界面细乳液共聚合制备有机—无机杂化纳米胶囊
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以细乳液聚合技术为基础,通过伴有水解-缩合反应的甲基丙烯酸3-三甲氧基硅丙酯(MPS)/苯乙烯(St)的共聚反应制备了有机-无机杂化纳米胶囊。该杂化材料兼具高分子和无机材料的优点,且具有囊化的特点,拓宽了材料的应用领域。本论文首先研究了MPS/St细乳液共聚体系中MPS的水解-缩合反应,及MPS对自由基共聚反应、胶乳性能和杂化聚合物微结构的影响;其次,通过研究液核为模板的St细乳液聚合体系,提出界面聚合制备纳米胶囊的机理;最后,将上述研究结果应用于以液核为模板的MPS/St细乳液共聚体系,成功制备胶囊分率高、结构规整的有机-无机杂化纳米胶囊。
     深入研究了MPS/St细乳液聚合过程中MPS的水解-缩合反应,发现细乳液聚合体系中,水解反应无法避免,主要发生在液滴/水及乳胶粒/水界面上,但MPS的缩合反应能被有效抑制。pH是影响MPS水解-缩合反应的重要因素,pH为3.9的体系,所有MPS参与水解-缩合反应;pH为9.2的体系,MPS的水解-缩合程度高,但有少量MPS未参与水解-缩合反应。水解-缩合产物在乳胶粒表面聚集,形成静电立构层,影响水相和乳胶粒相自由基的交换。过硫酸钾(KPS)引发的体系,在反应中后期,共聚速率及St消耗速率均随MPS质量分率增加而下降;偶氮二异丁腈(AIBN)体系,动力学受静电立构层影响较小。pH值也会影响自由基共聚反应,pH为3.9的体系,硅羟基电离程度低,对自由基的吸附速率影响小;pH为9.2的体系,硅羟基电离程度高,使自由基吸附速率下降。
     MPS/St细乳液共聚体系乳胶性能受pH值、MPS质量分率、引发剂种类及乳化剂浓度影响。中性条件下,AIBN引发体系的乳胶粒稳定性好,KPS引发体系的乳胶粒稳定性稍差;MPS质量分率增加,乳胶粒稳定性下降;pH=3.9和9.2的体系,乳胶粒易聚并,但所得产品仍为乳液。乳化剂在乳胶粒表面吸附面积随MPS用量增加而增加,随十二烷基硫酸钠(SDS)用量增加下降,AIBN引发得到的乳胶粒表面的吸附面积小于KPS引发得到的乳胶粒。FTIR及DSC结果证实MPS以自由基共聚方式接入聚合物链。
     从热力学角度预测聚苯乙烯-正辛烷-乳化剂水溶液三相体系的热力学平衡形态,结果显示,不含乳化剂的体系纳米胶囊为热力学稳定形态,而含乳化剂的体系以聚合物为核、油相为壳的粒子形态成为热力学稳定形态。向以液核为模板的St细乳液聚合体系引入N-异丙基丙烯酰胺(NIPAM)和二乙烯基苯(DVB),使齐聚物自由基锚定在油水界面,实现界面聚合,能得到胶囊结构完整、分率高的产品。并研究了NIPAM用量、DVB用量和油相单体质量分率对乳胶粒最终形态的影响。发现只有同时添加适量NIPAM和DVB才能显著提高纳米胶囊分率。
     热力学分析发现,MPS/St共聚物-HD-乳化剂水溶液三元体系,随共聚组成及乳化剂浓度变化可形成“油包聚合物型”核-壳粒子或半球形粒子等形态。因此仍需采用界面细乳液聚合制备有机-无机杂化纳米胶囊。详细研究了以液态烃为模板,MPS/St细乳液聚合体系液滴形成机理、成核方式、外加交联剂体系和pH控制体系纳米胶囊形成机理及影响因素。
     初始液滴尺寸分布宽的体系,因部分模板化合物流失,降低芯材包覆效率。采用水溶性低的模板化合物、提高油相单体分率、增加乳化剂浓度及加入NIPAM均能改善初始液滴尺寸分布。本实验采用的5~10 mmol/L的乳化剂浓度范围内,不会出现胶束成核。单体质量分率超过50%的体系,才会出现均相成核。
     通过调节体系pH值,用MPS水解-缩合反应量调控乳胶粒形态。弱酸或弱碱体系、碱性条件下提高MPS质量分率、添加适量DVB和NIPAM均能提高纳米胶囊分率。改变SDS用量和油相单体质量分率可调节纳米胶囊尺寸及尺寸分布。
The organic-inorganic hybrid nanoparticles and nanocapsules were elaborated via miniemulsion copolymenzation of styrene (St) andγ-methacryloxypropyltrimethoxysilane (MPS) in which the free radical copolymenzation of vinyl groups is accompanied with the hydrolysis and condensation of MPS. The hybrid materials embody the excellent properties of polymers and inorganic materials, and therefore the applications of this kind of materials are extended in more and more fields, such as coating, catalyst, biology, medicine and cosmetics. In this thesis, the kinetics, the reaction mechanism, the colloidal properties of latex particles, and the microstructure of hybrid copolymers in the miniemulsion copolymerization of MPS and St were investigated, as well as the formation mechanism and determining factors for the synthesis of polymeric or organic-inorganic hybrid nanocapsules via interfacial copolymerization in miniemulsion by using an oily template.
