功能梯度材料抗侵彻性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属基复合材料学科是一门相对较新的材料科学,但由于其性能优异受到人们的关注,研究人员做了大量的研究工作,并在此基础上开发出各种不同增强材料和体积含量的金属基复合材料。其中陶瓷颗粒增强的金属基功能梯度材料由于其优异抗弹击能力越来越受到世界各国的高度重视。
     本文主要论述了Al/SiC_p复合材料在高应变率下的力学性能和功能梯度材料(FGM)穿甲实验研究。
     本文用自行研制的分段式霍布鑫森压杆(Split Hopkinson Pressure Bar)研究Al/SiC_p复合材料在高应变率下压缩的力学行为。试验所采用的试样为采用真空热压粉末冶金烧结工艺制备的Al/SiC_p复合材料线切割成φ5*5的圆柱形试样,其中SiC的含量分为6种情况,即5%、10%、15%、20%、25%、30%。得到6种不同体积含量的SiC_p/Al复合材料的应力-应变曲线。与复合材料在准静态压缩下的变形行为相比,复合材料高应变率流变应力有较大提高。随着SiC颗粒的体积分数的增加,复合材料流动应力相应增加,并将实验结果与理论计算结果进行了比较分析,得到反映颗粒增强金属基复合材料性能的本构方程。
     此外本文详细地介绍了功能梯度材料的穿甲试验设备和实验技术。从试验数据和结果分析发现功能梯度材料板比纯铝板具有更好的抗侵彻性能。
The study of Metal Matrix Composites (MMCs) is a new material subject. Because of the excellent behavior of MMCs, it attracts many researchers' attention. Much work has been done to develop the MMCs, and many MMCs with different reinforcement and volume fraction were developed. The Functionally Graded Material (FGM) becomes more and more important since the excellent resistance of penetration.
    This paper is mainly about the mechanical behavior of Al/SiCp MMCs under high strain rate and the penetration performance of FGM.
    In this paper, the Split Hopkinson Pressure Bar (SHPB) was used to study the compression mechanical behavior of Al/SiCp MMCs under the high strain rate. The samples are made from Al/SiCp MMCs which prepared by vacuum hot-pressing sintering processing and the sample size is Φ5*5. The volume fraction of SiC are 5%, 10%, 15%, 20%, 25% and 30%. The stress-strain curves of six kinds of volume fraction of Al/SiCp were obtained. Compared with the results of quasi-static, it was found that the flow stress evidently increased under the high strain rate. With the increase of volume fraction of SiC particles, the flow stress of composites increases. From the compare of the experiment result and the analysis result, the constitute equation of MMCs is given.
    The penetration experimental equipments and technologies are also introduced. From the experimental data and result, it is found that the penetrate resistance of FGM plate is much better than pure aluminium plate.
引文
[1] 于春田.金属基复合材料.冶金工业出版社.1995.
    [2] 张国定,赵昌正.金属基复合材料.上海交通大学出版社.1996.
    [3] Friend. C. M, Nixon. A. C. Impact Response of Short S-aluminum Fiber/aluminum Alloy Metal Matrix Composite [J]. J Mater Sci 1988, 23: 1967-1975.
    [4] Dixon. D. G. Spall Failure in 6061/SiC Particulate Metal Matrix Composite [J]. Scripta Metal Mater, 1990, 24(3): 577-580.
    [5] Hong. S. I, Gray. G. T Ⅲ, Lewandowski. J. J. Microstrutural Evolution in an Al-Zn-Mg-Cu Alloy-20 Vol.% SiC composite Shock-loaded to 5 GPa [J]. Scripta Metal Mater, 1992, 27: 431-436.
    [6] Marchand. A, Duffy, J, Christman. T. A, et al. An Experimental Study of the Dynamic Mechanical Properties of an AI-SiC, Composite [J]. Engng Fract Mech, 1998, 30(3): 295-315
    [7] 黄晨光。段祝平,吕毓雄,等.MMCs的冲击力学性能及拉乐不对称性的研究[J].复合材料学报,2001,18(1):102—127.
    [8] Vaziri. R, Delfosse. D, Pageau. G, et al. High-speed Impact Response of Particulate Metal Matrix Composite Material——An Experimental and Theoretical Investigation[J]. Int J Impact Engng, 1993, 13: 329-352.
    [9] Hong. S. I, Gray. G. TⅢ. Dynamic Mechanical Response of a 1060Al/AI_2O_3 Composite[J]. J Mater Sci, 1994, 29: 2987-2992.
    [10] Chichili. D. R, Ramesh. K. T, Dynamic Failure Mechanisms in a 6061-T6 AI/AI_2O_3 Metal-matrix Composite[J]. Int J Solids Struct, 1995, 32(17/18): 2609-2626.
    [11] Weissenbek. E, B?hm. H. J, Rammerstorfer. F. G. Micromechanical Investigations of Arrangement Effects in Particle Reinforced metal Matrix Composites[J]. Comput Mater Sci, 1994, 3: 263-278.
    [12] Dandekar. D. P and Lopatin. C. M. In shock waves in condensed matter-1985,ed. Y. M. Gupta. Plenum, new york, 1986, pp. 365-369.
    [13] Bless. S. J, et al. In shock-wave and high-strain-rate phenomena in materials,
    
