用户名: 密码: 验证码:
致密碳酸盐岩缝洞储层地震检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸盐岩储层缝洞系统是一个复杂、非均质、非线性的系统。其缝洞检测是一个世界性的难题。但对碳酸盐岩储层来说,缝洞是其油气储存的主要空间,是储层评价的主要指标,缝洞的检测对指导油气勘探和开发具有重要的意义。论文以储层缝洞检测可行性分析到检测方法技术再到储层综合评价为主线,从分析目的层地质特征入手,通过数值模拟、物理模型超声波实验、理论模型正演响应分析探讨储层缝洞的地震响应特征,以此为基础,用多种方法对三维地震数据进行缝洞检测,最后进行储层的分级和评价。
     据Hudson裂隙理论,求出EDA介质的弹性参数,应用Christoffel方程求出的地震纵波相速度表达式,在此基础上进行的数值模拟表明,在裂隙介质中,地震纵波速度只具弱的各向异性,而对于同级别的裂缝密度,反射系数的变化量是其速度变化量的3倍左右;物理模型的超声波实验结果证明了介质存在裂缝与孔洞时将降低地震波传播速度和动力学参数值,而动力学参数值的变化率比速度变化率高出2~3个数量级。通过潜山顶和内幕含缝洞的理论模型正演和波场特征分析表明,振幅和频率的变化量大于速度的变化量。三种方式都揭示了地震波的动力学特征比其运动学特征对裂隙更敏感。同时模型正演表明,潜山顶面和潜山内幕缝洞介质的波场特征不一致,振幅对内幕裂缝的敏感性远大于其对潜山面裂缝的敏感性;缝洞发育带的中心位置与地震响应异常带中心位置相对应;多个缝洞组合体产生“串珠状”异常地震反射或杂乱反射特征,串珠的个数与长度可近似地表示出缝洞组合体的个数。由此证明了对碳酸盐岩储层的缝洞系统进行地震检测不仅可能而且可行。
     在上述研究基础上,建立了由小波分频相干处理进行裂缝检测;基于动力学参数综合法、基于波形态特征的波形分析法、基于边缘检测的二阶方向滤波法和广义希尔伯特变换法四种方法进行缝洞组合体检测;用“累计能量差法”进行溶洞检测所组成的致密碳酸盐岩储层缝洞检测方法体系。
     小波分频处理获得不同通道(频带)的数据体再进行相干处理,并对高频相干数据进行小波分解融合,其成果高质量地展示小断层和裂缝的平面发育特征。
     在理论模型正演响应的指导下,对多种地震波动力学参数进行融合,直接展示缝洞体的平面分布;通过模型正演响应证实了基于地震波形态参数的波形分析在缝洞检测上也具有明显效果,由此进行了波形分形法缝洞检测;引入并改进了以图像边缘检测理论为基础的二阶方向滤波、广义希尔伯特变换对缝洞体进行检测,它们对缝洞异常带有着较高的识别能力,获得了较好的检测效果;经过基于主成份分析的数据融合,把以上几种方法的检测结果融合成了一种综合参数,该综合参数准确地揭示了目的层缝洞的平面发育特征。
     溶洞在储层评价中具有重要意义。通过本文提出的“累计能量差法”对一间房组储层溶洞进行了检测,表明该区溶洞主要发育在储层上部,平面上具有分带性。受构造、断层的控制作用明显。该方法对井分析吻合度极高,效果良好,是一种创新的溶洞检测方法。
     综合小波相干裂缝检测、缝洞体综合检测和溶洞检测结果把研究区一间房组碳酸盐岩储层划分为四个等级,在平面上划分为五个区块。结合构造、断层等地质成果,对各区块储层进行了综合评价。在此基础上,指出小断层(裂缝)发育区、缝洞发育带与溶洞群发育但相对不集中的地区,是最有利的油气勘探靶区。
Fracture-cave system in compact carbonate reservoir is a complex, inhomogeneous and nonlinear system. Detection of the fracture-cave system is a worldwide difficult problem. Fractures and caves are main reservoir space, and key criteria for reservoir evaluation, therefore, it is significant to detect them and provide guidance for petroleum exploration and exploitation. The thesis begins with feasibility analysis on detection of fractures and caves, aimed at detection method and technology as well as integrated reservoir evaluation, and by way of analysis on geological characteristics, numerical simulation, ultrasonic experiment on physical model, theoretical forward modeling, the thesis discusses seismic response characteristics of fractures and caves in reservoir. Based on above study in the thesis attempted to detect fractures and caves by multiple methods to 3D seismic data, and then discussed reservoir classification and evaluation.