     Kinetic experiments were carried out to analyze the effects of the MPS weight content, the nature and amount of initiator, and the surfactant concentration on the copolymerization rate. At low conversions, an increase in the MPS concentration led to an increase in the copolymerization rate due to the higher MPS propagation rate coefficient and its higher water solubility, compared to St. The copolymerization rate and the St polymerization rates decreased at higher conversions presumably due to the formation of a silane-rich interface near the particle surface which decreased the rate at which oligomers could undergo entry. The kinetics of the miniemulsion polymerization reaction performed in the presence of 2, 2'-azobis(isobutyronitrile) (AIBN) supports this hypothesis. As the radicals were mainly produced in the oil phase, the overall kinetic process was no longer influenced by the presence of the silane monomer. In the case of potassium persulfate (KPS), the copolymerization rate was found to be nearly independent of the amount of initiator while it was strongly influenced by the surfactant concentration.
     Increasing the surfactant concentration led to an increase in the rate of hydrolysis indicating that hydrolysis was taking place at the particles/water interface. The rate of hydrolysis was moderate under neutral conditions but increased rapidly at high and low pH. The siloxane oligomers formed under basic or neutral conditions had an influence on the kinetics process which is presumably related to differences in oligomers architecture. Premature crosslinking could be avoided under neutral conditions and minimized in basic conditions even for a high initial MPS weight content.
     The properties of latex particles were investigated in terms of the suspension pH, the MPS weight content, the nature of initiator, and the sodium dodecyl sulfate (SDS) concentration. In contrast to neutral conditions, the initial miniemulsion with a smaller droplet size was obtained under basic and acidic conditions. As the polymerization proceeded, the particle size showed a much rapider increase under acidic and basic conditions than that of neutral conditions. Under neutral conditions, the latex particles in the system initiated by AIBN showed a better colloidal stability than that of the system initiated by KPS. The results of FTIR and DSC indicated that the incorporation of MPS in the polymer chains was mainly via free radical copolymerization.
     According to the thermodynamic analysis, the morphology of nanocapsules is not the favorite for the ternary system of polystyrene/octane/aqueous solution of SDS. However, polymeric nanocapsules with crosslinked shells could be elaborated by interfacial miniemulsion copolymerization of styrene, N-isopropylacrylamide (NIPAM), and divinylbenzene (DVB) through encapsulation of a hydrocarbon in one step. In this process, NIPAM and DVB played key roles in inducing the interfaces of the nanodroplets to be the loci of polymerization. FTIR and solid-state ~(13)CNMR spectroscopic analyses have confirmed that NIPAM molecules were incorporated into the shell copolymers. An investigation of the influence of the amount of DVB on the formation of nanocapsules in the presence of NIPAM has further confirmed that the nanocapsules are formed by an interfacial miniemulsion polymerization mechanism. An increase in the monomer content of the oil phase is detrimental to the formation of nanocapsules.
