Pickering乳滴模板法制备超结构有机/无机杂化微球
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Pickering乳滴模板法制备有机/无机杂化的核壳微球越来越引起人们的关注,主要是因为该方法制备出的微球具有以无机粒子为壳层的超粒子结构,能够赋予微球独特的功能。胶体粒子在乳滴表面自组装形成有序的球面胶体壳,固定乳滴表面的胶体粒子来制备核壳结构的微胶囊。以胶体粒子为壳的微胶囊又称为胶体体微胶囊。本研究的主要目的是采用Pickering乳滴模板法制备有机/无机杂化超结构微球及其应用。我们根据所选择的不同性质和功能的核材料,采用Pickering乳滴模板法,对吸附在乳滴表面的胶体粒子用不同的固定方法制备具有不同结构和性能的胶体体微胶囊;并探索其在药物控释和微反应器领域的应用。使用不同性能、种类的纳米粒子制备多重Pickering乳液,考察其制备规律,了解影响其稳定性的因素;并利用基于多重Pickering乳液的聚合技术制备双纳米复合的超结构多核聚合物微球。本研究的主要内容和结果如下:
     1.采用疏水二氧化硅粒子稳定的正己烷包水的Pickering乳液体系,通过原位释放Ca~(2+)使乳滴内海藻酸水溶液凝胶化制备了以海藻酸钙凝胶为核、SiO_2粒子为壳的胶体体微胶囊Alg/SiO_2。选用水难溶的蛋白质药物Insulin微晶作为模拟药物,装载到Alg/SiO_2微胶囊中,进行体外模拟释放,探索了胶体体微胶囊的控释性能。结果说明,海藻酸钙凝胶微球本身对Insulin有缓释作用,而SiO_2纳米粒子壳层的存在进一步减缓了Insulin的释放速度。分别采用一级动力学、Higuchi、Weibull及Hixson-Crowell立方根定律动力学方程拟合释放数据,发现其释放机理都可用Weibull方程来描述,都主要遵从Fick扩散。
     2.首次利用胶体体微胶囊作为酶催化微反应器。采用Pickering乳滴模板法,降温使乳滴内结冷胶水溶液凝胶化制备了以结冷胶凝胶为核、SiO_2粒子为壳的胶体体微胶囊Gellan/SiO_2。把生物大分子脲酶成功装载到Gellan/SiO_2微胶囊中,实现脲酶催化CaCO3晶体生成,模拟生物矿化过程,最终在结冷胶凝胶核表面生成了CaCO3/SiO_2复合壳层。以胶体体微胶囊为微反应器的模拟生物矿化过程制备了多重组分杂化的复合物。
     3.我们以正己烷为油相、异丙基丙烯酰胺水溶液为水相,通过SiO_2纳米粒子在界面的吸附形成稳定的w/o乳液。在不同温度下引发乳滴内的单体聚合,在反应温度高于聚异丙基丙烯酰胺的临界溶液温度(LCST)下制备出以PNIPAm/SiO_2为复合壳层的中空微胶囊;而在LCST之下的聚合得到以SiO_2粒子为壳、PNIPAm凝胶为核的实心微胶囊。以PNIPAm凝胶为核的微胶囊在去溶胀和温度升高时粒径变化明显;以PNIPAm/SiO_2为壳的中空微胶囊在去溶胀和温度升高时粒径变化不大,这是由于PNIPAm/SiO_2复合壳层限制了PNIPAm凝胶网络的收缩。实验结果证明,通过控制聚合温度能够对胶体体微胶囊的形态和性能进行调控。
     4.我们选取合适的亲水性粒子(亲水的三氧化二铁粒子,粘土粒子)和疏水性粒子(SiO_2粒子,疏水的三氧化二铁粒子)两两配对通过两步法制备了不同类型的多重Pickering乳液(w/o/w,o/w/o)。疏水性粒子为内界面层的稳定剂,亲水性粒子为外界面层的稳定剂,制备出能够长期保存的w/o/w乳液,而通过改变胶体粒子的加入次序,亲水性粒子作为内层界面的稳定剂,疏水性粒子作为外层界面的稳定剂,制备了稳定的o/w/o乳液。除了以粘土粒子作为外界面稳定剂的w/o/w乳液外,实验制备的多重Pickering乳液(w/o/w,o/w/o)能够放置超过3个月后仍然稳定没有破乳。引入功能性的PNIPAm纳米凝胶到多重Pickering乳液,制备以PNIPAm纳米凝胶吸附在外层界面的w/o/w多重Pickering乳液,并考察罗丹明B从该多重乳液中在不同环境下的释放行为。结果表明,PNIPAm纳米凝胶稳定的多重Pickering乳液具有温度和pH双重响应性,能够控制通过体系的温度或者pH值实现活性物质的快速释放。
     5.首次以多重Pickering乳液聚合技术制备了纳米复合超结构的多核聚合物微球。在粒子稳定的w/o/w乳液的油相和o/w/o乳液的水相中分别加入油溶性单体(苯乙烯)和水溶性单体(丙烯酰胺或者异丙基丙烯酰胺),聚合反应得到多孔聚苯乙烯微球和多腔水凝胶微球。在纳米复合超结构多核聚合物微球中,一种纳米粒子主要在内核的壳层,另一种纳米粒子主要在整个微球的壳层,是三维有序的纳米复合;利用激光共聚焦显微镜、扫描电镜和FTIR等测试表征了该复合结构的存在。在多重Pickering乳液(w/o/w)中的内水相和内油相分别加入水溶性单体丙烯酰胺和油性单体苯乙烯,同时引发聚合制备具有复合多核结构的PS-PAm微球。PS-PAm微球内部存在多孔结构,孔与孔之间是并不相连的。胶体粒子在油水相同时反应的情况下仍能起到稳定乳液的作用,保证了聚合反应的顺利进行。并在干燥后的PS/PAm微球内部观察得到PAm凝胶以类似节点结构覆盖在内孔的表面。
The organic/inorganic hybrid core-shell microspheres fabricated by the Pickering emulsion droplet template method have enjoyed great popularity. The microspheres obtained by this method have supracolloidal structures, which gives the microspheres special function. Colloid particles adsorb on the surface of the emulsion droplets and self-assemble into an ordering spherical solid shell. The colloid particles are fixed to prepare the core-shell microcapsules. The microcapsules with the shell of colloid particles are also called the colloidosomes. In this dissertation, we used the Pickering emulsion droplet template method to prepare the organic-inorganic hybrid core-shell microspheres. The different original materials for the core and the different method for fixing the colloid particles absorb onto the droplet have been chosen to obtain colloidosomes with different structures and property. Further, the application of the colloidosome for controlled release of drug and the biomimetic reactors can also be researched. Different kinds of nanoparticles were used to prepare the multiple Pickering emulsions. The prepare method and the effect on the stability of the emulsions were investigated. We also prepared dual nanocomposite multihollow polymer microspheres by multiple Pickering emulsion polymerization. The main contents and the results of the research are as following:
     1. Based on intermediate hydrophobic SiO_2 nanoparticles stabilized water-in-Hexane emulsion, colloidosome microcapsules Alg/SiO_2 with alginate gel cores and shells of SiO_2 nanoparticles were prepared by chelation with calcium cations from in situ release. Insulin microcrystals as water-nonsoluble drug were encapsulated into Alg/SiO_2 colloidosome microcapsules by dispersing them in the alginate sodium aqueous solution before emulsification. The sustained release of Insulin microcrystals could be obtained in model release medium due to the advantage of two levels of encapsulation of alginate gel cores and shells of SiO_2 nanoparticles. Meanwhile the whole release curves were respectivelly fitted by Monoexponential equation, Higuchi equation, the Weibull equation and Hixson-Crowell equation. The release mechanism could be explained by the Weibull equation. The fitted results of the Weibull equation proved that the drug release from the colloidosomes followed Fick diffusion.
