电荷稳定分散聚合体系制备聚合物微球的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分散聚合可以一步制备出粒径范围在1-15μm之间的单分散聚合物微球而得到广泛关注。在传统分散聚合中,微球一般通过高分子量聚合物稳定剂吸附或接枝在微球上,靠聚合物的空间或静电空间作用稳定微球,且稳定剂用量一般要高于5 wt%,而对于较传统的静电稳定作用研究较少。本论文详细研究了电荷稳定分散聚合体系的反应特点及反应机理,找到了一种制备单分散洁净聚合物微球的方法。主要研究内容如下:
     1.研究了一种简单高效的原位自稳定分散聚合体系,在甲醇/水混合溶剂中,采用可聚合的、带正电荷的小分子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC)与苯乙烯原位共聚形成稳定剂,可制备出粒径范围在200-1600 nm之间的单分散的、表面带正电荷的聚苯乙烯(PS)微球;聚合速度快,DMC稳定效率高,0.025 wt%便可制备出稳定单分散的PS微球;介质组成、稳定剂含量、单体及引发剂浓度对微球粒径及其分布的影响与传统分散聚合类似;通过X射线光电子能谱、核磁、离子交换电导滴定对微球组成和表面基团的分析,以及合成模型单体丙基酰氧乙基三甲基氯化氨代替DMC进行聚合反应,表明此分散聚合体系中DMC共聚到微球表面起到稳定作用,反应过程中真正的稳定剂为St和DMC原位聚合形成的PS-PDMC共聚物。
     2.在St/DMC/甲醇/水聚合体系中,通过跟踪聚合反应过程,首次直接观察到粒子的成核-聚并过程,发现沉淀出来的聚合物链的分子量对形成球形粒子有重要作用,并且水含量对微球的成核增长模式有很大影响,得到三种成核/增长模型:水/甲醇(20/80)反应体系:典型的分散聚合体系,在溶液相成核,粒子相增长;纯甲醇反应体系:首先在溶液相成核,并通过吸附溶液相中形成的聚合物及不稳定小粒子进行增长,当溶液中聚合物分子量长到一定值时发生二次成核,新形成的粒子进行粒子相增长;水/甲醇(5/95)反应体系:前90 min反应与传统分散聚合类似,之后粒子的增长模式变为外延增长,即在粒子表面增长。此研究对于丰富分散聚合过程、理解微球成核增长机理有重要的意义。
     3.在甲醇/水混合溶剂中,研究了可聚合的、带负电荷的小分子单体苯乙烯磺酸钠(NaSS)做稳定剂来制备PS微球,可制备出粒径范围在470-1600 nm之间的单分散的、表面带负电荷的PS微球;NaSS稳定效率非常高,0.05 wt%便可制备出稳定单分散的PS微球;介质组成、稳定剂含量、单体及引发剂浓度对微球粒径及其分布的影响与DMC稳定体系类似;通过X射线光电子能谱分析验证了NaSS共聚在PS微球表面。
     4.传统分散聚合体系中,较难制备出高度交联的PS微球,在St/DMC/甲醇/水聚合体系中,采用一步加料法,随着交联剂二乙烯基苯(DVB)加入量的增加,所制备的微球的凝胶含量及玻璃化转变温度均增加;跟踪微球的生长过程发现交联PS微球的生长机理与非交联类似,包括溶液相成核和粒子相增长,到反应后期由于粒子内部交联使得聚合过程中在微球表面产生相分离,且溶液聚合形成的聚合物链粘附在粒子表面,得到表面粗糙的微球;通过调节稳定剂DMC的加入量,可制备出凝胶含量高达85%的交联PS微球。采用两步加料法,在微球增长最快的反应时间内加入交联剂,可进一步提高PS微球的交联度,制备出经四氢呋喃浸泡后可保持形状的高度交联的PS微球;通过调节DVB的补加量,得到形状非对称的交联PS微球;通过延迟DVB的补加时间到反应开始2.5h后,可制备出PS/交联PS核壳微球。
     5.在St/NaSS/甲醇/水聚合体系中,采用两步加料法,在反应后期将功能性单体甲基丙烯酸缩水甘油酯(GMA)、丙烯酸(AA)、异丙基丙烯酰胺(NIPAm)、4-烯丙氧基-2-羟基苯甲酮(BP-OH)滴加到反应体系中,可制备出表面带有环氧基团、羧基、温敏性聚合物及光活性基团的PS微球,通过实验发现亲水性单体不易共聚到微球表面,亲油单体较容易。
     6.丙烯酸酯类单体的分散聚合,当甲醇/水≤70/30时可制备出稳定的聚甲基丙烯酸甲酯(PMMA)微球;当丙烯酸丁酯(BA)/St≥1/1时,所制备的微球在室温下成膜,微球的玻璃化转变温度(Tg)随BA含量的增加呈减小趋势;通过两步加料法,在反应后期将单体St补加到反应体系中,可以制备出PBA/PS核壳聚合物微球。
Dispersion polymerization is a unique method to prepare monodisperse polymer particles with diameters in the 1-15μm size range in a single polymerization step. While the stability of the particles or latex, both during polymerization and as end-products, is normally achieved via a steric/electrosteric stabilization mechanism from chemically grafted or physically adsorbed polymers with an applied amount of at least 5 wt%, and the commonly used electrostatic stabilization mechanism was studied less. In this thesis, the polymerization characters and mechanism of charge-stabilized dispersion polymerization system was studied in detail, which enriched the dispersion polymerization, and developed new methods to fabricate clean polymer particles. The main contents were listed as followed:
     1. A simple and highly efficient in-situ self-stabilized dispersion polymerization system by copolymerization of cation-charged monomer 2-(methacryloyloxy)ethyltrimethylammonium chloride (DMC) with styrene (St) in a methanol/water (MeOH/H2O) mixture was studied. Monodisperse cation-charged polystyrene (PS) particles with average diameters of approximately 200-1600 nm could be directly obtained. The polymerization rate was very fast and a much lower amount of DMC (0.025 wt% based on styrene) was required to prepare monodisperse and stable PS particles. The reaction parameters:solvent composition, stabilizer content, monomer and initiator concentration had similar effect on particle size and size distribution with the conventional dispersion polymerization. By using X-ray photoelectron spectrometry (XPS), NMR and ion-exchange/conductometric titration to characterize the composition of the particles and the surface charge density, and by synthesizing model monomer to replace DMC to proceed the polymerization, it was found that DMC was copolymerized on the particle surface to stabilize the particles, and the true stabilizer was the PS-PDMC copolymer formed in-situ.
     2. In St/DMC/MeOH/H2O polymerization system, by following the polymerization process, the metastable state of the nucleation stage, their aggregates and the aggregating process, was first observed experimentally; the molecular weight of the deposited polymer played a very important role on the formation of spherical particles; and water content had great effect on the particle nucleation/growth process. Three polymerization modes were obtained:1) A water/methanol (20/80) system, corresponding to a typical dispersion polymerization mode where the particle nucleation occurred in the solution phase and growth in the particle phase; 2) a pure methanol system, including a first nucleation in the solution phase with growth by absorption of the small particles formed in this phase, and a secondary nucleation when high molecular weight copolymers appeared in the solution phase with growth in the particle phase; and 3) a water/methanol (5/95) system, similar to the conventional dispersion polymerization mode during the first 90 min, with subsequent epitaxial growth. It was very important to enrich the dispersion polymerization process and understand the particle nucleation/growth mechanism.
     3. Using a polymerizable sodium styrene sulfonate (NaSS) as the stabilizer, methanol/water mixture as the reaction medium to produce clean PS particles was investigated. Surface-charged and monodisperse PS particles with average diameters of approximately 470-1600 nm could be obtained. NaSS was quite efficient as the stabilizer, and as little as 0.05 wt% was enough to prepare stable latex with monodisperse particles. The reaction parameters:solvent composition, stabilizer content, monomer and initiator concentration had similar effect on particle size and size distribution with the DMC stabilized polymerization system. XPS result indicated that NaSS had copolymerized on the particle surface.
     4. It was difficult to produce highly cross-linked PS particles in the conventional dispersion polymerization. In St/DMC/MeOH/H2O polymerization system, using one-step polymerization method, as the increasing of the divinylbenzene (DVB) content, the gel content:and the glass transition temperature (Tg) of the produced particles both increased. By following the polymerization process of the cross-linked particles, it was found that the polymerization mechanism was similar with that of uncorss-linked particles:including the nucleation in the solution phase and growth in the particle phase, and phase separation occurred and polymer chains formed in the solution attached on the particle surface at the later polymerization time because the interior of the particles were cross-linked, and thus particles with coarse surface were obtained. By tuning DMC concentration, cross-linked PS particles with 85% gel content were produced by one-step polymerization method. Using two-step method, by adding cross-linker during the fastest polymerization stage, highly cross-linked PS particles which could maintain their shape in THF were obtained; changing the adding amount of DVB at the second step, unsymmetrical cross-linked PS particles could be produced; PS/cross-linked PS core-shell particles were produced by adding DVB 2.5h after the reaction began.