     Although the morphology of nanocapsules was not the most favorable state for the ternary system of poly(MPS-co-PS)/Hexadecane (HD)/aqueous solution of SDS, the organic-inorganic hybrid nanocapsules were elaborated by interfacial copolymerization of St, MPS, NIPAM and DVB (optional) in miniemulsion under different pH conditions. It has been shown that the droplet size and droplet size distribution of the miniemulsion were extremely influenced by the water solubility of the oil phase, the monomer content, surfactant concentration and NIPAM amount. Smaller droplets with a relatively narrow size distribution could be prepared by introducing a higher amount of monomer, by using HD as template or by increasing the surfactant concentration.
     According to DLS analysis, most of the large droplets originally present in the octane and (to a lesser extent) n-Hexadecane (HD) miniemulsions disappeared during polymerization leading to nanocapsules with a relatively narrow size distribution. We indeed showed that micellar nucleation could be neglected in our systems with 5~10 mmol/L aqueous solution of SDS. Homogenous nucleation only appeared in the system with high monomer contents.
     The morphology of latex particles could be controlled by manipulating the hydrolysis and condensation degree of MPS via changing the pH value of suspension. The portion of nanocapsules could be improved by increasing or decreasing pH value from the neutral condition, increasing the MPS weight content under basic condition, and introducing a suitable amount of crosslinker and NIPAM. The size of nanocapsules could be tuned by changing the SDS concentrations and monomer weight content in oil phase.
引文
[1]Kan C Y,Yuan Q,Wang M C,Kong X Z.Synthesis of silicone-acrylate copolymer latexes and their film properties,Polym Adv Technol,1996,7(2),95-97.
    [2]Kan C Y,Liu D S,Kong X Z,Zhu X L.Study on the preparation and properties of styrene-Butyl acrylate-silicone copolymer lattices,J App Polym Sci,2001,82(13),3194-3200.
    [3]Tissot I,Novat C,Lefebvre F,Bourgeat-Lami E.Hybrid latex particles coated with silica,Macromolecules,2001,34(17),5737-5739.
    [4]Bourgeat-Lami E,Tissot I,Lefebvre F.Synthesis and characterization of SiOH-functionalized polymer latexes using methacryloxy propyl trimethoxysilane in emulsion polymerization,Macromolecules,2002,35(16),6185-6191.
    [5]Ni K F,Shan G R,Weng Z X,Sheibat-Othman N,Fevotte G,Lefebvre F,Bourgeat-Lami E.Synthesis of hybrid core-shell nanoparticles by emulsion(co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane,Macromolecules,2005,38(17),7321-7329.
    [1]Okada A,Usuki A.The chemistry of polymer-clay hybrids,Mater Sci Eng,1995,C3,109-115.
    [2]Gilman J W.Flammability and thermal stability studies of polymer layered-silicate(clay)nanocomposites.Appl Clay Sci,1999,15(1-2),31-49.
    [3]Gilman J W,Jackson C L,Morgan A B,Harris J R,Manias E,Giannelis E P,Wuthenow M,Hilton D,Phillips S H.Flammability properties of polymer-layered silicate nanocomposites,Chem Mater,2000,12(7),1866-1873.
    [4]Godovski D Y.Electron behavior and magnetic properties of polymer nanocomposites.Adv Polym Sci,1995,119,79-122.
    [5]Chujo Y,Saegusa T.Organic polymer hybrids with silica gel formed by means of the solgel method,Adv polym Sci,1992,100,11-29.
    [6]Imhof A.Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells,Langmuir,2001,17(12),3579-3585.
    [7] Tissot I, Reymond J P, Lefebvre F, Bourgeat-Lami E. SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles, Chem Mater, 2002, 14(3), 1325-1331.
    [8] Sperling L H. Interpenetrating polymer networks and related materials. New York, Plenum Press, 1981.
    [9] Landry C J T, Coltrain B K, Wesson J A, Zumbulyadis N, Lippert J L. In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions, Polymer, 1992, 33(7), 1496-1506.
    [10] Wang S, Ahmad Z, Mark J E. A polyamide-silica composite prepared by the sol-gel process, Polym Bull, 1993, 31, 323-330.
    [11] Matejka L, Dusek K, Plestil J, Kriz J, Lednicky F. Formation and structure of the epoxy-silica hybrids, Polymer, 1998,40(1), 171-181.