     2. The colloidosome used as a biomimetic reactor was demonstrated at the first time. The colloidosome microcapsules with SiO_2 nanoparticle shells and gellan gel cores were facilely and efficiently prepared by self-assembly of colloidal particles at the liquid-liquid interfaces and subsequently in-situ gelation of gellan gum by reducing the temperature. The urease-loaded colloidosomes were used as an enzymatic reactor to produce calcium carbonate precipitates by urease-catalyzed urea hydrolysis in the presence of calcium cation. The CaCO_3/SiO_2 shells were formed around the gellan gel cores at the end of the reaction.
     3. SiO_2 nanoparticles could self-assembly at liquid-liquid interfaces to form stable water-in-oil inverse Pickering emulsion. Monomers dissolving in suspended aqueous droplets were subsequently polymerized at different temperatures. The hollow microcapsules with SiO_2/PNIPAm nanocomposite shells were obtained when the reaction temperature was above the lower critical solution temperature (LCST) of PNIPAm. While the core-shell microcapsules with SiO_2 nanoparticles shells and PNIPAm gel cores were produced when the polymerization was conducted at the temperature lower than LCST using UV light radiation. The interesting properties of both microcapsules were their ability of reversibly swelling during drying/wetting cycles and responsive to temperature stimulus. Such functional microcapsules may find applications in double control release system due to the presence of the supracolloidal structures and thermo-sensitivity.
     4. A series of w/o/w or o/w/o emulsion stabilized only by two different types of solid particles were prepared by a two-step method. We explored the option of particular emulsifiers for the Pickering multiple emulsions and a variety of nanoparticles (silica, iron oxide and clay particles) only differing in their wettability was used. The primary w/o emulsion was obtained by the hydrophobic particles, and then the hydrophilic particles were used as in the secondary emulsification to prepare the w/o/w emulsions. In a similar way, the primary o/w emulsion of the o/w/o emulsions were stabilized by the hydrophilic particles, while the secondary emulsification to prepare the o/w/o emulsions were effected with the hydrophobic silica. The resultant multiple emulsions are stable to coalescence for more than 3 months, except the w/o/w emulsions of which the secondary emulsion stabilized by clay particles become a simple o/w emulsion in a day after preparation. Moreover, the introduction of the temperature and pH sensitive poly(N-isopropylacrylamide) (PNIPAm) microgels could obtain the stimulus-responsive multiple emulsions. Such microgels stabilized multiple emulsions could realize the efficient controlled release on demand in a multiple-emulsion delivery system.
     5. The nanocomposite multiple-core polymer microspheres with supracolloidal structures were obtained by the multiple Pickering emulsion polymerization at the first time. The oil soluble monomer (styrene) and the water soluble monomer (acrylamide or N-isopropylacrylamide) were respectively added into the solid stablized the w/o/w and o/w/o emulsion,and then polymerized to prepared the l multihollow polystyrene microspheres and multihollow gel microspheres. In the nanocomposite multiple-core polymer microspheres, the first nanoparticles mainly located on the surface of inner pores and the second nanoparticles mainly located onto the shell of the whole microsphere; this composite structure were confirmed by the CLSM, SEM, TG and FITR. The oil soluble monomer (styrene) and the water soluble monomer (acrylamide) were added in the oil phase and the inner water phase of he multiple Pickering emulsion (w/o/w), and then simultaneously polymerized to obtain the composite multiple-core PS-PAm microspheres. The inner structure of nanocomposite PS/PAm microspheres is porous and each pore is not interconnected. The independent pores inside the microspheres also suggests that the high stabilization of the multiple emulsion in the polymerization process. It was found that after drying, the surfaces of the inner pore were covered with a nodular structure by the PAm gel.
引文
[1] Fleming M.S., Mandal T.K., Walt D.R. Nanosphere-microsphere assembly: Methods for core-shell materials preparation [J]. Chem. Mater., 2001, 13(6): 2210-2216.
    [2] Zhang Y.P., Chu Y. The fabrication of core-shell functional materials with templates method [J]. Progress in Chemistry, 2007, 19(1): 35-41.