     5. In St/NaSS/MeOH/H2O polymerization system, using two-step polymerization method, PS particles with epoxy groups, carboxylic groups, temperature response polymer and photoreactive groups on the surface were produced by adding glycidyl methacrylate (GMA), acrylic acid (AA), N-isopropylacrylamide (NIPAm) and 4-allyloxy-2-hydroxybenzophenone (BP-OH) into the reaction system at the later stage of the polymerization. According to the results, it was found that hydrophobic monomers were likely to copolymerize on the particle surface by the two-step polymerization method, while hydrophilic monomers were not.
     6. In DMC/MeOH/H2O polymerization system, when the ratio of MeOH/H2O was less than 70/30, stable polymethylmethacrylate (PMMA) particles were produced; when the ratio of butyl acrylate (BA)/St was greater or equal to 1/1, the Tg of the obtained PS/PBA particles were less than room temperature, and the Tg of the particles decreased with the increasing of BA content. Using two-step polymerization method, by adding St into the polymerization system at the later stage, PBA/PS core-shell polymer particles could be obtained.
引文
[1]Vanderhoff J W, Bradford E R. Polymer Colloid[M]. Plenum Press, New York,1971, P 73
    [2]Morday R S, Dreyee W J, Rembaum A, Yen S P S. Latex spheres as markers for studies of cell surface receptors by scanning electron microscopy [J]. Nature,1974,249:81-83
    [3]Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Petermans J. Critical kinetics of volume phase transition of gels[J]. Phys. Rev. Lett.,1985,55:2455-2458
    [4]Kawaguchi H. Functional polymer microspheres[J]. Prog. Polym. Sci.,2000,25: 1171-1210
    [5]Ford J R, Morfesis A A, Rowell R L. Sedimentation and light scattering studies of copolymer latexes[J]. J. Colloid Interface Sci.,1985,105:516-520
    [6]Ohshima G, Kondo T. Approximate analytic expression for the electrophoretic mobility of colloidal particles with surface-charge layers[J]. J. Colloid Interface Sci.,1989,130: 281-282
    [7]Almog Y, Reich S, Levy M. Monodisperse polymeric spheres in the micron size range by a single step process[J]. Br. Polym. J.,1982,14:131-136
    [8]Ober C K, Lok K P. Formation of large monodisperse copolymer particles by dispersion polymerization. Macromolecules,1987,20:268-273
    [9]Tseng C M, Lu Y Y, El-Aasser M S, Vanderhoff J W. Uniform polymer particles by dispersion polymerization in alcohol[J]. J. Polym. Sci. Part A:Polym. Chem.,1986,24: 2995-3007
    [10]Boccaccini A R, Maquet V. Bioresorbable and bioactive polymer/bioglass composites with tailored pore structure for tissue engineering applications [J]. Compos. Sci. Technol.,2003, 63:2417-2429
    [11]Ugelstad J, Berge A, Ellingsen T, Schmid R, Nilsen T N, Mark P C, Stenstad P, Homes E, Olsvik φ. Preparation and application of new monosized polymer particles[J]. Prog. Polym. Sci.,1992,17:87-161
    [12]Xia Y N, Gates B, Yin Y D, Lu Y. Monodispersed Colloidal Spheres:Old materials with new applications[J]. Adv. Mater.,2000,12:693-713
    [13]Velev O D, Lenhoff A M. Colloids as templates for porous materials[J]. Curr. Opin. Colloid Interface Sci.,2000,5:56-63
    [14]Hobbs S Y. The effect of rubber particle size on the impact properties of high impact polystyrene (HIPS) blends[J]. Polym. Eng. Sci.,1986,26:74-81
    [15]Vanderhoff J W, El-Aasser M S, Micale F J, Sudol E D, Tseng C M, Silwanowicz A, Kornfeld D M, Vicente F A. Preparation of large-particle-size monodisperse latexes in space:polymerization kinetics and process development[J]. J. Dispersion Sci. Technol., 1984,5:231-246
    [16]Ugelstad J, Mork P C, Kaggerud K H, Ellingsen T, Berge A. Swelling of oligomer-polymer particles:new methods of preparation [J]. Adv. Coll. Int. Sci.,1980,13:101-140
    [17]张兴英,程珏,赵京波.高分子化学[M].北京,中国轻工业出版社,2000,227-234
    [18]王槐三,寇晓康.高分子化学教程[M].北京,科学出版社,2003,162-172
    [19]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].化学工业出版社,北
    京,1997
    [20]Thickett S C, Gilbert R G. Emulsion polymerization:state of the art in kinetics and mechanisms[J]. Polymer,2007,48:6965-6991
    [21]Urquiola M B, Dimonie V L, Sudol E D, El-Aasser M S. Emulsion polymerization of vinyl acetate using a polymerizable surfactant. I. Kinetic studies[J]. J. Polym. Sci. Part A:Polym. Chem.,1992,30:2619-2629
    [22]Schoonbrood H A S, Unzue M J, Beck O J, Asua J M. Reactive surfactants in heterophase polymerization.7. Emulsion copolymerization mechanism involving three anionic polymerizable surfactants (surfmers) with styrene-butyl acrylate-acrylic acid[J]. Macromolecules,1997,30:6024-6033
    [23]Schoonbrood H A S, Asua J M. Reactive surfactants in heterophase polymerization.9. optimum surfmer behavior in emulsion polymerization[J]. Macromolecules,1997,30: 6034-6041
    [24]Guyot A, Tauer K, Asua J M. Reactive surfactants in heterophase polymerization[J]. Acta Polym.,1999,50:57-66
    [25]Hong C K, Hwang M J, Ryu D W, Moon H. Preparation of copolymer particles by emulsion polymerization using a polymerizable amphiphilic macromonomer[J]. Colloids Surf. A:Physicochem. Eng. Aspects,2008,331:250-256
    [26]王玉霞,张芳,王艳君,袁才登,曹同玉.无皂乳液聚合的进展[J].化学工业与工程,2003,20:15-19
    [27]Fitch R M. The homogeneous nucleation of polymer colloids[J]. Br. Polym. J.,1973,5: 467-483
    [28]Goodwall A R, Wilkinson M C, Hearn J. Mechanism and emulsion polymerization of styrene in soap-free systems[J]. J. Polym. Sci. Part A:Polymer Chem.,1977,15: 2193-2218
    [29]Horak D. Uniform polymer beads of micrometer size. Acta Polym.,1996,47:20-28
    [30]Kim J H, Sudol E D, El-Aasser M S, Vanderhoff J W, Kornfeld D M. Preparation of large-particle-size monodisperse latexes in a rotating-cylinder reactor[J]. Chem. Eng. Sci., 1988,43:2025-2030
    [31]Okubo M, Ikegami K, Yamamoto Y. Preparation of micro-size monodisperse polymer microspheres having chloromethyl group[J]. Colloid Polym. Sci.,1989,267:193-200
    [32]Okubo M, Katayama Y, Yamymoto Y. Preparation of micron-size monodisperse polymer microspheres having crosslinked structures and vinyl groups[J]. Colloid Polym. Sci.,1991, 269:217-221
    [33]Ali S A, Sengupta M. Preparation and characterization of monodisperse polystyrene latexes varying particle sizes without the use of surfactants[J]. J Polym. Mater.,1991,8:243-249
    [34]Vanderhoff J W, Bradford E B, Tarkowski H L, Wilkinson B W. The use of high-energy irradiation in an investigation of the mechanism and kinetics of emulsion polymerization[J]. J. Polym.Sci.,1961,50:265-286
    [35]Ugelstad J, Mfutakamba H R, Mark P C, Ellingsen T, Berge A, Schmid R, Holm L, Jorgedal A, Hansen F K, Nustad K. Preparation and application of monodisperse polymer microspheres[J]. J. Polym. Sci. Polym. Symp.,1985,72:225-240
    [36]Smigol V, Svec F. Synthesis and properties of uniform beads based on macroporous copolymer glycidyl methacrylate-ethylene dimethacrylate:A way to improve separation media for HPLC[J]. J. Appl. Polym. Sci.,1992,46:1439-1448
    [37]Okubo M, Shiozaki M, Tsujihiro M, Tsukuda Y. Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method[J]. Colloid Polym. Sci.,1991,269:222-226
    [38]Okubo M, Nakagawa T. Preparation of micron-size monodisperse polymer particles having highly crosslinked structures and vinyl groups by seeded polymerization of divinylbenzene using the dynamic swelling method[J]. Colloid Polym. Sci.,1992,270:853-858
    [39]Okubo M, Katayama Y, Yamamoto Y. Preparation of micron-size monodisperse polymer microspheres having crosslinked structures and vinyl groups[J]. Colloid Polym. Sci.,1991, 269:217-222
    [40]Okubo M. Production of micron-size monodisperse polymer particles by seeded polymerization utilizing dynamic swelling method with cooling process[J]. Polym. Int., 1993,30:469-474
    [41]Mickley H S, Michales A S, Michaels A S, Moore A L. Kinetics of precipitation polymerization of vinyl chloride[J]. J. Polym. Sci.,1962,60:121-140
