Priority Assignment in Waiting Line Problems [J]. Operations Research, vol.2, no.1, pp.70-76, Feb.1954.
    [136] Jaiswal N. K. Preemptive Resume Priority Queue [J]. Operations Research, vol.9, no.5, pp.732-742,Sep./Oct.1961.
    [137] Ross S. M. Stochastic Processes (2ndEdition)[M]. Wiley,1996.
    [138] Beardon. A. Complex Analysis: the Winding Number principle in analysis and topology [M]. JohnWiley and Sons, New York,1979.
    [139] Bose S. K. An Introduction to Queueing Systems [M]. Kluwer Academic/Plenum Publishers, New York,2002.
    [140] Chee-Hock Ng and Boon-Hee Soong. Queueing Modelling Fundamentals with Applications inCommunication Networks (2ndEdition)[M]. John Wiley&Sons Inc.,2008.
    [141] Perez-Romero J., Doyle L. and Vuran M. C. Applications of Cognitive Radio Networks [From the GuestEditors][J]. IEEE Vehicular Technology Magazine, vol.7, no.2, pp.23-24, June2012.
    [142] Chen Zengmao, Wang Cheng-Xiang, Hong Xuemin, Thompson John, Vorobyov Sergiy and Ge Xiaohu.Interference Modeling for Cognitive Radio Networks with Power or Contention Control [C].2010IEEEWireless Communications and Networking Conference (WCNC2010), pp.1-6,18-21April2010.
    [143] Chuyen Khoa Huynh and Won Cheol Lee. Researching on BEM in Interference Analysis of TV-bandWhitespace [C].20124thInternational Conference on Communications and Electronics (ICCE2012),pp.180-185,1-3Aug.2012.
    [144] Vijayandran L., Dharmawansa P., Ekman T. and Tellambura C. Analysis of Aggregate Interference andPrimary System Performance in Finite Area Cognitive Radio Networks [J]. IEEE Transactions onCommunications, vol.60, no.7, pp.1811-1822, July2012.
    [145] Yun Li, Lili Zhao, Chonggang Wang, Daneshmand A. and Qing Hu. Aggregation-based SpectrumAllocation Algorithm in Cognitive Radio Networks [C].2012IEEE Network Operations andManagement Symposium (NOMS2012), pp.506-509,16-20April2012.
    [146] Chunxiao Jiang, Yan Chen, Ray K. J. L. and Ren Y. Analysis of Interference in Cognitive RadioNetworks with Unknown Primary Behavior [C].2012IEEE International Conference onCommunications (ICC2012), pp.1721-1725,10-15June2012.
    [147] El-Sherif A. A. and Ray K. J. L. Joint Design of Spectrum Sensing and Channel Access in CognitiveRadio Networks [J]. IEEE Transactions on Wireless Communications, vol.10, no.6, pp.1743-1753, June2011.
    [148] Zhiqiang Wang, Daiming Qu Tao Jiang and Tingting Jin. Efficient Discovery of Spectrum Opportunitiesvia Adaptive Collaborative Spectrum Sensing in Cognitive Radio Networks [C].2011IEEEInternational Conference on Communications (ICC2011), pp.1-5,5-9June2011.
    [149] Dongyue X., Ekici E. and Xinbing W. Opportunistic Periodic MAC Protocol for Cognitive RadioNetworks [C].2010IEEE Global Telecommunications Conference (GLOBECOM2010), pp.1-6,6-10Dec.2010.
    [150] Pak K. T. and Yong H. C. Modeling Periodic Sensing Errors for Opportunistic Spectrum Access [C].2010IEEE72ndVehicular Technology Conference Fall (VTC Fall), pp.1-5,6-9Sept.2010.
    [151] Sharma M., Sahoo A. and Nayak K. D. Model-Based Opportunistic Channel Access in DynamicSpectrum Access Networks [C].2009IEEE Global Telecommunications Conference (GLOBECOM2009), pp.1-6, Nov.302009-Dec.42009.
    [152] Shoufeng Wang, Weidong Wang, Fan Li and Yinghai Zhang. Anticipated Spectrum Handover inCognitive Radios [C].201118thInternational Conference on Telecommunications (ICT2011), pp.49-54,8-11May2011.
    [153] Pu Wang and Akyildiz I. F. On the Origins of Heavy-Tailed Delay in Dynamic Spectrum AccessNetworks [J]. IEEE Transactions on Mobile Computing, vol.11, no.2, pp.204-217, Feb.2012.