    [3] Schneider J.J. Magnetic core/shell and quantum-confined semiconductor nanoparticles via chimie douce organometallic synthesis [J]. Adv. Mater., 2001, 13(7): 529.
    [4] Nakashima T., Kimizuka N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids [J]. J. Am. Chem. Soc., 2003, 125(21): 6386-6387.
    [5] Sun Q.Y., Kooyman P.J., Grossmann J.G., et al. The formation of well-derined hollow silica spheres with multilamellar shell structure [J]. Adv. Mater., 2003, 15(13): 1097.
    [6] Colver P.J., Chen T., Bon S.A.F. Supracolloidal structures through liquid-liquid interface driven assembly and polymerization [J]. Macromol. Symp., 2006, 245: 34-41.
    [7] Velev O D F.K., Nagayama K. Assembly of latex particles using emulsion droplets as templates. 1. Microstructured hollow spheres [J]. Langmuir, 1996, 12: 2374-2384.
    [8] Dinsmore A.D., Hsu M.F., Nikolaides M.G., et al. Colloidosomes: Selectively permeable capsules composed of colloidal particles [J]. Science, 2002, 298(5595): 1006-1009.
    [9] Liu H.X., Wang C.Y., Gao Q.X., et al. Preparation of novel microcapsules by emulsion droplet template method [J]. Progress in Chemistry, 2008, 20(7-8): 1044-1049.
    [10] Rossier-Miranda F.J., Schroen C.G.P.H., Boom R.M. Colloidosomes: Versatile microcapsules in perspective [J]. Colloid Surface. A, 2009, 343(1-3): 43-49.
    [11] Shilpi S., Jain A., Gupta Y., et al. Colloidosomes: An emerging vesicular system in drug delivery [J]. Crit. Rev. Ther. Drug, 2007, 24(4): 361-391.
    [12] Ramsden W. Proc.R.Soc.Lond.Ser.A, 72:156-159.
    [13] Pickering S. U. Emulsions [J]. J. Chem. Soc., 91: 2001-2021.
    [14] Sullivan A.P., Kilpatrick P.K. The effects of inorganic solid particles on water and crude oil emulsion stability [J]. Ind. Eng. Chem. Res., 2002, 41(14): 3389-3404.
    [15] Castaldi F.J. Tank-based bioremediation of petroleum waste sludges [J]. Environ. Prog., 2003, 22(1): 25-36.
    [16] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev., 1989, 89(8): 1861-1873.
    [17]张婉萍,郭奕光. Pickering乳化剂在化妆品中的应用[J].日用化学品科学, 29(9): 33-36.
    [18] Binks B.P. Particles as surfactants - similarities and differences [J]. Curr. Opin. Colloid In, 2002, 7(1-2): 21-41.
    [19] Binks B.P., Lumsdon S.O. Influence of particle wettability on the type and stability of surfactant-free emulsions [J]. Langmuir., 2000, 16(23): 8622-8631.
    [20] Aveyard R., Binks B.P., Clint J.H. Emulsions stabilised solely by colloidal particles [J]. Adv. Colloid Interfac, 2003, 100: 503-546.
    [21] He Y.J., Qi S.T., Zhao S.Y. Nanoparticle-stabilized emulsions and their applications in preparation of nanostructures [J]. Progress in Chemistry, 2007, 19(9): 1443-1448.
    [22] Huang W.A., Lan Q., Zhang Y. Colloid particles adsorption and interfacial assembly at the fluids interface [J]. Progress in Chemistry, 2007, 19(2-3): 214-219.
    [23] Israelachvili J N. Intermolecular and Surface Forces [M] n.e.A.A.P., 2003.
    [24] Pieranski P. Two-dimensional interfacial colloidal crystals [J]. Phys. Rev. Lett., 1980, 45: 569-572.
    [25] Omota F., Dimian A.C., Bliek A. Adhesion of solid particles to gas bubbles. Part 2: Experimental [J]. Chem. Eng. Sci., 2006, 61(2): 835-844.
    [26] Paunov V.N. Novel method for determining the three-phase contact angle of colloid particles adsorbed at air-water and oil-water interfaces [J]. Langmuir., 2003, 19(19): 7970-7976.
    [27] Lin Y., Skaff H., Emrick T., et al. Nanoparticle assembly and transport at liquid-liquid interfaces [J]. Science, 2003, 299(5604): 226-229.
    [28] Aveyard R., Clint J.H., Horozov T.S. Aspects of the stabilisation of emulsions by solid particles: Effects of line tension and monolayer curvature energy [J]. Phys. Chem. Chem. Phys., 2003, 5(11): 2398-2409.
    [29] Yan N.X K.C., Masliyah J.H. Ind. [J] Eng. Chem. Res.,1997, 36: 2634-2640.
    [30] Thieme J., Abend S., Lagaly G. Aggregation in Pickering emulsions [J]. Colloid Polym. Sci., 1999, 277(2-3): 257-260.
    [31] Zhai Z., Efrima S. Chemical and physical aspects of macroemulsions stabilized by interfacial colloids [J]. J. Phys. Chem, 1996, 100: 11019-11028.
    [32] Zisman W.A., Relation of the equilibrium contact angle to liquid and solid constitution [M], American Chemical Society, Washington DC, 1964.
    [33] van Oss C.J., Giese R.F. Surface modification of clays and related materials [J]. J. Disper. Sci. Technol, 2003, 24(3-4): 363-376.
    [34] Dann J.R. Forces Involved in Adhesive Process. 1. Critical Surface Tensions of Polymeric Solids as Determined with Polar Liquids [J]. Journal of Colloid and Interface Science, 1970, 32(2): 302-320.
    [35] Wang R., Sakai N., Fujishima A., et al. Studies of surface wettability conversion on TiO2 single-crystal surfaces [J]. J. Phys. Chem. B, 1999, 103(12): 2188-2194.