     According to fracture theory put forward by Hudson, the elastic parameters of EDA medium were calculated, and then the formula of the phase velocity of P-wave was determined by Christoffel equation. Numerical simulation based on above parameters indicates that velocity of P-wave has gentle anisotropy in fractured media at same time, the change of reflection coefficient is three times as much as the change of velocity resulted from the same condition of fracture density variation. Results of ultrasonic experiment on physical model testify that with the existence of fractures and caves, the value of seismic P-wave velocity and dynamic parameters decrease, and variance ratio of dynamic parameters are high two to three quantitative grade than that of velocity. The change of amplitude and frequency is bigger than that of velocity by theoretical forward modeling and wave-field characteristic analysis of fractures-caves contained on top part and inner part of buried bill. Three methods all discover that dynamic characteristic is more sensitive to fracture than kinematic characteristic. Forward modeling also indicates the wave-field characteristic of the buried hill surface is different to the characteristic of the buried hill internal phase, so amplitude is more sensitive to fracture in inner part of buried hill than that at the top part of buried hill, the center of fracture-cave zone is consistent with center of seismic response abnormity zone, combination of multiple fracture-caves generate a string of beads abnormal seismic reflection or chaotic seismic reflection characteristic, number and length of a string of beads are approximate with number of fracture-cave combination. That is to say, it is possible and feasible to detect fracture-cave system by way of seismic means in carbonate reservoir.
     On the basis of above studying, we have built the new seismic detection method system of fracture-cave contained in compact carbonate reservoir. It includes wavelet frequency-divided coherence to detect fractures, the four methods to detect combination of multiple fracture-caves: synthesizing parameter method based on dynamics, waveform analysis based on kinematics, the second order directional filter and GHT method based on edge detection. Cumulative energy difference method to detect karst caves.
     Data volume with different channel (or frequency band) obtained from wavelet frequency-divided is processed by coherence analysis, and high frequency coherence data is processed by wavelet decomposition and fusion. The result data clearly displaies the plane developed feature of minor fault and fracture.
     Under instruction of theoretical forward modeling, multiple dynamic parameters of seismic wave are fused to directly demonstrate plane distribution of fracture-cave system. Forward modeling also testify that waveform analysis based on kinematic parameters is effective to detect fractures and caves, therefore waveform analysis method is adopted. Using the second order directional filter method and GHT method based on edge detection, they are sensitive and powerful to identify fracture-cave abnormity zone, and detection effect is satisfied. Data fusion based on principal component analysis is that the methods mentioned above are coupled to an integrated parameter, and it can exactly describe plane developed feature of fracture-cave system.
     Karst cave is very important signification during reservoir evaluation. By cumulative energy difference method brought forward in this thesis, karst caves in Yijianfang formation are detected, results show that karst caves are mainly developed at the upper part of reservoir, and the plane distribution is zoning, and distribution of karst cave is mainly controlled by (paleo-) structure and fault. Detection result by this method is well consistent with drilling data, and is an innovative method.
     Combined with fracture detection by using wavelet coherence, integrated detection of fracture-cave system, and result of karst cave detection, the carbonate reservoir in Yijianfang formation is classified into 4 grades, and plane distribution is divided into 5 districts. Combined with the geological production including structure and fault, to evaluate 5 districts separately. At last, it is pointed out that these are the best prospecting targets of fracture-cave developed belts, area with well developed fracture and comparatively scattered karst cave cluster.