    [42]Pelton R H, Chibante P. Preparation of aqueous latices with N-isopropylacrylamide[J], Colloids Sur.,1986,20:247-256
    [43]Kondo A, Fukuda H. Preparation of thermo-sensitive magnetic microspheres and their application to bioprocesses[J]. Colloids Sur. A, Physiochem. Eng. Asp.,1999,153: 435-438
    [44]Nagata Y, Oonishi Y, Kajiyama C. Morphology and structure of crystallite polyimide particles prepared by the thermal imidization in polymer solution[J]. Kobunshi Ronbunshu, 1996,53:63-69
    [45]Romack T J, Maury E E, DeSimone M. Precipitation polymerization of acrylic acid in supercritical carbon dioxide[J]. Macromolecules,1996,28:912-915
    [46]Charpentier P A, DeSimone J M, Roberts G W. Continuous Precipitation Polymerization of Vinylidene Fluoride in Supercritical Carbon Dioxide:Modeling the Rate of Polymerization[J]. Ind. Eng. Chem. Res.,2000,39:4588-4596
    [47]Charpentier P A, Kennedy K A, DeSimone J M, Roberts G W. Continuous Polymerizations in Supercritical Carbon Dioxide:Chain-Growth Precipitation Polymerizations[J]. Macromolecules,1999,32:5973-5975
    [48]Li K, Stover H D H. Synthesis of monodisperse poly(divinylbenzene) microspheres[J]. J. Polym. Sci. Part A:Polymer Chem.,1993,31:3257-3263
    [49]Downey J S, Frank R S, Li W H, Stover H D H. Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization[J]. Macromolecules, 1999,32:2838-2844
    [50]Downey J S, McIsaac G, Frank R S, Stover H D H. Poly(divinylbenzene) microspheres as an intermediate morphology between microgel, macrogel, and coagulum in cross-linking precipitation polymerization[J]. Macromolecules,2001,34:4534-4541
    [51]Goh E C C, Stover H D H. Cross-linked poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) microspheres and microgels prepared by precipitation polymerization:a morphology study[J]. Macromolecules,2002,35:9983-9989
    [52]Takekoh R, Li W, Burke N A D, Stover H D H. Multilayered polymer microspheres by thermal imprinting during microsphere growth[J]. J. Am. Chem. Soc.,2006,128:240-244
    [53]Bai F, Yang X L, Huang W Q. Synthesis of narrow or mono disperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization[J]. Macromolecules,2004,37: 9746-9752
    [54]Li G, Yang X L, Bai F, Huang W Q. Raspberry-like composite polymer particles by self-assemble heterocoagulation based on a charge compensation process[J]. J. Colloid Interface Sci.,2006,29:7705-710
    [55]Li R, Yang X L, Li G, Li S, Huang W Q. Core-corona polymer composite particles by self-assembled heterocoagulation based on a hydrogen-bonding interaction [J]. Langmuir, 2006,22:8127-8133
    [56]Wang J, Yang X. Synthesis of core-corona polymer hybrids with a raspberry-like structure by the heterocoagulated pyridinium reaction[J]. Langmuir,2008,24:3358-3364
    [57]Bai F, Yang X L, Huang W Q. Narrow-disperse or monodisperse crosslinked and functional core-shell polymer particles prepared by two-stage precipitation polymerization[J]. J. Appl. Polym. Sci.,2006,100:1776-1784
    [58]Yan Q, Bai Y W, Meng Z, Yang W T. Precipitation polymerization in acetic acid:synthesis of monodisperse crosslinked poly(divinylbenzene) microspheres [J]. J. Phys. Chem. B., 2008,112:6914-6922
    [59]Yan Q, Zhao T Y, Bai Y W, Zhang F, Yang W T. Precipitation polymerization in acetic acid: study of the solvent effect on the morphology of poly(divinylbenzene)[J]. J. Phys. Chem. B.,2009,113:3008-3014
    [60]Xing C M, Yang W T. A novel facile method for the preparation of uniform reactive maleic anhydride/vinyl acetate copolymer micro-and nanospheres[J]. Macromolecular Rapid Communications,2004,25:1568-1574
    [61]邓建元,刘振杰,杨万泰.一种苯乙烯/马来酸酐共聚反应的方法[P].中国专利,200810101948.0
    [62]Lok K P, Ober C K. Particle size control in dispersion polymerization of polystyrenefJ]. Can. J. Chem.,1985,63:209-216
    [63]Pain A J, Luymes W, McNulty J. Dispersion polymerization of styrene in polar solvents.6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions[J]. Macromolecules,1990,23:3104-3109
    [64]Shen S, Sudol E D, El-Aasser M S. Control of particle size in dispersion polymerization of methyl methacrylate[J]. J. Polym. Sci. Part A:Polym.Chem.,1993,31:1393-1402
    [65]Lacroix-Desmazes P, Guyot A. Reactive surfactants in heterophase polymerization.2. Maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol-water media[J]. Macromolecules,1996,29: 4508-4515
    [66]Song J S, Tronc F, Winnik M A. Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles[J]. J. Am. Chem. Soc., 2004,126:6562-6563
    [67]Song J S, Chagal L, Winnik M A. Monodisperse micrometer-size carboxyl-functionalized polystyrene particles obtained by two-stage dispersion polymerization[J]. Macromolecules, 2006,39:5729-5737
    [68]Ray B, Mandal B M. Dispersion polymerization of acrylamide[J]. Langmuir,1997,13: 2191-2196
    [69]Ray B, Mandal B M. Dispersion polymerization of acrylamide:part Ⅱ.2, 2'-azobisisobutyronitrile initiator[J]. J. Polym. Sci. Part A:Polym. Chem.,1999,37: 493-499
    [70]Li K, Stover H D H. Highly crosslinked micron-range polymer microspheres by dispersion polymerization of divinylbenzene[J]. J. Polym. Sci. Part A:Polym. Chem.,1993,31: 2473-2479
    [71]Hattori M, Sudol E D, El-Aasser M S. Highly crosslinked polymer particles by dispersion polymerization[J]. J. Appl. Polym.Sci.,1993,50:2027-2034
    [72]Saenz J M, Asua J M. Dispersion copolymerization of styrene and butyl acrylate in polar solvents[J]. J. Polym. Sci. Part A:Polym. Chem.,1996,34:1977-1992
    [73]Wang D, Dimonie V L, Sudol E D, El-Aasser M S. Dispersion polymerization of n-butyl acrylate[J]. J. Appl. Polym.Sci.,2002,84:2692-2709
    [74]Horak D, Shapoval P. Reactive poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization[J]. J. Polym. Sci. Part A:Polym. Chem.,2000,38:3855-3863
    [75]Horak D, Bohacek J, Subrt M. Magnetic poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) microspheres by dispersion polymerization [J]. J. Polym. Sci. Part A: Polym. Chem.,2000,38:1161-1171
    [76]Barrett K E J, Thomas H R. Kinetics of dispersion polymerization of soluble monomers. Ⅰ. Methyl methacrylate[J]. J. Polym. Sci. Part A-1:Polym. Chem.,1969,7:2621-2650
    [77]Paine A J. Dispersion polymerization of styrene in polar solvents.7. A simple mechanistic model to predict particle size[J]. Macromolecules,1990,23:3109-3117
    [78]Shen S, Sudol E D, El-Aasser M S. Dispersion polymerization of methyl methacrylate: mechanism of particle formation[J]. J. Polym. Sci. Part A:Polym. Chem.,1994,32: 1087-1100
    [79]Song J S, Winnik M A. Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization[J]. Macromolecules,2005,38:8300-8307
    [80]Thomson B, Rudin A, Lajoie G. Dispersion copolymerization of styrene and divinylbenzene. Ⅱ. Effect of crosslinker on particle morphology [J]. J. Appl. Polym. Sci., 1996,59:2009-2028
    [81]Prochazka O, Stejskal J. Spherical particles obtained by dispersion polymerization:model calculations[J]. Polymer,1992,33:3658-3663
    [82]Lu Y Y, El-Aasser M S, Vanderhoff J W. Dispersion polymerization of styrene in ethanol: Monomer partitioning behavior and locus of polymerization[J]. J. Polym. Sci. Polym. Phys.,1988,26:1187-1203
    [83]Yasuda M, Seki H, Yokoyama H, et al. Simulation of a particle formation stage in the dispersion polymerization of styrene[J]. Macromolecules,2001,34:3261-3270
    [84]Hu H, Larson R G. One-step preparation of highly monodisperse micron-size particles in organic solvents[J]. J. Am. Chem. Soc.,2004,126:13894-13895
    [85]Lacroix-Desmazes P, Guillot J. Dispersion polymerization of styrene in ethanol-water media:Monomer partitioning behavior and locus of polymerization[J]. J. Polym. Sci. Part B,1998,36:325-335
    [86]Corner T. Polyelectrolyte stabilised latices part 1, preparation[J]. Coll. Surf.,1981,3: 119-129