    [36] Barber A.H., Cohen S.R., Wagner H.D. Static and dynamic wetting measurements of single carbon nanotubes [J]. Phys. Rev. Lett., 2004, 92(18): -.
    [37] Park Y.W., Inagaki N. Surface modification of poly(vinylidene fluoride) film by remote Ar, H-2, and O-2 plasmas [J]. Polymer, 2003, 44(5): 1569-1575.
    [38] Giese R.F., Costanzo P.M., Vanoss C.J. The Surface Free-Energies of Talc and Pyrophyllite [J]. Phys. Chem. Miner., 1991, 17(611-616.
    [39] Costanzo P.M., Wu W., Giese R.F., et al. Comparison between Direct-Contact Angle Measurements and Thin-Layer Wicking on Synthetic Monosized Cuboid Hematite Particles [J]. Langmuir, 1995, 11: 827-1830.
    [40] Studart A.R., Gonzenbach U.T., Akartuna I., et al. Materials from foams and emulsions stabilized by colloidal particles [J]. J. Mater. Chem., 2007, 17(31): 3283-3289.
    [41] Schulman J.H.a.J.L., Control of contact angles at the oil–water–solid Interfaces-emulsions stabilized by solid particles (BaSO4), [J]. Trans. Faraday Soc., 1954, 50, 598–605.
    [42] Gonzenbach U.T., Studart A.R., Tervoort E., et al. Stabilization of foams with inorganic colloidal particles [J]. Langmuir., 2006, 22(26): 10983-10988.
    [43] Gonzenbach U.T., Studart A.R., Tervoort E., et al. Ultrastable particle-stabilized foams [J]. Angew. Chem. Int. Edit., 2006, 45(21): 3526-3530.
    [44] Sun Y.Q., Gao T. The optimum wetting angle for the stabilization of liquid-metal foamsby ceramic particles: Experimental simulations [J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2002, 33(10): 3285-3292.
    [45] Binks B.P., Murakami R., Armes S.P., et al. Temperature-induced inversion of nanoparticle-stabilized emulsions [J]. Angew. Chem. Int. Edit., 2005, 44(30): 4795-4798.
    [46] Bausch A.R., Bowick M.J., Cacciuto A., et al. Grain boundary scars and spherical crystallography [J]. Science, 2003, 299(5613): 1716-1718.
    [47] Tarimala S., Ranabothu S.R., Vernetti J.P., et al. Mobility and in situ aggregation of charged microparticles at oil-water interfaces [J]. Langmuir., 2004, 20(13): 5171-5173.
    [48] Helseth L.E., Muruganathan R.M., Zhang Y., et al. Colloidal rings in a liquid mixture [J]. Langmuir., 2005, 21(16): 7271-7275.
    [49] Bon S.A.F., Cauvin S., Colver P.J. Colloidosomes as micron-sized polymerisation vessels to create supracolloidal interpenetrating polymer network reinforced capsules [J]. Soft Matter, 2007, 3(2): 194-199.
    [50] Tsuji S., Kawaguchi H. Thermosensitive pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles [J]. Langmuir., 2008, 24(7): 3300-3305.
    [51] Noble P.F., Cayre O.J., Alargova R.G., et al. Fabrication of "hairy" colloidosomes with shells of polymeric microrods [J]. J. Am. Chem. Soc., 2004, 126(26): 8092-8093.
    [52] Binks B.P. Macroporous silica from solid-stabilized emulsion templates [J]. Adv. Mater., 2002, 14(24): 1824-1827.
    [53] Binks B.P., Dyab A.K.F., Fletcher P.D.I. Novel emulsions of ionic liquids stabilised solely by silica nanoparticles [J]. Chem. Commun., 2003, 20: 2540-2541.
    [54] Fujii S., Read E.S., Binks B.P., et al. Stimulus-responsive emulsifiers based on nanocomposite microgel particles [J]. Adv. Mater., 2005, 17(8): 1014.
    [55] Binks B.P., Dyab A.K.F., Fletcher P.D.I. Contact angles in relation to emulsions stabilised solely by silica nanoparticles including systems containing room temperature ionic liquids [J]. Phys. Chem. Chem. Phys., 2007, 9(48): 6391-6397.
    [56] Safouane M., Langevin D., Binks B.P. Effect of particle hydrophobicity on the properties of silica particle layers at the air-water interface [J]. Langmuir., 2007, 23(23): 11546-11553.
    [57] Yang J., Hasell T., Wang W.X., et al. Preparation of hybrid polymer nanocompositemicroparticles by a nanoparticle stabilised dispersion polymerisation [J]. J. Mater. Chem., 2008, 18(9): 998-1001.
    [58] Hasell T., Yang J.X., Wang W.X., et al. Preparation of polymer-nanoparticle composite beads by a nanoparticle-stabilised suspension polymerisation [J]. J. Mater. Chem., 2007, 17(41): 4382-4386.
    [59] Zhao. X., Helseth L.E. Magnetophoresis of microspheres covered by magnetic nanoparticles [J]. J. Appl. Phys., 2007, 102(5).
    [60] Bon S.A.F., Colver P.J. Pickering miniemulsion polymerization using Laponite clay as a stabilizer [J]. Langmuir., 2007, 23(16): 8316-8322.
    [61] Cauvin S., Colver P.J., Bon S.A.F. Pickering stabilized miniemulsion polymerization: Preparation of clay armored latexes [J]. Macromolecules., 2005, 38(19): 7887-7889.
    [62] Ashby N.P., Binks B.P. Pickering emulsions stabilised by Laponite clay particles [J]. Phys. Chem. Chem. Phys., 2000, 2(24): 5640-5646.
    [63] Voorn D.J., Ming W., van Herk A.M. Polymer-clay nanocomposite latex particles by inverse pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets [J]. Macromolecules., 2006, 39(6): 2137-2143.
    [64] Tangirala R., Revanur R., Russell T.P., et al. Sizing nanoparticle-covered droplets by extrusion through track-etch membranes [J]. Langmuir., 2007, 23(3): 965-969.