引文
[1]贺振华,黄德济,何建军,等.复杂油气藏地震波场特征方法理论及应用[M].成都:四川科学技术出版社,1999
    [2]贺振华,黄德济,文晓涛.裂缝油气藏地球物理预测[M].成都:四川科学技术出版社,2007
    [3]贺振华,李亚林,张帆.定向裂缝对地震波速度和振幅影响的比较[J].物探化探计算技术,2001,23(1):1-5
    [4]贺振华,李亚林,曹均,等.地层温压条件下超声波测试技术[J].勘探地球物理进展,2003,26(2):84-87
    [5]贺振华,杜正聪,文晓涛.碳酸盐岩喀斯特溶洞和裂缝系统的地震模拟与预测[J].地球科学进展,2004,1(3):399-402
    [6]贺振华,黄德济.缝洞储层的地震检测和预测[[J].勘探地球物理进展,2003,26(2):79-83
    [7]黄德济,贺振华,何建军,等.致密储层缝洞发育带综合预测[J].勘探地球物理进展,2003,26(2):114-120
    [8]何建军,贺振华,黄德济.致密砂岩储层裂缝发育带的检测和识别[J].成都理工大学学报(自然科学版),2004,31(6):713-716
    [9]何建军,黄德济,贺振华.利用地震波场主振幅参数划分沉积相及其变化特征研究[J].矿物岩石,1999,19(4):86-89
    [10]何建军,黄德济,贺振华.利用地震波场参数探讨岩性非均质的分布[J].物探化探计算技术,1999,2l(3):238-243
    [11]何建军.裂缝油气藏的信号检测技术[A].中国科协首届博士生学术交流大会论文集[C].北京:中国科学技术出版社,2002.228-233
    [12]何建军.广义希尔伯特变换及其应用研究[A].中国地球物理协会第十九届年会论文集[C].南京:南京师范大学出版社,2003.448-449
    [13]何建军,刘家铎,田景春.利用地震多特征参数进行地震地层学精细研究[J].成都理工学院学报,1999,26(4):370-374
    [14]陈颙,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001
    [15]陈清华,孙述鹏.缝洞识别技术在塔河油田的综合应用[J].西部探矿工程,2004,102(11):69-70
    [16]蔡瑞.基于谱分解技术的缝洞型.碳酸盐岩溶洞识别方法[J].石油勘探与开发,2005,32(2):82-85
    [17]陈崇河,马晓芬.利用地震资料研究裂缝性储层的新进展.石油物探,1997,36:20-26
    [18]曹均.裂缝储层物理模型的实验研究[D].成都:成都理工学院,2003
    [19]陈国俊,王纬,张宏.地震相干体软件开发及其应用效果分析[J].工程地球物理学报,2004,1(5):399-403
    [20]狄帮让,魏建新,夏永革.三维地震物理模型技术的效果与精度研究[J].石油地球物理勘探,2002,37(2):562-568
    [21]郭建.裂隙介质中的各向异性研究.石油地球物理勘探[J],1993,28(3):348-353
    [22]高静怀,汪文秉,朱光明,等.地震资料处理中小波函数的选取研究[J].地球物理学报1996,39(1):392-398
    [23]高静怀,汪文秉,朱光明.小波变换与瞬时特征分析[J].地球物理学报,1997,40(6):821-832
    [24]何义忠.裂缝油气储层检测和预测的地球物理方法研究[D].成都:成都理工学院,1999
    [25]韩革华,漆立新,李宗杰,等.塔河油田奥陶系碳酸盐岩缝洞型储层预测技术[J].石油与天然气地质,2006,27(6):860-870,878
    [26]侯海龙,顾汉明,朱定,等.分频技术在塔河碳酸盐岩储层预测中的应用[J].勘探地球物理进展,2007,30(3):207-210
    [27]金之钧,中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12(3):15-22
    [28]姜素华,肖姹莉,王永诗.三维模式识别技术在古生界潜山油藏预测中的应用[[J].青岛海洋大学学报,2003,33(4):595-602
    [29]鲁新便.溶洞缝洞型碳酸盐岩储集层的非均质性[J].新疆石油地质,2003,24(4):360-362
    [30]鲁新便.缝洞型碳酸盐岩油藏开发描述及评价[D].成都:成都理工大学,2004
    [31]李宗杰,王勤聪.塔河油田奥陶系古岩溶洞穴识别及预测[J].新疆地质,2003,2l(2):181-184
    [32]李宗杰,王胜泉.地震属性参数在塔河油田储层含油气性预测中的应用[J].石油物探,2004,43(5):453-457
    [33]李江龙,黄孝特,张丽萍.塔河油田4区奥陶系缝洞型油藏特征及开发对策[J].石油与天然气地质,2005,26(5):630-1533