    [87]Paine A J. Dispersion polymerization of styrene in polar solvents. Ⅳ. Solvency control of particle size from hydroxypropyl cellulose stabilized polymerizations[J]. J. Polym. Sci. Part A,1990,28:2485-2500
    [88]DeSimone J M, Maury E E, Menceloglu Y Z, et al. Dispersion polymerizations in supereritical carbon dioxide[J]. Science,1994,265:356-359
    [89]Mueller P A, Storti G, Morbidelli M. Modeling of vinylidene fluoride hererogeneous polymerization in supercritical carbon dioxide[J]. Macromolecules,2005,38:7150-7163
    [90]Tai H, Wang W, Howdle S M, et al. Dispersion polymerization of vinylidenefluoridein supercritical carbondioxide using afluorinated graft maleic anhydride copolymer stabilizer[J]. Macromolecules,2005,38:1542-1545
    [91]Shin J G, Oh K S, Bae W, Lee Y W, Kim H. Dispersion polymerization of methyl methacrylate using poly(HDFDMA-co-MMA) as a surfactant in supercritical carbon dioxide[J]. Ind. Eng. Chem. Res.,2008,47:5680-5685
    [92]Grignard B, Jerome C, Calberg C, Jerome R, Wang W X, Howdle S M, Detrembleur C. Dispersion atom transfer radical polymerization of vinyl monomers in supercritical carbon dioxide[J]. Macromolecules,2008,41:8575-8583
    [93]Winnik F M, Paine A J. Dispersion polymerization of styrene in polar solvents, characterization of stabilizer in ordinary and precipitated particles by fluorescence quenching [J]. Langmuir,1989,5:903-910
    [94]Jiang S, Sudol E D, Dimonie V L, El-Aasser M S. Kinetics of dispersion polymerization: effect of medium composition[J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46: 3638-3647
    [95]Jiang S, Sudol E D, Dimonie V L, El-Aasser M S. Dispersion polymerization of methyl methacrylate:effect of stabilizer concentration[J]. J. Appl. Polym. Sci.,2008,107: 2453-2458
    [96]Jiang S, Sudol E D, Dimonie V L, El-Aasser M S. Kinetics of dispersion polymerization of methyl methacrylate and n-butyl acrylate:effect of initiator concentration[J]. Macromolecules,2007,40:4910-4916
    [97]Capke I, Riza M, Akashi M. Dispersion copolymerization of poly(oxyethylene) macromonomers and styrene[J]. J. Polym. Sci. Part A:Polym. Chem.,1997,35:3131-3139
    [98]Liu J, Chew C H, Wong S Y, Gan L M, Tan K L. Dispersion polymerization of styrene in aqueous ethanol media using poly(ethylene oxide) macromonomer as a polymerizable stabilize^ J]. Polymer,1998,39:283-289
    [99]Gibanel S, Heroguez V, Forcada J, Gnanous Y. Dispersion polymerization of styrene in ethanol-water mixture using polystyrene-b-poly(ethylene oxide) macromonomers as stabilizers[J]. Macromolecules,2002,35:2467-2473
    [100]Shay J S, English R J, Spontak R J, Balik C M, Khan S A. Dispersion polymerization of polystyrene latex stabilized with novel grafted poly(ethylene glycol) macromers in 1-propanol/water[J]. Macromolecules,2000,33:6664-6671
    [101]熊圣东,郭小丽,彭亮,徐祖顺.分散聚合研究进展及单分散聚合物微球的应用[J].合成技术及应用,2008,23:25-30
    [102]Baines F L, Dionisio S, Billingham N C, Armes S P. Use of block copolymer stabilizers for the dispersion polymerization of styrene in alcoholic media[J]. Macromolecules,1996,29: 3096-3102
    [103]Amalvy J I, Unali G F, Li Y, Granger-Bevan S, Armes S P. Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions[J]. Langmuir,2004,20:4345-4354
    [104]Ma Y H, Yang W T. Nonaqueous dispersion polymerization of styrene in methanol with the ionomer block copolymer poly[(4-methylstyrene)-co-(4-vinyltriethylbenzyl ammonium bromide)]-b-polyisobutene as a stabilizer[J]. J. Polym. Sci. Part A:Polym. Chem.,2004, 42:2678-2685
    [105]Binks B P, Murakami R, Armes S P, Fujii S, Schmid A. pH-responsive aqueous foams stabilized by ionizable latex particles[J], Langmuir,2007,23:8691-8694
    [106]王占丽,刘莲英,邓建平,马育红,杨万泰.分散聚合制备单分散阳离子型聚苯乙烯微球[J].北京化工大学学报(自然科学版),2007,34:39-43
    [107]Kettlewell S L, Schmid A, Fujii S, Dupin D, Armes S P. Is latex surface charge an important parameter for foam stabilization[J]. Langmuir,2007,23:11381-11386
    [108]Thomson B, Rudin A, Lajoie C. Dispersion copolymerization of styrene and divinylbenzene:synthesis of monodisperse uniformly crosslinked particles[J]. J. Polym. Sci. Part A:Polym. Chem.,1995,33:345-357
    [109]Kobayashi K, Senna M. Independent control of mechanical and chemical properties of monodispersed polystyrene-divinyl benzene microspheres by two-step polymerization[J]. J. Appl. Polym. Sci.,1992,46:27-40
    [110]Song J S, Winnik M A. Monodisperse, micron-sized reactive low molar mass polymer microspheres by two-stage living radical dispersion polymerization of styrene[J]. Macromolecules,2006,39:8318-8325
    [111]Song J S, Tronc F, Winnik M A. Monodisperse, controlled micron-size dye-labele polystyrene particles by two-stage dispersion polymerization[J]. Polymer,2006,47: 817-825
    [112]Song J S, Winnik M A. Monodisperse, micrometer-sized low molar mass polystyrene particles by two-stage dispersion polymerization[J]. Polymer,2006,47:4557-4563
    [113]Min K, Matyjaszewski K. Atom transfer radical dispersion polymerization of styrene in ethanol[J]. Macromolecules,2007,40:7217-7222
    [114]Schurig V. Enantiomer separation by gas chromatography on chiral stationary phases[J]. J. Chromatogr. A,1994,666:111-129
    [115]Davis S, Illum L. Polymeric microspheres as drug carriers[J]. Biomaterials,1988,9: 111-115
    [116]Jia H, Zhu G, Wang P. Catalytic behaviors of enzymes attached to nanoparticles:the effect of particle mobility[J]. Biotechnol. Bioeng.,2003,84:406-414
    [117]Liu Z, Xiao H, Wiseman N. Emulsifier-free emulsion copolymerization of styrene with quaternary ammonium cationic monomers[J]. J. Appl. Polym. Sci.,2000,76:1129-1140
    [118]Kim J H, Chainey M, El-Aasser M S, Vanderhoff J W. Emulsifier-free emulsion copolymerization of styrene and sodium styrene sulfonate[J]. J. Polym. Sci. Part A:Polym. Chem.,1992,30:171-183
    [119]Brijmohan S B, Swier S, Weiss R A, Shaw M T. Synthesis and characterization of cross-linked sulfonated polystyrene nanoparticles[J]. Ind. Eng. Chem. Res.,2005,44: 8039-8045
    [120]Gu S, Akama H, Nagao D, Kobayashi Y, Konno M. Preparation of micrometer-sized poly(methyl methacrylate) particles with amphoteric initiator in aqueous media[J]. Langmuir,2004,20:7948-7951
    [121]Park S Y, Cho M S, Choi H J. Synthesis and electrical characteristics of polyaniline nanoparticles and their polymeric composite[J]. Current Applied Physics,2004,4:581-583
    [122]Pich A Z, Adler H P. Composite aqueous microgels:an overview of recent advances in synthesis, characterization and application [J]. Polym. Int.,2007,56:291-307
    [123]Kim I S, Jeong Y I, Kim S H. Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer[J]. Int. J. Pharm.,2000,205:109-116
    [124]Vinogradov S V. Colloidal microgels in drug delivery applications[J]. Curr. Pharm. Des., 2006,12:4703-4712
    [125]Li X, Zuo J, Guo Y L, Yuan X H. Preparation and characterization of narrowly distributed nanogels with temperature-responsive core and pH-responsive shell[J]. Macromolecules, 2004,37:10042-10046
    [126]Bradley M, Vincent B. Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles:their characterization and the uptake and release of an anionic surfactant[J]. Langmuir,2008,24:2421-2425
    [127]Sponarova D, Horak D. Poly(N,N-diethylacrylamide) microspheres by dispersion polymerization[J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46:6263-6271
    [128]Mandal T K, Mandal B M. A dispersion polymerization system with nuclei distinguishable from polymer particles [J]. Langmuir,1997,13:2421-2424
    [129]Armes S P, Aldissi M, Agnew S, Gottesfeld S. Aqueous colloidal dispersions of polyaniline formed by using poly(vinylpyridine)-based steric stabilizers[J]. Langmuir, 1990,6:1745-1749
    [130]Barthet C, Armes S P, Lascelles S F, Luk S Y, Stanley H M E. Synthesis and characterization of micrometer-sized, polyaniline-coated polystyrene latexes[J]. Langmuir, 1998,14:2032-2041