    [65] Lin Y., Skaff H., Boker A., et al. Ultrathin cross-linked nanoparticle membranes [J]. J. Am. Chem. Soc., 2003, 125(42): 12690-12691.
    [66] Lin Y., Boker A., Skaff H., et al. Nanoparticle assembly at fluid interfaces: Structure and dynamics [J]. Langmuir., 2005, 21(1): 191-194.
    [67] Chen T., Colver P.J., Bon S.A.F. Organic-inorganic hybrid hollow spberes prepared from TiO2-stabilized pickering emulsion polymerization [J]. Adv. Mater., 2007, 19(17): 2286.
    [68] Reincke F., Hickey S.G., Kegel W.K., et al. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface [J]. Angew. Chem. Int. Edit., 2004, 43(4): 458-462.
    [69] Murthy V.S., Cha J.N., Stucky G.D., et al. Charge-driven flocculation of poly(L-lysine)-gold nanoparticle assemblies leading to hollow microspheres [J]. J. Am.Chem. Soc., 2004, 126(16): 5292-5299.
    [70] Duan H.W., Wang D.Y., Kurth D.G., et al. Directing self-assembly of nanoparticles at water/oil interfaces [J]. Angew. Chem. Int. Edit., 2004, 43(42): 5639-5642.
    [71] Dai L.L., Sharma R., Wu C.Y. Self-assembled structure of nanoparticles at a liquid-liquid interface [J]. Langmuir., 2005, 21(7): 2641-2643.
    [72] Cao A.M., Hu J.S., Liang H.P., et al. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries [J]. Angew. Chem. Int. Edit., 2005, 44(28): 4391-4395.
    [73] Russell J.T., Lin Y., Boker A., et al. Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces [J]. Angew. Chem. Int. Edit., 2005, 44(16): 2420-2426.
    [74] Binks B.P., Clint J.H., Mackenzie G., et al. Naturally occurring spore particles at planar fluid interfaces and in emulsions [J]. Langmuir., 2005, 21(18): 8161-8167.
    [75] Dorobantu L.S., Yeung A.K.C., Foght J.M., et al. Stabilization of oil-water emulsions by hydrophobic bacteria [J]. Appl. Environ. Microb., 2004, 70(10): 6333-6336.
    [76] Binks B.P., Lumsdon S.O. Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity [J]. Phys. Chem. Chem. Phys., 2000, 2(13): 2959-2967.
    [77] Binks B.P., Rodrigues J.A. Types of phase inversion of silica particle stabilized emulsions containing triglyceride oil [J]. Langmuir., 2003, 19(12): 4905-4912.
    [78] Binks B.P., Philip J., Rodrigues J.A. Inversion of silica-stabilized emulsions induced by particle concentration [J]. Langmuir., 2005, 21(8): 3296-3302.
    [79] Cayre O.J., Noble P.F., Paunov V.N. Fabrication of novel colloidosome microcapsules with gelled aqueous cores [J]. J. Mater. Chem., 2004, 14(22): 3351-3355.
    [80] Hsu M.F., Nikolaides M.G., Dinsmore A.D., et al. Self-assembled shells composed of colloidal particles: Fabrication and characterization [J]. Langmuir., 2005, 21(7): 2963-2970.
    [81] Lawrence D.B., Cai T., Hu Z., et al. Temperature-responsive semipermeable capsules composed of colloidal microgel spheres [J]. Langmuir., 2007, 23(2): 395-398.
    [82] Fujii S., Armes S.P., Binks B.P., et al. Stimulus-responsive particulate emulsifiers based on lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgels [J].Langmuir., 2006, 22(16): 6818-6825.
    [83] Binks B.P., Murakami R., Armes S.P., et al. Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles [J]. Langmuir., 2006, 22(5): 2050-2057.
    [84] Gordon V.D., Xi C., Hutchinson J.W., et al. Self-assembled polymer membrane capsules inflated by osmotic pressure [J]. J. Am. Chem. Soc., 2004, 126(43): 14117-14122.
    [85] Paunov V.N., Noble P.F., Cayre O.J., et al. Fabrication off novel types of colloidosome microcapsules for drug delivery applications; proceedings of the Symposium on Nanoscale Materials Science in Biology and Medicine held at the 2004 MRS Fall Meeting, Boston, MA, F Nov 28-Dec 02, 2004 [C].
    [86] Croll L.M., Stover H.D.H. Mechanism of self-assembly and rupture of cross-linked microspheres and microgels at the oil-water interface [J]. Langmuir., 2003, 19(24): 10077-10080.
    [87] Yuan X.F., Fischer K., Schartl W. Photocleavable microcapsules built from photoreactive nanospheres [J]. Langmuir., 2005, 21(20): 9374-9380.
    [88] Balmer J.A., Schmid A., Armes S.P. Colloidal nanocomposite particles: quo vadis? [J]. J. Mater. Chem., 2008, 18(47): 5722-5730.
    [89] He Y.J., Yu X.Y. Preparation of silica nanoparticle-armored polyaniline microspheres in a Pickering emulsion [J]. Mater. Lett., 2007, 61(10): 2071-2074.
    [90] Wang T., Keddie J.L. Design and fabrication of colloidal polymer nanocomposites [J]. Adv. Colloid Interfac, 2009, 147-48: 319-332.
    [91] Zhang J., Chen K.Q., Zhao H.Y. PMMA colloid particles armored by clay layers with PDMAEMA polymer brushes [J]. J. Polym. Sci. Pol. Chem, 2008, 46(8): 2632-2639.
    [92] Xiao Q., Tan X.K., Ji L.L., et al. Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route [J]. Synthetic. Met., 2007, 157(18-20): 784-791.
    [93] He Y.J. Preparation of polyaniline/nano-Zno composites via a novel Pickering emulsion route [J]. Powder Technol., 2004, 147(1-3): 59-63.
    [94] Jeng J., Chen T.Y., Lee C.F., et al. Growth mechanism and pH-regulation characteristicsof composite latex particles prepared from Pickering emulsion polymerization of aniline/ZnO using different hydrophilicities of oil phases [J]. Polymer, 2008, 49(15): 3265-3271.