    [154] Rong-Rong Chen and Xin Liu. Delay Performance of Threshold Policies for Dynamic Spectrum Access[J]. IEEE Transactions on Wireless Communications, vol.10, no.7, pp.2283-2293, July2011.
    [155] Willinger W., Taqqu M. S., Sherman R. and Wilson D. V. Self-similarity Through High-variability:Statistical Analysis of Ethernet LAN Traffic at the Source Level [J]. IEEE/ACM Transactions onNetworking, vol.5, no.1, pp.71-86, Feb1997.
    [156] Karagiannis T., Molle M., Faloutsos M. and Broido A. A nonstationary Poisson view of Internet traffic
    [C].200423rdAnnual Joint Conference of the IEEE Computer and Communications Societies(INFOCOM2004), vol.3, pp.1558-1569,7-11March2004.
    [157] Takeuchi K., Kaneko S. and Nomoto S. Radio Environment Prediction for Cognitive Radio [C].20083rdInternational Conference on Cognitive Radio Oriented Wireless Networks and Communications(CrownCom2008), pp.1-6,15-17May2008.
    [158] Shrestha G. M., Ahmad K. and Meier U. Statistical Analysis and Predictive Modeling of IndustrialWireless Coexisting Environments [C].20129thIEEE International Workshop on FactoryCommunication Systems (WFCS2012), pp.125-134,21-24May2012.
    [159] Kai Lai Chung. A Course in Probability Theory (3rdEdtion)[M]. Academic Press,2001.
    [160] Li-Chun Wang and Chung-Wei Wang. Spectrum Handoff for Cognitive Radio Networks:Reactive-Sensing or Proactive-Sensing?[C].2008IEEE International Performance, Computing andCommunications Conference (IPCCC2008). pp.343-348,7-9Dec.2008.
    [161] Christian I., Sangman Moh, Ilyong Chung and Jinyi Lee. Spectrum Mobility in Cognitive RadioNetworks [J]. IEEE Communications Magazine, vol.50, no.6, pp.114-121, June2012.
    [162] Chung-Wei Wang and Li-Chun Wang. Analysis of Reactive Spectrum Handoff in Cognitive RadioNetworks [J]. IEEE Journal on Selected Areas in Communications, vol.30, no.10, pp.2016-2028,November2012.
    [163] Hong-jie Liu, Zhong-Xu Wang, Shu-fang Li and Min Yi. Study on the Performance of SpectrumMobility in Cognitive Wireless Network [C].200811thIEEE Singapore International Conference onCommunication Systems (ICCS2008). pp.1010-1014,19-21Nov.2008
    [164] Yi Song and Jiang Xie. Performance Analysis of Spectrum Handoff for Cognitive Radio Ad HocNetworks without Common Control Channel under Homogeneous Primary Traffic [J].2011Proceedings IEEE INFOCOM, pp.3011-3019,10-15April2011.
    [165] Southwell R., Jianwei H. and Xin L. Spectrum Mobility Games [J].2012Proceedings IEEE INFOCOM,pp.37-45,25-30March2012.
    [166] Sharma I. and Singh G. A Novel Approach for Spectrum Access Using Fuzzy Logic in Cognitive Radio[J]. International Journal of Information Technology and Computer Science, vol.4, no.8, pp.1-9,2012.
    [167] Won-Yeol Lee and Akyildiz I. F. Spectrum-Aware Mobility Management in Cognitive Radio CellularNetworks [J]. IEEE Transactions on Mobile Computing, vol.11, no.4, pp.529-542, April2012.
    [168] Yong Yao, Ngog S. R., Erman D. and Popescu A. Performance of Cognitive Radio Spectrum Accesswith Intra-and Inter-Handoff [C].2012IEEE International Conference on Communications (ICC2012),pp.1539-1544,10-15June2012.
    [169] Chengyu Wu, Chen He, Lingge Jiang and Yunfei Chen. A Novel Spectrum Handoff Scheme withSpectrum Admission Control in Cognitive Radio Networks [C].2011IEEE Global TelecommunicationsConference (GLOBECOM2011), pp.1-5,5-9Dec.2011.
    [170] Baroudi U. and Alfadhly A. Effects of Mobility and Primary Appearance Probability on SpectrumHandoff [C].2011IEEE73rdVehicular Technology Conference (VTC Spring), pp.1-6,15-18May2011.