    [131]Zeng H M, Lai Q Y, Liu X Q, Wen D, Ji X Y. Factors influencing magnetic polymer microspheres prepared by dispersion polymerization[J]. J. Appl. Polym. Sci.,2007,106: 3474-3480
    [132]Liu X Y, Ding X B, Yip C W, et al. Synthesis of novel magnetic polymer microspheres with amphiphilic structure[J]. J. Appl. Polym. Sci.,2003,90:1879-1884
    [133]Horak D, Benedyk N. Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids[J]. J. Polym. Sci. Part A:Polym. Chem.,2004,42:5827-5837
    [134]Mackova H, Kralova D, Horak D. Magnetic poly(N-isopropylacrylamide) microspheres by dispersion and inverse emulsion polymerization[J]. J. Polym. Sci. Part A:Polym. Chem., 2007,45:5884-5898
    [135]Elaissari A, Cros P, Pichot C, Laurent V, Mandrand B. Adsorption of oligonucleotides onto negatively and positively charged latex particles[J]. Colloids Surf. A:Physicochem. Engng. Asp.,1994,83:25-31
    [136]Lee S S, Park K Y, Kim J Y, Suh K D. Effect of GMA on monodisperse epoxy-functionalized polymer microsphere particles by dispersion copolymerization of styrene with glycidyl methacrylate[J]. J. Appl. Polym. Sci.,2001,80:1206-1212
    [137]Hou X H, Liu B L, Deng X B, Zhang B T, Yan J F. Monodisperse polystyrene microspheres by dispersion copolymerization of styrene and other vinyl comonomers: characterization and protein adsorption properties[J]. J. Biomed. Mater. Res. Part A,2007, 83:280-289
    [138]Tuncel A. Electron microscopic observation of uniform macroporous particles. Ⅱ. Effect of DVB concentration[J]. J. Appl. Polym. Sci.,1999,71:2291-2302
    [139]Li Z Y, Wang J, Gu B Y. Full band gap in fee and bcc photonic band gaps structure: non-spherical atom[J]. J. Phys. Soc. Jpn.,1998,67:3288-3291
    [140]Brown A B D, Ferrero C, Narayanan T, Rennie A R. Phase separation and structure in a concentrated colloidal dispersion of uniform plates[J]. Eur. Phys. J. B,1999,11:481-489
    [141]Lu Y, Yin Y, Xia Y. A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers[J]. Adv. Mater.,2001,13: 34-37
    [142]Omer-mizrahi M, Margel S. Synthesis and characterization of spherical and hemispherical polyepoxide micrometer-sized particles of narrow size distribution by a single-step swelling of uniform polystyrene template microspheres with glycidyl methacrylate[J]. J. Polym. Sci. Part A:Polym. Chem.,2007,45:4612-4622
    [143]Fujibayashi T, Okubo M. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization[J]. Langmuir,2007,23:7958-7962
    [144]Fujibayashi T, Komatsu Y, Konishi N, Yamori H, Okubo M. Effect of polymer polarity on the shape of "golf ball-like" particles prepared by seeded dispersion polymerization[J]. Ind. Eng. Chem. Res.,2008,47:6445-6449
    [145]Chen M, Zhou S, Wu L, Xie S, Chen Y. Preparation of silica-coated polystyrene hybrid spherical colloids[J]. Macromol. Chem. Phys.,2005,206:1896-1902
    [146]Neuberger T, Schopf B, Hofmann H, Hofmann M, Rechenberg B V. Superparamagnetic nanoparticles for biomedical applications:Possibilities and limitations of a new drug delivery system[J]. J. Magn. Magn. Mater.,2005,293:483-496
    [147]Moeser G D, Roach K A, Green W H, Laibinis P E, Hatton T A. Water-based magnetic fluids as extractants for synthetic organic compounds[J]. Ind. Eng. Chem. Res.,2002,41: 4739-4749
    [148]Ditsch A, Lindenmann S, Laibinis P E, Wang D I C, Hatton T A. High-gradient magnetic separation of magnetic nanoclusters[J]. Ind. Eng. Chem. Res.,2005,44:6824-6836
    [149]Percy M J, Michailidou V, Armes S P. Synthesis of vinyl polymer-silica colloidal nanocomposites via aqueous dispersion polymerization[J]. Langmuir,2003,19:2072-2079
    [150]Schmid A, Scherl P, Armes S P. Synthesis and characterization of film-forming colloidal nanocomposite particles prepared via surfactant-free aqueous emulsion copolymerization[J]. Macromolecules,2009,42:3721-3728
    [151]Percy M J, Amalvy J I, Randall D P, Armes S P. Synthesis of vinyl polymer-silica colloidal nanocomposites prepared using commercial alcoholic silica sols[J]. Langmuir,2004,20: 2184-2190
    [152]Schmid A, Armes S P. Efficient preparation of polystyrene/silica colloidal nanocomposite particles by emulsion polymerization using a glycerol-functionalized silica sol[J]. Langmuir,2009,25:2486-2494
    [153]Barthet C, Hickey A J, Cairns D B, Armes S P. Synthesis of novel polymer-silica colloidal nanocomposites via free-radical polymerization of vinyl monomers[J]. Adv. Mater.,1999, 11:408-410
    [154]Lee J, Hong C K, Choe S, Shim S E. Synthesis of polystyrene/silica composite particles by soap-free emulsion polymerization using positively charged colloidal silica[J]. J. Colloid Interface Sci.,2007,310:112-120
    [155]Chen M, Zhou S X, You B, Wu L M. A novel preparation method of raspberry-like PMMA/SiO2 hybrid microspheres[J]. Macromolecules,2005,38:6411-6417
    [156]Zhang Y H, Zou Q C, Shu X W, Tang Q Q, Chen M, Wu L M. Preparation of raspberry-like polymer/silica nanocomposite microspheres via emulsifier-free polymerization in water/acetone media[J]. J. Colloid Interface Sci.,2009,336:544-550
    [157]Schmid A, Fujii S, Armes S P. Polystyrene-silica colloidal nanocomposite particles prepared by alcoholic dispersion polymerization[J]. Chem. Mater.,2007,19:2435-2445
    [158]Schmid A, Fujii S, Armes S P. Polystyrene-silica nanocomposite particles via alcoholic dispersion polymerization using a cationic azo initiator[J]. Langmuir,2006,22:4923-4927
    [159]Bourgeat-Lami E, Lang J. Encapsulation of inorganic partieles by dispersion polymerization in polar media:1. silica nanoparticles encapsulated by polystyrene[J]. J. Colloid Interface Sci.,1998,197:293-308
    [160]Bourgeat-Lami E. Encapsulation of inorganic partieles by dispersion polymerization in polar media:2. Effeet of siliea size and concentration on the morphology of silica-polystyrene composite palticles[J]. J. Colloid Interface Sci.,1999,210:281-289
    [1]Lok K P, Ober C K. Particle size control in dispersion polymerization of polystyrene[J]. Can. J. Chem.,1985,63:209-216
    [2]Paine A J. Dispersion polymerization of styrene in polar solvents.7. A simple mechanistic model to predict particle size[J]. Macromolecules,1990,23:3109-3117
    [3]Paine A J, Luymes W, McNulty J. Dispersion polymerization of styrene in polar solvents.6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions[J]. Macromolecules,1990,23:3104-3109
    [4]Winnik F M, Paine A J. Dispersion polymerization of styrene in polar solvents. characterization of stabilizer in ordinary and precipitated particles by fluorescence quenching[J]. Langmuir,1989,5:903-910
    [5]Kawaguchi S, Winnik M A. Dispersion copolymerization of n-butyl methacrylate with poly(ethylene oxide) macromonomers in methanol-water. comparison of experiment with theory[J]. Macromolecules,1995,28:1159-1166
    [6]Capke I, Riza M, Akashi M. Dispersion copolymerization of poly(oxyethylene) macromonomers and styrene[J]. J. Polym. Sci. Part A:Polym. Chem.,1997,35:3131-3139
    [7]Liu J, Chew C H, Wong S Y, Gan L M, Tan K L. Dispersion polymerization of styrene in aqueous ethanol media using poly(ethylene oxide) macromonomer as a polymerizable stabilizer[J]. Polymer,1998,39:283-289
    [8]Gibanel S, Heroguez V, Forcada J, Gnanous Y. Dispersion polymerization of styrene in ethanol-water mixture using polystyrene-b-poly(ethylene oxide) macromonomers as stabilizers[J]. Macromolecules,2002,35:2467-2473
    [9]Lacroix-Desmazes P, Guyot A. Reactive surfactants in heterophase polymerization.2. Maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol-water media[J]. Macromolecules,1996,29: 4508-4515
    [10]Shay J S, English R J, Spontak R J, Balik C M, Khan S A. Dispersion polymerization of polystyrene latex stabilized with novel grafted poly(ethylene glycol) macromers in 1-propanol/water[J]. Macromolecules,2000,33:6664-6671