    [95] Yang S., Liu H.R., Zhang Z.C. A facile route to hollow superparamagnetic magnetite/oolystyrene nanocomposite microspheres via inverse miniemulsion polymerization [J]. J. Polym. Sci. Pol. Chem, 2008, 46(12): 3900-3910.
    [96] Lee K.Y., Mooney D.J. Hydrogels for tissue engineering [J]. Chem. Rev., 2001, 101(7): 1869-1879.
    [97] Drury J.L., Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications [J]. Biomaterials., 2003, 24(24): 4337-4351.
    [98] Peppas N.A., Langer R. New challenges in biomaterials [J]. Science, 1994, 263): 1715-1720.
    [99] Ogomi D., Serizawa T., Akashi M. Controlled release based on the dissolution of a calcium carbonate layer deposited on hydrogels [J]. J. Control Release., 2005, 103(2): 315-323.
    [100] Schnepp Z.A.C., Gonzalez-McQuire R., Mann S. Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels [J]. Adv. Mater., 2006, 18(14): 1869.
    [101] Liang Y.Y., Zhang L.M., Jiang W., et al. Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation [J]. Chemphyschem, 2007, 8(16): 2367-2372.
    [102] Ribeiro C.C., Barrias C.C., Barbosa M.A. Calcium phosphate-alginate microspheres as enzyme delivery matrices [J]. Biomaterials., 2004, 25(18): 4363-4373.
    [103] Eiselt P., Yeh J., Latvala R.K., et al. Porous carriers for biomedical applications based on alginate hydrogels [J]. Biomaterials., 2000, 21(19): 1921-1927.
    [104] Kong H.J., Smith M.K., Mooney D.J. Designing alginate hydrogels to maintain viability of immobilized cells [J]. Biomaterials., 2003, 24(22): 4023-4029.
    [105] Wang L., Shelton R.M., Cooper P.R., et al. Evaluation of sodium alginate for bone marrow cell tissue engineering [J]. Biomaterials., 2003, 24(20): 3475-3481.
    [106] St?ber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in themicron size range [J]. J. Colloid. Interface. Sci, 1968, 26: 62-69.
    [107] Lu L., Liu X.X., Dai L., et al. Difference in concentration dependence of relaxation critical exponent n for alginate solutions at sol-gel transition induced by calcium cations [J]. Biomacromolecules, 2005, 6(4): 2150-2156.
    [108] Duan H.W., Wang D.Y., Sobal N.S., et al. Magnetic colloidosomes derived from nanoparticle interfacial self-assembly [J]. Nano Letters, 2005, 5(5): 949-952.
    [109] Liu H.X., Wang C.Y., Gao Q.X., et al. Facile fabrication of well-defined hydrogel beads with magnetic nanocomposite shells [J]. Int. J. Pharm., 2009, 376(1-2): 92-98.
    [110] Weibull W. A statistical distribution of wide applicability [J]. J. Appl. Mech. , 1951, 18: 293-297.
    [111] Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension [J]. J. Pharm. Sci., 1961, 50: 874-875.
    [112] Costa P., Manuel J., Lobo S. Modeling and comparison of dissolution profiles [J]. Eur. J. Pharm. Sci., 2001, 13(2): 123-133.
    [113] Adams E., Coomans D., Smeyers-Verbeke J., et al. Non-linear mixed effects models for the evaluation of dissolution profiles [J]. Int. J. Pharm., 2002, 240(1-2): 37-53.
    [114] Papadopoulou V., Kosmidis K., Vlachou M., et al. On the use of the Weibull function for the discernment of drug release mechanisms [J]. Int. J. Pharm., 2006, 309(1-2): 44-50.
    [115] Van Vooren L., Krikilion G., Rosier J., et al. A novel bending point criterion for dissolution profile interpretation [J]. Drug Dev. Ind. Pharm., 2001, 27(8): 885-892.
    [116] Costa F.O., Sousa J.J.S., Pais A.A.C.C., et al. Comparison of dissolution profiles of Ibuprofen pellets [J]. J. Control Release., 2003, 89(2): 199-212.
    [117] Koester L.S., Ortega G.G., Mayorga P., et al. Mathematical evaluation of in vitro release profiles of hydroxypropylmethylcellulose matrix tablets containing carbamazepine associated to beta-cyclodextrin [J]. Eur. J. Pharm. Biopharm, 2004, 58(1): 177-179.
    [118] Tatavarti A.S., Hoag S.W. Microenvironmental pH modulation based release enhancement of a weakly basic drug from hydrophilic matrices [J]. J. Pharm. Sci., 2006, 95(7): 1459-1468.
    [119] Elkoshi Z. On the variability of dissolution data [J]. Pharmaceut. Res., 1997, 14(10): 1355-1362.
    [120] Macheras P., Dokoumetzidis A. On the heterogeneity of drug dissolution and release [J]. Pharmaceut. Res., 2000, 17(2): 108-112.
    [121] Schreiner T., Schaefer U.F., Loth H. Immediate drug release from solid oral dosage forms [J]. J. Pharm. Sci., 2005, 94(1): 120-133.
    [122] Lansky P., Weiss M. Classification of dissolution profiles in terms of fractional dissolution rate and a novel measure of heterogeneity [J]. J. Pharm. Sci., 2003, 92(8): 1632-1647.
    [123] Kosmidis K., Argyrakis P., Macheras P. A reappraisal of drug release laws using Monte Carlo simulations: The prevalence of the Weibull function [J]. Pharmaceut. Res., 2003, 20(7): 988-995.
    [124] Kosmidis K., Argyrakis P., Macheras P. Fractal kinetics in drug release from finite fractal matrices [J]. J. Chem. Phys., 2003, 119(12): 6373-6377.
    [125] Siepmann J., Peppas N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) [J]. Adv. Drug Deliver. Rev, 2001, 48(2-3): 139-157.