    [12] Mauritz K A, Jones C K. Novel poly(n-butyl mechacrylate)/titanium oxide alloys produced by the sol-gel process for titanium alkoxide, J Appl Polym Sci, 1990, 40(7-8), 1401-1420.
    [13] Ahmad Z, Sarwar M I, Mark J E. Preparation and properties of hybrid organic-inorganic composites prepared from poly(phenyleneterephthalamide) and titania, Polymer, 1997, 38(17), 4523-4529.
    [14] Breiner J E, Mark J E. Preparation, structure, growth mechanisms and properties of siloxane composites containing silica, titania or mixed silica-tatania phased, Polymer, 1998, 39(22), 5483-5493.
    [15] Landry C J T, Coltrain B K, Brady B K. In situ polymerization of tetraethoxysilane in poly(methyl methacrylate): morphology and dynamic mechanical properties. Polymer, 1992, 33(7), 1486-1495.
    [16] Brennan A B, Miller T M, Vinocur R B. Hybrid organic-inorganic interpenetrating networks. Acs Symp Ser, 1995, 585, 142-162.
    [17] Jackson C L, Bauer B J, Nakatani A I, Barnes J D. Synthesis of hybrid organic-inorganic materials from interpenetrating polymer network chemistry, Chem Mater, 1996, 8(3), 727-733.
    [18] Tamaki R, Naka K, Chujo Y. Synthesis of polystyrene/silica gel polymer hybrids by in situ polymerization method, Polym Bull, 1997, 39, 303-310.
    [19] Tamaki R, Samura K, Chujo Y. Synthesis of polystyrene and silica gel polymer hybrids via pi.-pi. Interactions, Chem Commun, 1998, 1131-1132.
    [20] Ellsworth M W, Novak B M. Mutually interpenetrating inorganic-organic networks. New routes into nonshrinking sol-gel composite materials. J Am Chem Soc, 1991, 113(7), 2756-2758.
    [21] Novak B M, Davies C. Inverse organic-inorganic composite materials. 2. Free radical routes into nonshrinking sol-gel composites, Macromolecules, 1991, 24(19), 5481-5483.
    [22] Bourgeat-Lami E, Espiard P, Guyot A, Gauthier C, David L, Vigier G. Emulsion polymerization in the presence of colloidal silica particles. Application to te reinforcement of poly(ethyl acrylate) films. Angew Makromol Chem, 1996, 242, 105-122.
    [23] Bourgeat-Lami E, Espiard P, Guyot A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica. 1. Functionalization and dispersion of silica, Polymer, 1995, 36(23), 4385-4389.
    [24] Bourgeat-Lami E, Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media. 1. Silica nanoparticles encapsulated by polystyrene, J Colloid interfSci, 1998, 197(2), 293-308.
    [25] Bourgeat-Lami E, Lang J. Encapsulation of inorganic particles by dispersion polymerization in polar media. 2. Effect of silica size and concentration on the morphology of silica-polystyrene composite particles. J colloid interf Sci, 1999, 210(2), 281-289.
    [26] Frisch H L, Mark J E. Nanocomposites prepared by threding polymer chains through zeolites, mesoporous silica, or silica nanotubes. Chem Mater, 1996, 8(8), 1735-1738.
    [27] Frisch H L, Xue Y. Hybrid inorganic/organic interpenetrating polymer networks based on zeolite 13X and polystyrene, J Polym Sci Part A: Polym Chem, 1995, 33(12), 1979-1985.
    [28] Frisch H L, Maaref S, Xue Y, Beaucage G, Pu Z, Mark J E. Interpenetrating and pseudo-interpenetrating polymer networks of poly(ethyl acrylate) and zeolite 13X, J Polym Sci, Part A: Polym Chem, 1996, 34(4), 673-677.
    [29] Bissessur R, Degroot D, Schindler J, Kannewurf C, Kanatzidis M. Inclusion of poly(aniline) into molybdenum trioxide, MoO_3, Chem Commun, 1993, 31-34.
    [30] Matsubayashi G, Nakajima H. Intercalative polymerization of 3-methyl- and 3, 4-dimethylpyrrole in the VOPO_4 interlayer space, Chem Lett, 1993, 31-34.