    [11]Tauer K. Comment on the development of particle surface charge density during surfactant-free emulsion polymerization with ionic initiators[J]. Macromolecules,1998,31: 9390-9391
    [12]Tseng C M, Lu Y Y, El-Aasser M S, Vanderhoff J W. Uniform polymer particles by dispersion polymerization in alcohol[J]. J. Polym. Sci. Part A:Polym. Chem.,1986,24: 2995-3007
    [13]Shen S, Sudol E D, El-Aasser M S. Dispersion polymerization of methyl methacrylate: Mechanism of particle formation[J]. J. Polym. Sci. Part A:Polym. Chem.,1994,32: 1087-1100
    [14]Baines F L, Dionisio S, Billingham N C, Armes S P. Use of block copolymer stabilizers for the dispersion polymerization of styrene in alcoholic media[J]. Macromolecules,1996,29: 3096-3102; Amalvy J I, Unali G-F, Li Y, Granger-Bevan S, Armes S P. Synthesis of sterically stabilized polystyrene latex particles using cationic block copolymers and macromonomers and their application as stimulus-responsive particulate emulsifiers for oil-in-water emulsions[J]. Langmuir,2004,20:4345-4354
    [15]Ma Y H, Yang W T. Nonaqueous dispersion polymerization of styrene in methanol with the ionomer block copolymer poly[(4-methylstyrene)-co-(4-vinyltriethylbenzyl ammonium bromide)]-b-polyisobutene as a stabilizer[J]. J. Polym. Sci. Part A:Polym. Chem.,2004,42: 2678-2685
    [16]Binks B P, Murakami R, Armes S P, Fujii S, Schmid A. pH-responsive aqueous foams stabilized by ionizable latex particles[J]. Langmuir,2007,23:8691-8694
    [17]Kettlewell S L, Schmid A, Fujii S, Dupin D, Armes S P. Is latex surface charge an important parameter for foam stabilization[J]. Langmuir,2007,23:11381-11386
    [18]Schurig V. Enantiomer separation by gas chroma tography on chiral stationary phases[J]. J. Chromatogr. A,1994,666:111-129
    [19]Davis S, Illum L. Polymeric microspheres as drug carriers[J]. Biomaterials,1988,9: 111-115
    [20]Jia H, Zhu G, Wang P. Catalytic behaviors of enzymes attached to nanoparticles:the effect of particle mobility[J]. Biotechnol. Bioeng.,2003,84:406-414
    [21]Liu Z, Xiao H, Wiseman N. Emulsifier-free emulsion copolymerization of styrene with quaternary ammonium cationic monomers[J]. J. Appl. Polym. Sci.,2000,76:1129-1140
    [22]王占丽,刘莲英,邓建平,马育红,杨万泰.分散聚合制备单分散阳离子型聚苯乙烯微球[J].北京化工大学学报(自然科学版),2007,34:39-43
    [23]Sakota K, Okaya T. Method for the determination of surface basic groups in cationic polystyrene latexes[J]. J. Appl. Polym. Sci.,1977,21:1009-1016
    [24]Zhang J, Zou Q, Li X, Cheng S. Soap-free cationic emulsion copolymerization of styrene and butyl acrylate with comonomer in the presence of alcohols[J]. J. Appl. Polym. Sci., 2003,89:2791-2797
    [25]Saenz J M, Asua J M. Kinetics of the dispersion copolymerization of styrene and butyl acrylate[J]. Macromolecules,1998,31:5215-5222
    [26]Corner T. Polyelectrolyte stabilised latices part 1, preparation[J]. Colloids Surf.,1981,3: 119-129
    [27]Horak D. Uniform polymer beads of micrometer size[J]. Acta Polym.,1996,47:20-28
    [28]Lu Y Y, El-Aasser M S, Vanderhoff J W. Dispersion polymerization of styrene in ethanol: Monomer partitioning behavior and locus of polymerization[J]. J. Polym. Sci. Part B: Polym. Phys.,1988,26:1187-1203
    [29]Lacroix-Desmazes P, Guillot J. Dispersion polymerization of styrene in ethanol-water media:Monomer partitioning behavior and locus of polymerization[J]. J. Polym. Sci. Part B:Polym. Phys.,1998,36:325-335
    [30]Li K, Stover H D H. Highly crosslinked micron-range polymer microspheres by dispersion polymerization of divinylbenzene[J]. J. Polym. Sci. Part A:Polym. Chem.,1993,31: 2473-2479
    [31]Thomson B, Rudin A, Lajoie G. Dispersion copolymerization of styrene and divinylbenzene:Synthesis of monodisperse, uniformly crosslinked particles[J]. J. Polym. Sci. Part A:Polym. Chem.,1995,33:345-357
    [32]Yasuda M, Seki H, Yokoyama H, Ogino H, Ishimi K, Ishikawa H. Simulation of a particle formation stage in the dispersion polymerization of styrene[J]. Macromolecules,2001,34: 3261-3270
    [1]Kawaguchi S, Winnik M A. Dispersion copolymerization of n-butyl methacrylate with poly(ethylene oxide) macromonomers in methanol-water comparison of experiment with theory[J]. Macromolecules,1995,28:1159-1166
    [2]Lok K P, Ober C K. Particle size control in dispersion polymerization of polystyrene[J]. Can. J. Chem.,1985,63:209-216
    [3]Pain A J, Luymes W, McNulty J. Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions[J]. Macromolecules,1990,23:3104-3109
    [4]Shen S, Sudol E D, El-Aasser M S. Control of particle size in dispersion polymerization of methyl methacrylate[J]. J. Polym. Sci. Part A:Polym.Chem.,1993,31:1393-1402
    [5]Lacroix-Desmazes P, Guyot A. Reactive surfactants in heterophase polymerization.2. Maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol-water media[J]. Macromolecules,1996, 29:4508-4515
    [6]Song J S, Tronc F, Winnik M A. Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles[J]. J. Am. Chem. Soc., 2004,126:6562-6563
    [7]Song J S, Chagal L, Winnik M A. Monodisperse micrometer-size carboxyl-functionalized polystyrene particles obtained by two-stage dispersion polymerization[J]. Macromolecules,2006,39:5729-5737
    [8]Barrett K E J, Thomas H R. Kinetics of dispersion polymerization of soluble monomers. Ⅰ. Methyl methacrylate[J]. J. Polym. Sci. Part A:Polym. Chem.,1969,7:2621-2650
    [9]Tseng C M, Lu Y Y, El-Aasser M S, et al. Uniform polymer particles by dispersion polymerization in alcohol[J]. J. Polym. Sci. Part A:Polym. Chem.,1988,24:2995-3007
    [10]Paine A J. Dispersion polymerization of styrene in polar solvents.7. A simple mechanistic model to predict particle size[J]. Macromolecules,1990,23:3109-3117
    [11]Yasuda M, Seki H, Yokoyama H, et al. Simulation of a particle formation stage in the dispersion polymerization of styrene[J]. Macromolecules,2001,34:3261-3270
    [12]Song J S, Winnik M A. Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization[J]. Macromolecules,2005,38:8300-8307
    [13]Thomson B, Rudin A, Lajoie G. Dispersion copolymerization of styrene and divinylbenzene. Ⅱ. Effect of crosslinker on particle morphology[J]. J. Appl. Polym. Sci., 1996,59:2009-2028
    [14]Lu Y Y, El-Aasser M S, Vanderhoff J W. Dispersion polymerization of styrene in ethanol: Monomer partitioning behavior and locus of polymerization [J]. J. Polym. Sci. Part B: Polym. Phys.,1988,26:1187-1203
    [15]Pain A J. Dispersion polymerization of styrene in polar solvents:Ⅰ. Grafting mechanism of stabilization by hydroxypropyl cellulose[J]. J. Colloid Interface Sci.,1990,138: 157-169
    [16]Horak D. Uniform polymer beads of micrometer size[J]. Acta Polym.,1996,47:20-28
    [17]Shen S, Sudol E D, El-Aasser M S. Dispersion polymerization of methyl methacrylate: Mechanism of particle formation[J]. J. Polym. Sci. Part A:Polym Chem.,1994,32: 1087-1100
    [18]Mandal T K, Mandal B M. A Dispersion polymerization system with nuclei distinguishable from polymer particles[J]. Langmuir,1997,13:2421-2424
    [19]Hu H, Larson R G. One-Step preparation of highly monodisperse micron-size particles in organic solvents[J]. J. Am. Chem. Soc.,2004,126:13894-13895
    [20]Zhang F, Bai Y W, Ma Y H, Yang W T. Preparing of monodisperse and cation-charged polystyrene particles stabilized with polymerizable quarternary ammonium by dispersion polymerization in a methanol-water medium[J]. J. Colloid Interface. Sci.,2009,334: 13-21
    [21]Lacroix-Desmazes P, Guillot J. The copolymerization of silicon-substituted styrenes[J]. J. Polym. Sci. Part B:Polym. Phys.,1998,36:325-335
    [22]Capek I, Riza M, Akashi M. On the kinetics of polymerization and copolymerization of poly(oxyethylene) macromonomers and styrene[J]. Makromol. Chem.,1992,193: 2843-2860
    [23]Ray B, Mandal B M. Dispersion polymerization of acrylamide[J]. Langmuir,1997,13: 2191-2196
    [24]Kabanov V A, Topchiev D A, Karaputadze T M. Some features of radical polymerization of acrylic and methacrylic acid salts in aqueous solutions[J]. J. Polym. Sci.:Polym. Symp.,1973,42:173-183