    [126] Knoll A.H. Biomineralization and evolutionary history [J]. Biomineralization, 2003, 54: 329-356.
    [127] Dove P.M., J. D.Y.J., Weiner S. Biomineralization [M]. Washington, DC: Mineralogical Society of America, 2003.
    [128] Addadi L., Weiner S. Biomineralization - A pavement of pearl [J]. Nature, 1997, 389(6654): 912
    [129] Boskey A.L. Biomineralization: Conflicts, challenges, and opportunities [J]. J. Cell Biochem., 1998, 83-91.
    [130]王成毓,刘艳华,郭玉鹏等.模拟生物矿化过程原位合成活性纳米碳酸钙[J].高等化学学报, 2006, 6(1): 13-15.
    [131]成亮.生物矿化碳酸钙机理研究进展[J].硅酸盐通报2006, 25(6): 108-116.
    [132] Sworn G., Sanderson G.R., Gibson W. Gellan gum fluid gels [J]. Food Hydrocolloid., 1995, 9(4): 265-271.
    [133] Nishinari K. Properties of gellan gum [J]. Gums and Stabilisers for the Food Industry, 1996, 371-383.
    [134] Nishinari K. Gellan gum: Structures, properties and functions - International Workshop on Gellan and Related Polysaccharides (IWGRP) - 14-15 November, 1994, Osaka, Japan - Introduction [J]. Carbohyd. Polym., 1996, 30(2-3): 75-76.
    [135] Milas M., Rinaudo M. The gellan sol-gel transition [J]. Carbohyd. Polym., 1996, 30(2-3): 177-184.
    [136] Okamoto T., Kubota K. Sol-gel transition of polysaccharide gellan gum [J]. Carbohyd. Polym., 1996, 30(2-3): 149-153.
    [137] Dai L., Liu X.X., Liu Y.L., et al. Concentration dependence of critical exponents for gelation in gellan gum aqueous solutions upon cooling [J]. Eur. Polym. J., 2008, 44(12): 4012-4019.
    [138] Lvov Y., Antipov A.A., Mamedov A., et al. Urease encapsulation in nanoorganized microshells [J]. Nano Letters, 2001, 1(3): 125-128.
    [139] Liang Z.P., Wang C.Y., Tong Z., et al. Bio-catalytic nanoparticles in multilayer assembled throt with urease immobilized gh layer-by-layer technique [J]. React. Funct. Polym., 2005, 63(1): 85-94.
    [140] Caruso F., Schuler C. Enzyme multilayers on colloid particles: Assembly, stability, and enzymatic activity [J]. Langmuir., 2000, 16(24): 9595-9603.
    [141] Antipov A., Shchukin D., Fedutik Y., et al. Urease-catalyzed carbonate precipitation inside the restricted volume of polyelectrolyte capsules [J]. Macromol. Rapid. Comm., 2003, 24(3): 274-277.
    [142] G. X.A., Koutsoukos P.G. Quantitative Analysis of Calcium Carbonate Polymorphs by Infrared Spectroscop [J]. J. Chem. Soc. , Faraday Trans., 1989, 85: 3165-3172.
    [143] Yu A.M., Gentle I., Lu G.Q., et al. Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactors [J]. Chem. Commun., 2006, 20: 2150-2152.
    [144] Tong Z., Zeng F., Zheng X., et al. Inverse molecular weight dependence of cloud points for aqueous poly(N-isopropylacrylamide) solutions [J]. Macromolecules., 1999, 32(13): 4488-4490.
    [145] Zhang J., Peppas N.A. Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks[J]. Macromolecules., 2000, 33(1): 102-107.
    [146] Fundueanu G., Constantin M., Ascenzi P. Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: Influence of the physico-chemical characteristics of drugs on their release profiles [J]. Acta Biomaterialia, 2009, 5(1): 363-373.
    [147] Cho J.H., Kim S.H., Park K.D., et al. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer [J]. Biomaterials., 2004, 25(26): 5743-5751.
    [148] Kong B., Choi J.S., Jeon S., et al. The control of cell adhesion and detachment on thin films of thermoresponsive poly[(N-isopropylacrylamide)-r-((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide)] [J]. Biomaterials., 2009, 30(29): 5514-5522.
    [149] Ohya S., Kidoaki S., Matsuda T. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin hydrogel surfaces: interrelationship between microscopic structure and mechanical property of surface regions and cell adhesiveness [J]. Biomaterials., 2005, 26(16): 3105-3111.
    [150] Okamura A., Itayagoshi M., Hagiwara T., et al. Poly(N-isopropylacrylamide)-graft-polypropylene membranes containing adsorbed antibody for cell separation [J]. Biomaterials., 2005, 26(11): 1287-1292.
    [151] Ozturk N., Girotti A., Kose G.T., et al. Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds [J]. Biomaterials., 2009, 30(29): 5417-5426.
    [152] Wei H., Zhang X.Z., Zhou Y., et al. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate) [J]. Biomaterials., 2006, 27(9): 2028-2034.
    [153]任彦荣,侯长军.温敏性聚合物聚N-异丙基丙烯酰胺及其应用[J].材料导报, 2004, 18(11): 54-60.
    [154] Lamprecht A., Schafer U.F., Lehr C.M. Characterization of microcapsules by confocal laser scanning microscopy: structure, capsule wall composition and encapsulation rate [J]. Eur. J. Pharm. Biopharm, 2000, 49(1): 1-9.
    [155] Kim J.W., Utada A.S., Fernandez-Nieves A., et al. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices [J]. Angew. Chem. Int. Edit., 2007, 46(11): 1819-1822.
    [156] Yoshida R., Sakai K., Okano T., et al. Drug release profiles in the shrinking process of thermoresponsive poly(N-isopropylacrylamide-co-alkyl methacrylate) gels [J]. Ind. Eng. Chem. Res., 1992, 10(31): 2339-2345.
    [157] Garti N. Double emulsions - Scope, limitations and new achievements [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1997, 123(233-246.