    [31] Pohl E R, Osterholtz F D. Molecular characterization of composite interfaces, eds. Ishida H, Kumar G, Plenum, New York, 1985, p157.
    [32]Sommer L H,Parker G A,Lloyd N C,Frye C L,Michael K W.Stereochemistry of asymmetric silicon.Ⅳ.The Sn2-Si stereochemistry rule for good leaving groups,J Am Chem Soc,1967,89(4),857-860.
    [33]Keefer K D.Better ceramics through Chemistry,eds.Brinker C J,Clark D E,Ulrich D R,Nort-Holland,New York,1984,p15-24.
    [34]Uhlmann D R,Zelinski B J,Wnek G E.Better ceramics through Chemistry,eds.Brinker C J,Clark D E,Ulrich D R,Nort-Holland,New York,1984,p59-70.
    [35]Iler R K.The Chemistry of silica,Wiley,New York,1979.
    [36]Keefer K D.Better ceramics through Chemistry,eds.Brinker C J,Clark D E,Ulrich D R,Nort-Holland,New York,1984,p15-24.
    [37]Engelhardt V G,Altenburg W,Hoebbel D,Wieker W Z.Anorg Allg Chem,1977,418,43-52.
    [38]Grubbs W T.J Am Chem Soc,1954,76,3408.;Okkerse C.Physical and Chemical aspects of adsorbents and catalyst,ed.Linsen B G,Academic Press,New York,1970.
    [39]倪克钒,单国荣,翁志学.甲基丙烯酸 3-三甲氧基硅丙酯的水解-缩合反应速率常数,化工学报,2006,57(12),1987-1990.
    [40]Savard S,Blanchard L P,Leonard J,Prud'Homme R E.Hydrolysis and condensation of silanes in aqueous solution,Polymer Composites,1984,5(4),242-249.
    [41]Selvan S T,Spatz J P,Klok H-A,Moiler M.Gold-Polypyrrole core-shell particles in diblock copolymer micelles,Adv Mater,1998,10(2),132-134.
    [42]Gan L M,Zhang L H,Chan H S O,Chew C H.Preparation of conducting polyanilinecoated barium-sulfate nanoparticles in inverse micromolecules,Mater Chem Phys,1995,40(2),94-98.
    [43]Vitry S,Mezzino A,Gauthier C,Cavaille J-Y,Lefebvre F,Bourgeat-Lami E.Hybrid copolymer latexes cross-linked with methacryloxy propyl trimethoxy silane.Film formation and mechanical properties,Chimie,2003,6,1285-1293.
    [44]Kan C Y,Yuan Q,Wang M C,Kong X Z.Synthesis of silicone-acrylate copolymer latexes and their film properties,Polym Adv Technol,1996,7(2),95-97.
    [45]Kan C Y,Liu D S,Kong X Z,Zhu X L.Study on the preparation and properties of styrene-Butyl acrylate-silicone copolymer lattices,J App Polym Sci,2001,82(13),3194-3200.
    [46] Kan C Y, Kong X Z, Yuan Q, Liu D S. Morphologyical prediction and its application to the synthesis of polyacrylate/polysiloxane core/shell latex particles, J App Polym Sci, 2001, 80(12), 2251-2258.
    [47] Tissot I, Novat C, Lefebvre F, Bourgeat-Lami E. Hybrid latex particles coated with silica, Macromolecules, 2001, 34(17), 5737-5739.
    [48] Bourgeat-Lami E, Tissot I, Lefebvre F. Synthesis and characterization of SiOH-functionalized polymer latexes using methacryloxy propyl trimethoxysilane in emulsion polymerization, Macromolecules, 2002, 35(16), 6185-6191.
    
    [49] Ni K F, Shan G R, Weng Z X, Sheibat-Othman N, Fevotte G, Lefebvre F, Bourgeat- Lami E. Synthesis of hybrid core-shell nanoparticles by emulsion (co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane, Macromolecules, 2005, 38(17), 7321-7329.
    [50] Ni K F, Sheibat-Othman N, Shan G R, Fevotte G, Bourgeat-Lami E. Kinetics and modeling of hybrid core-shell nanoparticles synthesized by seeded emulsion (co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane, Macromolecules, 2005, 38(22), 9100-9109.