    [25]Capek I, Nguyen S H, Berek D. Polystyrene-graft-poly(ethylene oxide) copolymers prepared by macromonomer technique in dispersion.2. Mechanism of dispersion copolymerization[J]. Polymer,2000,41:7011-7016
    [1]Ober C K, Lok K P, Hair M L. Monodispersed, micron-sized polystyrene particles by dispersion polymerization[J]. J. Polym. Sci. Polym. Lett. Ed.,1985,23:103-108
    [2]Lok K P, Ober C K. Particle size control in dispersion polymerization of polystyrene[J]. Can. J. Chem.,1985,63:209-216
    [3]Yu D, An J H, Bae J Y, Jung D, Kim S, Ahn S D, Kang S, Suh K S. Preparation and characterization of acrylic-based electronic inks by in situ emulsifier-free emulsion polymerization for electrophoretic displays[J]. Chem. Mater.,2004,16:4693-4698
    [4]Wu D, Ge X, Zhang Z, Wang M, Zhang S. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres[J]. Langmuir,2004,20:5192-5195
    [5]Thickett S C, Gilbert R G Emulsion polymerization:state of the art in kinetics and mechanisms[J]. Polymer,2007,48:6965-6991
    [6]Urquiola M B, Dimonie V L, Sudol E D, El-Aasser M S. Emulsion polymerization of vinyl acetate using a polymerizable surfactant. I. Kinetic studies[J]. J. Polym. Sci. Part A:Polym. Chem.,1992,30:2619-2629
    [7]Schoonbrood H A S, Unzue M J, Beck O J, Asua J M. Reactive surfactants in heterophase polymerization.7. emulsion copolymerization mechanism involving three anionic polymerizable surfactants (surfmers) with styrene-butyl acrylate-acrylic acid[J]. Macromolecules,1997,30:6024-6033
    [8]Schoonbrood H A S, Asua J M. Reactive surfactants in heterophase polymerization.9. optimum surfmer behavior in emulsion polymerization[J]. Macromolecules,1997,30: 6034-6041
    [9]Hong C K, Hwang M J, Ryu D W, Moon H. Preparation of copolymer particles by emulsion polymerization using a polymerizable amphiphilic macromonomer[J]. Colloids Surf., A: Physicochem. Eng. Aspects,2008,331:250-256
    [10]Horαk D. Uniform polymer beads of micrometer size[J]. Acta Polym.,1996,47:20-28
    [11]Tanrisever T, Okay O, Sonmezoglu I C. Kinetics of emulsifier-free emulsion polymerization of methyl methacrylate[J]. J. Appl. Polym. Sci.,1996,61:485-493
    [12]Downey J S, Frank R S, Li W H, Stover H D H. Growth mechanism of poly(divinylbenzene) microspheres in precipitation polymerization[J]. Macromolecules, 1999,32:2838-2844
    [13]Yan Q, Bai Y W, Meng Z, Yang W T. Precipitation polymerization in acetic acid:synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres[J]. J. Phys. Chem. B, 2008,112:6914-6922
    [14]Li K, Stover H D H. Highly crosslinked micron-range polymer microspheres by dispersion polymerization of divinylbenzene[J]. J. Polym. Sci. Part A:Polym. Chem.,1993,31: 2473-2479
    [15]Zhang F, Bai Y W, Ma Y H, Yang W T. Preparing of monodisperse and cation-charged polystyrene particles stabilized with polymerizable quarternary ammonium by dispersion polymerization in a methanol-water medium[J]. J. Colloid Interface Sci.,2009,334:13-21
    [16]Kim J H, Chainey M, El-Aasser M S, Vanderhoff J W. Emulsifier-free emulsion
    copolymerization of styrene and sodium styrene sulfonate[J]. J. Polym. Sci. Part A:Polym. Chem.,1992,30:171-183
    [17]Brijmohan S B, Swier S, Weiss R A, Shaw M T. Synthesis and characterization of cross-linked sulfonated polystyrene nanoparticles[J]. Ind. Eng. Chem. Res.,2005,44: 8039-8045
    [18]Qiu D, Cosgrove T, Howe A M. Narrowly distributed surfactant-free polystyrene latex with a water-soluble comonomer[J]. Macromol. Chem. Phys.,2005,206:2233-2238
    [19]Paine A J, Luymes W, McNulty J. Dispersion polymerization of styrene in polar solvents.6. influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions[J]. Macromolecules,1990,23:3104-3109
    [20]Lacroix-Desmazes P, Guyot A. Reactive surfactants in heterophase polymerization.2. maleate based poly(ethylene oxide) macromonomers as steric stabilizer precursors in the dispersion polymerization of styrene in ethanol-water media[J]. Macromolecules,1996,29: 4508-4515
    [21]Paine A J. Dispersion polymerization of styrene in polar solvents.7. a simple mechanistic model to predict particle size[J]. Macromolecules,1990,23:3109-3117
    [22]Studart A R, Amstad E, Gauckler L J. Colloidal stabilization of nanoparticles in concentrated suspensions [J]. Langmuir,2007,23:1081-1090
    [23]Arunbabu D, Sanga Z, Seenimeera K M, Jana T. Emulsion copolymerization of styrene and sodium styrene sulfonate:kinetics, monomer reactivity ratios and copolymer properties[J]. Polym. Int.,2009,58:88-96
    [24]Thomson B, Rudin A, Lajoie G Dispersion copolymerization of styrene and divinylbenzene:synthesis of monodisperse, uniformly crosslinked particles[J]. J. Polym. Sci. Part A:Polym. Chem.,1995,33:345-357
    [25]Ober C K, Hair M L. The effect of temperature and initiator levels on the dispersion polymerization of polystyrene[J]. J. Polym. Sci. Part A:Polym. Chem.,1987,25: 1395-1407
    [26]Tseng C M, Lu Y Y, El-Aasser M S, Vanderhoff J W. Uniform polymer particles by dispersion polymerization in alcohol[J]. J. Polym. Sci. Part A:Polym. Chem.,1986,24: 2995-3007
    [27]Bamnolker H, Margel S. Dispersion polymerization of styrene in polar solvents:effect of reaction parameters on microsphere surface composition and surface properties, size and size distribution, and molecular weight[J]. J. Polym. Sci. Part A:Polym. Chem.,1996,34: 1857-1871
    [28]Mackovd H, Horαk D. Effects of the reaction parameters on the properties of thermosensitive poly(N-isopropylacrylamide) microspheres prepared by precipitation and dispersion polymerization [J]. J. Polym. Sci. Part A:Polym. Chem.,2006,44:968-982
    [1]Hattori M, Sudol E D, El-Aasser M S. Highly crosslinked polymer particles by dispersion polymerization[J]. J. Appl. Polym. Sci.,1993,50:2027-2034
    [2]Thomson B, Rudin A, Lajoie G. Dispersion copolymerization of styrene and divinylbenzene. Ⅱ. effect of crosslinker on particle morphology [J]. J. Appl. Polym. Sci.,1996,59:2009-2028
    [3]Zou D, Derlich V, Gandhi K, Park M, et al. Model filled polymers. Ⅰ. Synthesis of crosslinked monodisperse polystyrene beads[J]. J. Polym. Sci. Part A:Polym. Chem.,1990, 28:1909-1921
    [4]Cheng C M, Micale F J, Vanderhoff J W, et al. Synthesis and characterization of monodisperse porous polymer particles[J]. J. Polym. Sci. Part A:Polym. Chem.,1992,30: 235-244
    [5]Cheng C M, Vanderhoff J W, El-Aasser M S. Monodisperse porous polymer particles: formation of the porous structure[J]. J. Polym. Sci. Part A:Polym. Chem.,1992,30:245-256
    [6]Li K, Stover H D H. Synthesis of monodisperse poly(divinylbenzene) microspheres[J]. J. Polym. Sci. Part A:Polym. Chem.,1993,31:3257-3263
    [7]Bai F, Yang X L, Huang W Q. Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization [J]. Macromolecules,2004,37: 9746-9752
    [8]Tseng C M, Lu Y Y, El-Aasser M S, et al. Uniform polymer particles by dispersion polymerization in alcohol[J]. J. Polym. Sci. Part A:Polym. Chem.,1986,24:2995-3007
    [9]Thomson B, Rudin A, Lajoie C. Dispersion copolymerization of styrene and divinylbenzene: synthesis of monodisperse uniformly crosslinked particles[J]. J. Polym. Sci. Part A:Polym. Chem.,1995,33:345-357
    [10]Choi J, Kwak S Y, Kang S, et al. Synthesis of highly crosslinked monodisperse polymer particles:effect of reaction parameters on the size and size distribution[J]. J. Polym. Sci. Part A:Polym. Chem.,2002,40:4368-4377
    [11]Kim J W, Suh K D. Highly monodisperse crosslinked polystyrene microparticles by dispersion polymerization[J]. Colloid. Polym. Sci.,1998,276:870-878; Lee D H, Kim J W, Suh K D. Monodisperse micron-sized polymethylmethacrylate particles having a crosslinked network structure[J]. J. Mater. Sci.,2000,35:6181-6188