    [34]李亚林,贺振华,黄德济,等.露头砂岩纵横波衰减的各向异性实验研究[J].石油地球物理勘探,1999,34(6):659-664
    [35]李亚林.孔(裂)隙介质波场特征的超声实验及应用研究[D].成都:成都理工大学,1999
    [36]李琼,贺振华,黄德济,等.单孔洞缝模型超声波实验测试与分析[J].石油物探,2007,46(1):100-104
    [37]李琼,贺振华,黄得济,等.温压条件下孔洞模型超声波实验与结果分析[C].中国地球物理学会第十九届学术年会论文集,南京:南京师范大学出版社,2003
    [38]李琼.复杂储层地震预测理论及方法研究[D].成都:成都理工大学,2006
    [39]李军,郝天珧,赵百民.地震与测井数据综合预测裂缝发育带[J].地球物理学进展,2006,21(1):179-183
    [40]李新华,荣元帅,陈志,等.塔河油田托甫台奥陶系油藏评价方案[R].中石化西北油田分公司,2007,6
    [41]李国政,王辉,丁勇.塔河油田奥陶系碳酸盐岩油气藏石油地质条件[J].新疆石油地质,2002,23(6):493-495
    [42]李树涛,王耀南,龚理专.多聚焦图像融合中最佳小波分解层数的选取[J].系统工程与电子技术,2002,24(6):45-48.
    [43]兰素清,陆明华.多种地球物理方法组合在储层预测中的应用[J].勘探地球物理进展,2002,25(6):43-46
    [44]刘军迎,雍学善,高建虎.模型正演技术在碳酸盐岩油气藏地震资料解释中的应用[J].岩性油气藏,2007,19(1):109-112
    [45]刘家铎,孟万斌,何建军,等.塔河油田托甫台地区碳酸盐岩储层主控因素及成藏条件分析[R],2007.
    [46]刘成斋.泥岩裂缝油藏地球物理特征与检测方法[D].成都:成都理工学院,2004
    [47]桂志先.裂缝介质中地震波传播正演模拟及裂缝油气藏的识别[D].成都:成都理工学院,2000
    [48]马永生等.中国海相油气勘探[M].北京:地质出版社,2007
    [49]梅琪,哈力旦·A,帕力旦·吐尔逊.二维图像的基本处理与边缘检测[J].新疆大学学报(自然科学版),2008,25(2):235-240
    [50]牟永光.三维复杂介质地震物理模拟[M].北京:石油工业出版社,2003
    [51]闵小刚,顾汉明,朱定.塔河油田孔洞模型的波动方程正演模拟[J].勘探地球物理进展,2006,29(3):187-191
    [52]孙春岩,牛滨华,黄新,等.潜山风化壳碳酸盐岩油气藏地震响应特征研究及振幅横向差异属性在预测中的应用[J].现代地质,2004,18(1):127-132
    [53]谭承军,周荚杰,柱玉山,等.塔河油田4区奥陶系储集层非均质性[J].新疆石油地质,2001,22(6):509-510
    [54]覃征,鲍复民,李爱国,等,数字图像融合[M].西安:西安交通大学出版社,2004
    [55]唐正松.试论缝洞系岩溶及其地质意义[J].西南石油学院学报,1995,17(2):15-21
    [56]文小涛.缝洞储层的地震检测及综合预测[D].成都:成都理工大学,2006
    [57]魏建新.不同裂缝密度的物理模型研究[J].石油物探,2002,41(4):433-438
    [58]魏建新.岩石横波分裂和各向异性的实验室观测[J].石油物探,1993,32(1):60-67
    [59]万学鹏,欧瑾,于兴河.利用相干体技术研究碳酸盐岩裂缝特征[J].断块油气田,2007,14(3):43-45
    [60]魏历灵.人工神经网络技术在塔河油田的应用[J].新疆石油地质,2004,25(6):665-667
    [61]温志新,王红漫,漆立新,等.塔河油田奥陶系缝洞型碳酸盐岩储层预测研究[J].地学前缘,2008,15(1):94-100
    [62]王勤聪,李宗杰,孙雯.塔河油田碳酸盐岩储集层地球物理识别模式[J].新疆石油地质,2002,23(5):400-401
    [63]王连山,朱庆忠,董建海,等.三维多尺度边缘检测技术在古潜山裂缝性储层预测中的应用[J].特种油气藏,2006,13(3):15-21
    [64]王秀玲,孟宪军,季玉新,等.潜山裂缝储层地震多信息综合预测方法及应用实例[J].石油地球物理勘探,2002,37(增):196-201
    [65]王西文,苏明军,刘军迎,等.基于小波变换的地震相干体算法及其应用[J].石油物探,2002,41(3):334-338
    [66]王西文,杨孔庆,周立宏,等.基于小波变换的地震相干体算法研究[[J].石油地球物理学报,2002,45(6):847-852
    [67]王西文,高静怀,李幼铭.高分辨地震资料处理中的导数小波函数的构造[J].石油物探,2000,39(2):64-71
    [68]王西文.高分辨率滤波算子在小波域中的提取[J]石油地球物理勘探,2000.6,35(3):298-314