    [171] Wang S., Yue Wang, Coon J. P. and Doufexi A. Energy-Efficient Spectrum Sensing and Access forCognitive Radio Networks [J]. IEEE Transactions on Vehicular Technology, vol.61, no.2, pp.906-912,Feb.2012.
    [172] Wang Li-Chun, Wang Chung-Wei and Chang Chung-Ju. Modeling and Analysis for Spectrum Handoffsin Cognitive Radio Networks [J]. IEEE Transactions on Mobile Computing, vol.11, no.9, pp.1499-1513,Sept.2012.
    [173] Yi Song and Jiang Xie. Proactive Spectrum Handoff in Cognitive Radio Ad Hoc Networks Based onCommon Hopping Coordination [C]. IEEE Conference on Computer Communications Workshops,INFOCOM2010, pp.1-2,15-19March2010.
    [174] Yi Song and Jiang Xie. ProSpect: A Proactive Spectrum Handoff Framework for Cognitive Radio AdHoc Networks without Common Control Channel [J]. IEEE Transactions on Mobile Computing, vol.11,no.7, pp.1127-1139, July2012.
    [175] Suk-Un Yoon and Ekici E. Voluntary Spectrum Handoff: A Novel Approach to Spectrum Managementin CRNs [C].2010IEEE International Conference on Communications (ICC2010), pp.1-5,23-27May2010.
    [176] Ruolin Z., Xue L., Chakravarthy V. and Zhiqiang W. Spectrum Mobility Demonstration of SMSE BasedOverlay Cognitive Radio via Software Defined Radio [C].2011IEEE Symposium on New Frontiers inDynamic Spectrum Access Networks (DySPAN2011), pp.668-669,3-6May2011.
    [177] Ho Ting Cheng and Weihua Zhuang. Simple Channel Sensing Order in Cognitive Radio Networks [J].IEEE Journal on Selected Areas in Communications, vol.29, no.4, pp.676-688, April2011.
    [178] Tao Shu and Marwan Krunz. Sequential Opportunistic Spectrum Access with Imperfect ChannelSensing [J]. Ad Hoc Networks, Available online24September2012.
    [179] Coutinho P. S., Rocha da Silva M. W. and de Rezende J. F. Detection Error Aware Spectrum HandoffMechanism for Cognitive Radios [C].20127thInternational ICST Conference on Cognitive RadioOriented Wireless Networks and Communications (CROWNCOM2012), pp.48-53,18-20June2012.
    [180] Shilian Zheng, Xiaoniu Yang, Shichuan Chen and Caiyi Lou. Target Channel Sequence SelectionScheme for Proactive-Decision Spectrum Handoff [J]. IEEE Communications Letters, vol.15, no.12, pp.1332-1334, December2011.
    [181]郑仕链,杨小牛.认知无线电频谱切换目标信道访问机制[J].电子与信息学报, vol.34, no.9, pp2213-2217,2012.9.
    [182] Li-Chun Wang, Chung-Wei Wang and Chung-Ju Chang. Optimal Target Channel Sequence Design forMultiple Spectrum Handoffs in Cognitive Radio Networks [J]. IEEE Transactions on Communications,vol.60, no.9, pp.2444-2455, September2012.
    [183]孙武剑,李娜,刘洋,孙乐,陈韬,李昊,李鸥.认知网络中时延最优的频谱决策方法[J].通信学报, vol.33, no. Z2, pp.60-70,2012.11.
    [184] Sun Wujian, Liu Yang, Li Na, Li Ou and Li Caiping. Adaptive Spectrum Decision Method forHeterogeneous Cognitive Radio Networks [J]. China Communications, vol.9, no.11, pp.31-40,November2012.
    [185] Little J. D. C. A Proof of the Queuing Formula: L=λW [J]. Operations Research, vol.9, no.3, pp.383-387, May./Jun.1961.
    [186] Wolff R. W. Poisson Arrivals See Time Averages [J]. Operations Research, vol.30, no.2, pp.223–231,Mar./Apr.1982.
    [187] Kleinrock L. Queueing Systems-Volume1: Theory [M]. John Wiley&Sons Inc.,1975.
    [188]樊平毅.随机过程理论与应用[M].清华大学出版社.2005.8.
    [189]熊加兵,陈光曙.负二项分布随机变量的分解定理[J].大学数学, vol.24, no.1, pp.108-110,2008.2.
    [190] Bertsekas D. and Gallager R. Data Networks (2ndEdition)[M]. Englewood Cliffs (NJ): Prentice-Hall,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700