    [51] Huang S Q, Fan D Q, Lei Y Q, Huang H. Alkoxysilane-functionalized acrylic copolymer latexes. I. Particle size, morphology, and film-forming properties, J App Polym Sci, 2004, 94(3), 954-960.
    [52] Guo T Y, Chen X, Song M D, Zhang B H. Preparation and properties of core [poly(styrene-n-butyl acrylate)]-shell [ poly(styrene-methyl methacrylate-vinyl triethoxide silane)] structured latex particles wth self-crosslinking characteristics, J App Polym Sci, 2006, 100(3), 1824-1830.
    [53] Masaaki Y. Aqueous emulsion composition of a silyl group-containing copolymer, US Pat, 5240992, 1993.
    
    [54] Liles D T, Murray D L. Silicon/organic copolymer emulsion, US Pat, 5932651, 1999.
    [55] Schork F J, Luo Y W, Smulders W, Russum J P, Butte A, Fontenot K. Miniemulsion polymerization, Adv Polym Sci, 2005, 175, 129-255.
    [56] Capek I, Chern C S. Radical polymerization in direct mini-emulsion systems, Adv Polym Sci, 2001, 155,101-165.
    [57] Antonietti M, Landfester K. Polyreactions in miniemulsions, Prog Polym Sci, 2002, 27(4), 689-757.
    [58] Asua J M. Miniemulsion polymerization, Prog Polym Sci, 2002, 27(7), 1283-1346.
    [59]Landfester K.Miniemulsion for nanoparticles synthesis,Top Curr Chem,2003,227,75-123.
    [60]Marcu I,Daniels E S,Dimonie V L,Hagiopol C,Roberts J E,El-Aasser M S.Incorporation of alkoxysilanes into mdel latex systems:vinyl copolymerization of vinyltriethoxysilane and n-butyl acrylate,Macromolecules,2003,36(2),328-332.
    [61]Marcu I,Daniels E S,Dimonie V L,Roberts J E,El-Aasser M S.A miniemulsion approach to the incorporation of vinyltriethoxysilane into acrylate latexes,Progr Colloid Polym Sci,2004,124,31-36.
    [62]Zhang S W,Zhou S X,Weng Y M,Wu L M.Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and γ-methacryloxypropyltrimethoxysilane,Langmuir,2006,22(10),4674-4679.
    [63]Luo Y W,Xu H J,Zhu B.The influence of monomer types on the colloidal stability in the miniemulsion copolymerization involving alkoxysilanes monomer,Polymer,2006,47(14),4959-4966.
    [64]Donescu D,Teodorescu M,Serban S,Fusulan L,Petcu C.Hybrid materials obtained in microemulsion from methyl methacrylate,methacryloxypropyltrimethoxysylane,tetraethoxysilane,Eur Polym J,1999,35(9),1679-1686.
    [65]Donescu D,Fusulan L,Petcu C,Vasilescu M,Deleanu C,Udrea S.Hybrid polymer inorganic materials prepared from ternary microemulsions,Macromol Symp,2002,179(1),315-329.
    [66]Tamai T,Watanabe M.Acrylic polymer/silica hybrids prepared by emulsifier-free emulsion polymerization and the sol-gel process,J Polym Sci Part A:Polym Chem,2006,44(1),273-380.
    [67]宋健,陈磊,李效军.微胶囊化技术及应用,化学工业出版社,北京,2001,p23.
    [68]Kowalski A,Vogel M,Blankenship R M.Sequential heteropolymer dispersion and a particulate material obtainable therefrom,useful in coating compositions as a thickening and/or opacifying agent,US Pat,4427836,1984.
    [69]Kowalski A,Vogel M,Blankenship R M.Sequential heteropolymer dispersion and a particulate material obtainable therefrom,useful in coating compositions as a thickening and/or opacifying agent,US Pat,44684981,1984.
    [70]Kowalski A,Vogel M.Sequential heteropolymer dispersion and a particulate material obtainable therefrom,useful in coating compositions as a thickening and/or opacifying agent,US Pat,4469825,1984.
    [71] Blankenship R M, Kowalski A. Production of core-sheath polymer particles containing voids, resulting product and use, US Pat, 4594363,1986.