    [69]王西文,刘全新,李幼铭,等.地震信号瞬时特征在小波域分频提取的方法和应用[J].石油地球物理勘探,2000,35(4):452-478
    [70]王坤,潘继农,张鹏,等.基于主成份分析的异常检测方法研究[J].信息工程大学学报,2004,5(9):56-59
    [71]夏新宇,陶士振,戴金星.中国海相碳酸盐岩油气田的现状和若干特征[J].海相油气地质,2000,5(1-2):6-11
    [72]熊晓军.单程波动方程地震数值模拟新方法研究[D].成都:成都理工大学,2006
    [73]许杰,赵永勤,杨子川.应用波形分析技术预测塔河油田缝洞型储集层[J].新疆石油地杨子川,李宗杰,窦慧媛.储层的地震识别模式分析及定量预测技术初探-以塔河油田碳酸盐岩储层为例[J].石油物探,2007,46(4):370-377
    [74]叶增炉,何建军,林杰.基于小波变换相干体算法的实现及应用效果分析[J].成都理工大学学报(自然科学版),2006,33(5):528-531
    [75]叶增炉.小波相干技术及在地震解释中的应用[D].成都:成都理工大学,2006
    [76]杨子川.塔河油田碳酸盐岩储层预测技术与应用[J].勘探地球物理进展,2004,27(6):432-439
    [77]张希明,朱建国,李宗宇,等.塔河油田碳酸盐岩缝洞型油气藏的特征及缝洞单元划分[J].海相油气地质,2007,12(1):21-24
    [78]张小平.用三维地震信息研究碳酸盐岩裂缝性油气藏[J].天然气工业,1997,17(5):16-19
    [79]张旭光,刘群,徐波平,等.托浦台三维地震综合成果报告[R].中石化西北油田分公司,2005,11
    [80]张帆.储层裂隙特征识别方法理论及应用研究[D].成都:成都理工学院,1999
    [81]张军华,王月英,赵勇,等.小波多分辨率相干数据体的提取及应用[J]石油地球物理勘探2004-2,39(1):33-39
    [82]CheadleSB,BrownRJ.正交各向异性:多组分物理模型研究[A].见:第60届SEG年会论文集[C].北京:石油工业出版,1992:587-592
    [83]Johnson J V,Tatham R H,McDonald J A,等.裂缝引起横波各向异性的物理模拟[A].见:第59届SEG年会论文集[C],北京:石油工业出版社,1991:430-433
    [84]Tatham R H,Matthews M D,Sekharan K K,等.横波分裂和裂隙强度的一种物理模型研究[A].见:第57届SEG年会论文集[C],北京:石油工业出版社,1989:249-252
    [85]Andrey Bakulin,Vladimir Grechka,llya Tsvankin.Estimation of fracture parameters from reflection seismic data—Part Ⅰ:HTI model due to a single fracture set[J].Geophysics,2000,65(6)
    [86]Andrey Bakulin,Vladimir Grechka,llya Tsvankin.Estimation of fracture parameters from reflection seismic data—Part Ⅱ:Fracture models with orthorhombic symmetry[J].Geophysics,2000,65(6)
    [87]Andrey Bakulin,Vladimir Grechka,llya Tsvankin.Estimation of fracture parameters from reflection seismic data—Part Ⅲ:Fracture models with monoclinic symmetry[J].Geophysics,2000,65(6)
    [88]Avseth P,Mukerji T,Mavko G.Quantitative seismic interpretation-appling rock physics tools to reduce interpretation risk[M].Cambridge university press,2005
    [89]Assad J M,Tatham R H,McDonald J A.A physical model study of microcrack-induced anisotropy[J].Geophysics,1992,57(12):1562-1570
    [90]Boadu F K.Fractured rock mass characterization parameters and seismic properties:Analytical studies[J].J Applied Geophysics,1997,36(1):1-19