    [158] Garti N., Bisperink C. Double emulsions: progress and applications [J]. Current Opinion in Colloid & Interface Science, 1998, 3(6): 657-667.
    [159] Tadros T.F. Multiple emulsions for controlled release. [J]. Abstracts of Papers of the American Chemical Society, 2000, 220(U54-U54.
    [160] Muschiolik G. Multiple emulsions for food use [J]. Curr. Opin. Colloid In, 2007, 12(4-5): 213-220.
    [161] Cui W.J., Bei J.Z., Wang S.G., et al. Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography [J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2005, 73B(1): 171-178.
    [162] Ficheux M.F., Bonakdar L., Leal-Calderon F., et al. Some stability criteria for double emulsions [J]. Langmuir, 1998, 14(10): 2702-2706.
    [163] Gonzalez-Ochoa H., Ibarra-Bracamontes L., Arauz-Lara J.L. Two-stage coalescence in double emulsions [J]. Langmuir, 2003, 19(19): 7837-7840.
    [164] Oza K.P., Frank S.G. Microcrystalline cellulose stabilized emulsions [J]. J. Dispersion. Sci. Technol, 1986, 7(543-561.
    [165] Garti N., Aserin A., Tiunova I., et al. Double emulsions of water-in-oil-in-water stabilized by alpha-form fat microcrystals. Part 1: Selection of emulsifiers and fat microcrystalline particles [J]. J. Am. Oil Chem. Soc., 1999, 76(3): 383-389.
    [166] Midmore B.R., Herrington T.M. Silica-stabilised multiple emulsions [J]. Trends in Colloid and Interface Science Xiii, 1999, 112:115-120.
    [167] Koo H.Y., Chang S.T., Choi W.S., et al. Emulsion-based synthesis of reversiblyswellable, magnetic nanoparticle-embedded polymer microcapsules [J]. Chem. Mater., 2006, 18(14): 3308-3313.
    [168] Ngai T., Auweter H., Behrens S.H. Environmental responsiveness of microgel particles and particle-stabilized emulsions [J]. Macromolecules., 2006, 39(23): 8171-8177.
    [169] Ngai T., Behrens S.H., Auweter H. Novel emulsions stabilized by pH and temperature sensitive microgels [J]. Chem. Commun., 2005, 3): 331-333.
    [170] Fossum J.O. Physical phenomena in clays [J]. Physica. A, 1999, 270(1-2): 270-277.
    [171] Rojas E.C., Staton J.A., John V.T., et al. Temperature-induced protein release from water-in-oil-in-water double emulsions [J]. Langmuir., 2008, 24(14): 7154-7160.
    [172] Turkmen D., Yavuz H., Denizli A. Synthesis of tentacle type magnetic beads as immobilized metal chelate affinity support for cytochrome c adsorption [J]. Int. J. Biol. Macromol., 2006, 38(2): 126-133.
    [173] Unsal E., Camli S.T., Tuncel M., et al. Monodisperse-porous particles with different polarities by "modified seeded polymerization" and their use as chromatographic packing in HPLC [J]. React. Funct. Polym., 2004, 61(3): 353-368.
    [174] Unsal E., Camli S.T., Irmak T., et al. Monodisperse poly (Styrene-co-Divinylbenzene) particles (3.2 mu m) with relatively small pore size as HPLC packing material [J]. Chromatographia, 2004, 60(9-10): 553-560.
    [175] Coutinho F.M.B., Carvalho D.L., Aponte M.L.L., et al. Pellicular ion exchange resins based on divinylbenzene and 2-vinylpyridine [J]. Polymer, 2001, 42(1): 43-48.
    [176] Gong B.L., Li L., Zhu J.X. Preparation of strong anion-exchange chromatographic packings based on monodisperse polymeric beads and their application in the separation of biopolymers [J]. Analytical and Bioanalytical Chemistry, 2005, 382(7): 1590-1594.
    [177] Sieben S., Bergemann C., Lubbe A., et al. Comparison of different particles and methods for magnetic isolation of circulating tumor cells [J]. J. Magn. Magn. Mater., 2001, 225(1-2): 175-179.
    [178] Coutinho F.M.B., Rezende S.M., Soares B.G. Characterization of sulfonated poly(styrene-divinylbenzene) and poly(divinylbenzene) and its application as catalysts in esterification reaction [J]. J. Appl. Polym. Sci., 2006, 102(4): 3616-3627.
    [179] Lei J.H., Wang H.H., Li D.L., et al. Development of Two-Staged Seeded SwellingPolymerization [J]. Progress in Chemistry, 2009, 21(6): 1287-1291.
    [180] Crevecoeur J.J., Nelissen L., Lemstra P.J. Water expandable polystyrene (WEPS) Part 1. Strategy and procedures [J]. Polymer, 1999, 40(13): 3685-3689.
    [181] Barby D., Haq Z. Low Density Porous Cross-link Polymeric Materials and Their Preparation and Use as Carriers for Included Liquids: US. 1985-10-22.
    [182] Stefanec D., Krajnc P. 4-vinylbenzyl chloride based porous spherical polymer supports derived from water-in-oil-in-water emulsions [J]. React. Funct. Polym., 2005, 65(1-2): 37-45.
    [183] De Rosa G., Quaglia F., La Rotonda M.I., et al. Biodegradable microparticles for the controlled delivery of oligonucleotides [J]. Int. J. Pharm., 2002, 242(1-2): 225-228.
    [184] Spettmann D., Eppmann S., Flemming H.C., et al. Visualization of membrane cleaning using confocal laser scanning microscopy [J]. Desalination., 2008, 224(1-3): 195-200.
    [185] Gitli T., Silverstein M.S. Bicontinuous hydrogel-hydrophobic polymer systems through emulsion templated simultaneous polymerizations [J]. Soft Matter, 2008, 4(12): 2475-2485.
    [186] Kulygin O., Silverstein M.S. Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions [J]. Soft Matter, 2007, 3(12): 1525-1529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700