    [12]Hattori M, Sudol E D, El-Aasser M S. Highly crosslinked polymer particles by dispersion polymerization[J]. J. Appl. Polym. Sci.,1993,50:2027-2034
    [13]Song J S, Winnik M A. Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization [J]. Macromolecules,2005,38:8300-8307
    [14]Kobayashi K, Senna M. Independent control of mechanical and chemical properties of monodispersed polystyrene-divinyl benzene microspheres by two-step polymerization[J]. J. Appl. Polym. Sci.,1992,46:27-40
    [15]Song J S, Tronc F, Winnik M A. Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles[J]. J. Am. Chem. Soc.,2004,126: 6562-6563
    [16]Cao M, Tong B, Shen J, Dong Y, Zhi J. Preparation of highly crosslinked monodisperse poly(styrene-co-divinylbenzene) microspheres by two-stage dispersion polymerization[J]. J. Appl. Polym. Sci.,2008,109:1189-1196
    [17]Ding Z Y, Ma S M, Kriz D, et al. Model filled polymers. IX. Synthesis of uniformly crosslinked polystyrene microbeads[J]. J. Polym. Sci. Part B:Polym. Phys.,1992,30: 1189-1194
    [18]Sheu H R, El-Aasser M S, Vanderhoff J W. Phase separation in polystyrene latex interpenetrating polymer networks[J]. J. Polym. Sci. Polym. Chem.,1990,28:629-651
    [19]Wiley R H. Crosslinked styrene/divinylbenzene network systems[J]. Pure Appl. Chem.,1975, 43:57-75
    [20]Hild G, Rempp P. Mechanism of network formation by radical copolymerization[J]. Pure Appl. Chem.,1981,53:1541-1556
    [1]Chen S A, Lee S T. Kinetics and mechanism of emulsifier-free emulsion polymerization: styrene/hydrophilic comonomer (acrylamide) system[J]. Macromolecules,1991,24:3340-3351
    [2]Ugelstad J, Mork P C, Kaggerud K H, Ellingsen T, Berge A. Swelling of oligomer-polymer particles:new methods of preparation[J]. Adv. Coll. Int. Sci.,1980,13:101-140
    [3]Lok K P, Ober C K. Particle size control in dispersion polymerization of polystyrene[J]. Can. J. Chem.,1985,63:209-216
    [4]Paine A J, Luymes W, McNulty J. Dispersion polymerization of styrene in polar solvents.6. influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions[J]. Macromolecules,1990,23:3104-3109
    [5]Shen S, Sudol E D, El-Aasser M S. Control of particle size in dispersion polymerization of methyl methacrylate[J]. J. Polym. Sci. Part A:Polym.Chem.,1993,31:1393-1402
    [6]Shen S, Sudol E D, El-Aasser M S. Dispersion polymerization of methyl methacrylate: Mechanism of particle formation[J]. J. Polym. Sci. Part A:Polym. Chem.,1994,32:1087-1100
    [7]Takahashi K, Miyamori S, Uyama H, Kobayashi S. Preparation of micron-size monodisperse poly(2-hydroxyethyl methacrylate) particles by dispersion polymerization[J]. J. Polym. Sci., Part A:Polym. Chem.,1996,34:175-182
    [8]Song J S, Tronc F, Winnik M A. Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles[J]. J. Am. Chem. Soc.,2004,126:6562-6563
    [9]Song J S, Winnik M A. Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization[J]. Macromolecules,2005,38:8300-8307
    [10]Song J S, Winnik M A. Monodisperse, micron-sized reactive low molar mass polymer microspheres by two-stage living radical dispersion polymerization of styrene[J]. Macromolecules,2006,39:8318-8325
    [11]Song J S, Chagal L, Winnik M A. Monodisperse micrometer-size carboxyl-functionalized polystyrene particles obtained by two-stage dispersion polymerization[J]. Macromolecules, 2006,39:5729-5737
    [12]Song J S, Tronc F, Winnik M A. Monodisperse, controlled micron-size dye-labele polystyrene particles by two-stage dispersion polymerization[J]. Polymer,2006,47:817-825
    [13]Song J S, Winnik M A. Monodisperse, micrometer-sized low molar mass polystyrene particles by two-stage dispersion polymerization[J]. Polymer,2006,47:4557-4563
    [14]Min K, Matyjaszewski K. Atom transfer radical dispersion polymerization of styrene in ethanol[J]. Macromolecules,2007,40:7217-7222
    [15]Horak D, Shapoval P. Reactive poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization[J]. J. Polym. Sci. Part A:Polym. Chem.,2000,38:3855-3863
    [16]Zhou M Y, Xie R, Chu L Y, et al. Flow characteristics of thermo-responsive microspheres in microchannel during the phase transition[J]. Am. Inst. Chem. Eng.,2009,55:1559-1568
    [17]Wang Q, Liu L Y, Yang W T. A novel and facile approach for preparing composite core-shell particles by sequentially initiated grafting polymerization[J]. Polymer,2007,48:6581-6588
    [18]Lee S S, Park K Y, Kim J Y, Suh K D. Effect of GMA on monodisperse epoxy-functionalized polymer microsphere particles by dispersion copolymerization of styrene with glycidyl methacrylate[J]. J. Appl. Polym. Sci.,2001,80:1206-1212
    [1]Lok K P, Ober C K. Particle size control in dispersion polymerization of polystyrene[J]. Can. J. Chem.,1985,63:209-216
    [2]Pain A J, Luymes W, McNulty J. Dispersion polymerization of styrene in polar solvents.6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions[J]. Macromolecules,1990,23:3104-3109
    [3]Song J S, Chagal L, Winnik M A. Monodisperse micrometer-size carboxyl-functionalized polystyrene particles obtained by two-stage dispersion polymerization[J]. Macromolecules, 2006,39:5729-5737
    [4]Jiang S, Sudol E D, Dimonie V L, El-Aasser M S. Kinetics of dispersion polymerization of methyl methacrylate and n-butyl acrylate:effect of initiator concentration[J]. Macromolecules,2007,40:4910-4916
    [5]Barrett K E J, Thomas H R. Kinetics of dispersion polymerization of soluble monomers. Ⅰ. Methyl methacrylate[J]. J. Polym. Sci. Part A-1:Polym. Chem.,1969,7:2621-2650
    [6]Antl L, Goodwin W J, Hill R D, Ottewill R H, Owens S W, Papworth S. The preparation of poly(methyl methacrylate) latices in non-aqueous media[J]. Colloid Surf.,1986,17:67-78
    [7]Stejkal J, Kratochvil P, Koubik P, Tuzar Z, Urban J, Helmstedt M, Jenkin A D. Light-scattering characterization of spherical particles prepared by the dispersion polymerization of methyl methacrylate in a non-aqueous medium[J]. Polymer,1990,31: 1816-1822
    [8]Helmstedt M, Schafer H. Determination of sizes of spherical particles, prepared by dispersion polymerization of methyl methacrylate in non-aqueous medium, by analysis of the particle scattering and autocorrelation functions[J]. Polymer,1994,35:3377-3383
    [9]Wang Q C, Hosoya K, Svec F, FreChet J M J. Polymeric porogens used in the preparation[J]. Anal. Chem.,1992,64:1232-1238
    [10]Bayer E. Towards the Chemical Synthesis of Proteins[J]. Angew. Chem. Int. Ed. Engl., 1991,30:113-129
    [11]Hosaka S, Murao Y, Tamaki H, Masuko S, Miura K, Kawabata Y. Monodisperse microspheres of copolymers of glycidyl methacrylate and its derivatives as materials for biomedical application[J]. Polymer Int.,1993,30:505-511
    [12]Hobbs S Y. The effect of rubber particle size on the impact properties of high impact polystyrene (HIPS) blends[J]. Polym. Eng. Sci.,1986,26:74-81
    [13]Lee C F, Chen Y H, Chiu W Y. Morphology, thermal property, and mechanical property of core-shell latex polymers. Ⅰ. effect of heating and pressuring on PBA/PS linear composite polymer[J]. J. Appl. Polym. Sci.,1998,69:13-23
    [14]Wang D, Dimonie V L, Sudol E D, El-Aasser M S. Dispersion polymerization of n-butyl acrylate[J]. J. Appl. Polym. Sci.,2002,84:2692-2709
    [15]Hu R, Dimonie V L, Sudol E D, El-Aasser M S. Monodisperse poly(butadiene/styrene) particles by dispersion polymerization[J]. J. Appl. Polym. Sci.,1995,55:1411-1415
    [16]Saenz J M, Asua J M. Dispersion copolymerization of styrene and butyl acrylate in polar solvents[J]. J. Polym. Sci. Part A:Polym. Chem.,1996,34:1977-1992
    [17]Saenz J M, Asua J M. Kinetics of the dispersion copolymerization of styrene and butyl acrylate[J]. Macromolecules,1998,35:5215-5222
    [18]Garci-rejon A, Mexico D F, Rios L. Effect of synthesis conditions on the rheological properties of styrene butyl acrylate copolymers[J]. J. Appl. Polym. Sci.,1986,31: 1483-1498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700