    [91]Bahorich M,Farmer S.3-D Seismic Discontinuity fox Faults and Stratigraphic Features:The Coherence Cube[J].The Leading Edge,1995,14(10):1053-1058.
    [92]Crampin S,McGonigle R,Bamford D.Estimating crack parameters from observations of P-wave velocity anisotropy[J].Geophysics,1980,46:345-360
    [93]Crampin S.Evaluation of anisotropy by shear-wave spilitting[J].Geophysics,1985,50(1):142-152
    [94]Grossmann,A.,Kronland-Martinet,R.,Morlet,J.,Reading and understanding continuous wavelet transforms,In:Wavelets,Time-Frequency Methods and Phase Space.1st Int.Wavelets Conf.,Marseille.2-20.1989.
    [95]Gersztenkorn A,Marfurt K J.Eigenstructure-Based Coherence Computations as an Aid to 3-D Structural and Stratigraphic Mapping[J].Gen physics,1999,64(5):1468-1479.
    [96]J.Canny.A computational approach to edge detection[J].IEEE Trans.Patten Analysis and Machine Intelligence,1986,8(6):679-698
    [97]Marfurt K J,Kirlin R L,Farmer S L,etal.3-D Seismic Attributes Using a Semblance-Based Coherency Algorithm[J]Geophysics,1998,63(4):1150-1165.
    [98]Nissen,S.E.,Haskell,N.L.,Lopez,J.A.,etc.3-D seismic coherency techniques applied to teh identification and delineation of slump features:65th Ann.Internat.Mtg.Soc.Expl.Geophys[J].Expanded Abstracts,1995,1532-1534
    [99]Subhashis Mallick et al.Determination of the principal directions of azimuthal anisotropy from P—wave seismic data[J].Geophysics,1998,63(2):692-706
    [100]S.Mallat,S.Zhong.Characteriztion of signals from multiscale edges[J].IEEE Trans.PAMI,14(9),1990,710-732
    [101]S.Mallat et al.Characteristics of signals from multi-scale eges[J].IEEE Trans.on PAML,1992,14(7):710-732
    [102]Toksoz M N,Johnston D H,Timur A.Attenuation of seismic waves in dry and saturated rocks:I.Laboratory measurements[J].Geophysics,1979,44(4):681-690
    [103]Yi Leo,Saleh A D,Mohammad A.Generalized HirbertTransform and its applications[J].The Leading EDGE,2003,22(3):198-202.
    Vernik L,Nur A.Ultrasonic velocity and anisotropy of hydrocarbon source rocks[J].Geophysics,1992,57(5):727-735

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700