    ed. M. A. Meyers, L. E. Murr and K. P. Staudhammer. Marcel Dekker, New york, 1992. pp. 1051-1058.
    [14] Ross. C. A and Sierakowski. R. L. In materials 1971; Science of Advanced Materials and Process Engineering. Vol. 16. 1971. pp. 109-121.
    [15] Harding. J, et al. on Composite Materials(ICCM Ⅵ). 1987, pp. 76-85.
    [16] Marchand. A, et al. Engineering Fract. Mech .1988.30.295.
    [17] Yadav. S. An experimental and numerical investigation of dynamic deformations in metal-matrix and tungsten-based composites. Ph.D. dissertation. The Johns Hopkins University, 1996
    [18] 马小青.冲击动力学.北京理工大学出版社.1992.
    [19] 王少林,阮雪榆,俞新陆等,金属高温塑性本构方程的研究,上海交通大学学报,Vol,30,No.8.1996
    [20] 张治民,直齿圆柱齿轮渗碳—温挤压成形技术几个基本问题的研究,燕山大学博士论文,p23—30
    [21] Riqiang Liang, Akhtar S. Khan, A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures, international journal of plasticity 15(1999) 963-980
    [22] Sia Nemat-Nasser, Luqun Ni, Tomoo Okinaka, a constitutive model for crystals with application to polycrystalline OFHC copper, mechanics of materials 30(1998) 325-341
    [23] Sia Nemat-Nasser, Tomoo Okinaka, a new computational approach to crystal plasticity: fcc single crystal, mechanics of materials, 24(1996)43-47
    [24] Sia Nemat-Nasser and Yulong Li, fowl stress of F.C.C polycrystals with application to OFHC Cu, Acta mater, vol. 46, No. 2, pp. 565-577,1998
    [25] Sia Nemat-Nasser, Tomoo Okinakaand Luqun Ni,a physically-based constitutive model for BCC crystals with application to polycrystalline tantalum, J. Mech, phys. Solids, Vol. 46, No. 6, pp. 1009—1038, 1998
    [26] 王永贵 金属导体与电信号的传输探密,《无线电与电视》,1995(5):34—36
    [27] Mochida. T, Taya. M, and Lloyd. D. J. Mater trans. Japan Inst. Metals[J], 1991;32(10): 931-942.
    
    
    [28] Sharpe. W. N et al, Tensile Testing of Polysilicon, Experimental Mechanics Vol. 39, No. 3, Sep 1999, p162-p170
    [29] Fitzpatrick. M. E, Withers. P. J, Changes in the misfit stress in an All/SiC,. metal matrix composite under plastic strain[J], Acta Materialia, 50(2002), 1031-1040.
    [30] Xue. Z, Huang. Y. Particle size effect in metallic materials: a study by the theory of mechanism-based strain gradient plasticity[J]. Acta Materialia, 50(2002), 149-160.
    [31] Xia. Z., Curtin. W. A.. Multiscale modeling of failure in metal matrix composites[J]. Acta Materialia, 49(2001), 273-287.
    [32] Rosler. J, Baker. M. A theoretical concept for the design of high-temperature materials by dual-scale particale strengthening [J]. Acta Materialia, 48(2000), 3553-3567.
    [33] Lissenden. C. J, Herakovich. C. T. Numerical modeling of damage development and viscoplasticity in metal matrix copposites[J]. Comput. Methods Appi mech.engng. 126(1995), 289-303.
    [34] Bohm. H. J, Eckschlanger. A. Multi-inclusion unti cell models for metal matrix composites with randomly oriented discontinuous reinforcements[j]. Computational materials science. 25(2002), 42-53.
    [35] Eckschlager. A. Ban. W. A unit cell model for brittle fracture of particles embedded in a ductile matrix[J]. Computational materials science. 25(2002), 85-91.
    [36] Soppa. E., Schmauder. S. Influence of the microstructure on the deformation behaviour of metal matrix composites[j]. Computational materials science. 16(1999), 323-332.
    [37] Steglich. D, Siegmund. T. Micromechanical modeling of damage due to particle cracking in reinforced metals[J]. Computational materials science. 16(1999), 404-413.
    [38] Heness a. G.L, Ben-Nissan a. B. Development of a Enite element micromodel
    
    for metal matrix composites[j]. Computational materials science. 13(1999), 259-269.
    [39] Pandorf *. R, Broeckmann. C. Numerical simulation of matrix damage in aluminium based metal matrix composites[J]. Computational materials science. 13(1998), 103-107.
    [40] Narayana Murtya. S.V.S, Nageswara Raob.* B. On the hot working characteristics of 6061Al-SiC and 6061-Al203 particulate reinforced metal matrix composites[J]. Composites science ang technology. 63 (2003).119-135
    [41] Issam. S. Jalham. Modeling capability of the arti. cial neural network (ANN) to predict the e. ect of the hot deformation parameters on the strength of Al-base metal matrix composites. Composites science ang technology. 63 (2003). 63-67
    [42] Yuanxin Zhou*, Yuanming Xia. Experimental study of the rate-sensitivity of unidirectional-fiber-reinforced metal-matrix composite wires and the establishment of a dynamic constitutive equation[j]. Composites science ang technology. 61(2001). 2025-2031.
    [43] Xia. Z. H, Curtin*. W.A. Multiscale modeling of damage and failure in aluminum-matrix composites[J]. Composites science ang technology. 61(2001). 2247-2257.
    [44] Nama. H.W, Gamal. A. Aggag. b. K. The dynamic behavior of metal-matrix composites under low-velocity impact[J]. Composites science ang technology. 60 (2000). 817-823.
    [45] Paskaramoorthya.* R., Meguidb. S.A. Large internal stresses in particle-reinforced composites subjected to dynamic loads[J]. Composites science ang technology. 59 (1999). 1361-1367.
    [46] Li. Y and Ramesh. K. T. Influence of particle volume fraction,shape and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain[J]. Acta mater. Vol. 46, No. 16. 5633-5646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700