    
    [72] Kowalski A, Vogel M. Multi-stage opacifying polymer particles containing non- polymeric acid abdorbed therein, US Pat, 4880842,1989.
    [73] Blankenship R M. Encapsulated hydrophilic copolymers and their preparation, US Pat, 5494971,1996.
    [74] Koh K, Ohno K, Tsujii Y, Fukuda T. Precision synthesis of organic/inorganic hybrid nanocapsules with a silanol-functionalized micelle template, Angew Chem Int Ed, 2003, 42(35), 4194-4197.
    [75] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 1998, 282(5391), 1111-1114.
    [76] Caruso F, Caruso R A, Mohwald H. Production of hollow microspheres from nanostructureed composite particles, Chem Mater, 1999,11(11), 3309-3314.
    [77] Caruso R A, Susha A, Caruso F. Multilayer titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres, Chem Mater, 2001, 13(2), 400-409.
    [78] Caruso F, Spasova M, Susha A, Giersig M, Caruso R A. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach, Chem Mater, 2001, 13(1), 109-116.
    [79] Kida T, Mouri M, Akashi M. Fabrication of hollow capsules composed of poly(methy methacrylate) stereocomplex films, Angew Chem Int Ed, 2006, 45(45), 7534-7536.
    [80] Such G K, Tjipto E, Postma A, Johnston A P R, Caruso F. Ultrathin, responsive polymer click capsules, Nano Lett, 2007, 7(6), 1706-1710.
    [81] Kozlovskaya V, Ok S, Sousa A, Libera M, Sukhishvili S A. Hydrogen-bonded polymer capsules formed by layer-by-layer self-assembly, Macromolecules, 2003, 36(23), 8590-8592.
    [82] Chen M, Wu L M, Zhou S X, Lu B. A method for the fabrication of monodisperse hollow silica spheres, Adv Mater, 2006, 18(6), 801-806.
    [83] Mandal T K, Fleming M S, Walt D R. Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates, Chem Mater, 2000, 12(11), 3481-3487.
    [84] Fu G D, Shang Z, Hong L, Kang E T, Neoh K G, Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated Atom Transfer Radical Polymerizations, Macromolecules, 2005, 38(18):7867-7871.
    [85] Blomberg S, Ostberg S, Harth E, Bosman A W, Van Horm B, Hawker C J. Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization, J Polym Sci Part A:Polym Chem, 2002, 40(9), 1309-1320.
    [86] Im S H, Jeong U, Xia Y. Polymer hollow particles with controllable holes in their surfaces, Nat Mater, 2005, 4(9), 671-675.
    [87] Torza S, Mason S G. Three-phase interactions in shear and electrical fields, J Colloid Inter Sci, 1970, 33(1), 67-83.
    [88] Sundberg D C, Casassa A P, Pantazopoulos J, Muscato M R. Morphology development of polymeric micropaticles in aquoues dispersions. I Thermodynamic consideration, J Appl Polym Sci, 1990,41(7-8), 1425-1442.
    [89] Winzor C L, Sundberg D C. Conversion dependent morphology predictions for composite emulsion polymes: 1. Synthetic latices, Polymer, 1992, 33(18), 3797-3810
    [90] Winzor C L, Sundberg D C. Conversion dependent morphology predictions for composite emulsion polymes: 2. Artificial latices, Polymer, 1992, 33(20), 4269-4279
    [91] Chen Y C, Dimonie V, El-Aasser M S. Interfacial phenomena controlling particle morphology of composite latexes, J Appl Polym Sci, 1991, 42(4), 1049-1063.
    [92] Gonzalez-Ortiz L J, Asua J M. Development of particle morphology in emulsion polymerization. 1. Cluster dynamics, Macromolecules, 1995, 28(9), 3135-3145.
    [93] Gonzalez-Ortiz L J, Asua J M. Development of particle morphology in emulsion polymerization. 2. Cluster dynamics in reacting systems, Macromolecules, 1996, 29(1), 383-389.
    [94] Gonzalez-Ortiz L J, Asua J M. Development of particle morphology in emulsion polymerization. 1. Cluster nucleation and dynamics in polymerizing systems, Macromolecules, 1996, 29(9), 4520-4527.
    [95] Cho I, Lee K W. Morphology of latex particles formed by poly(methyl methacrylate)- seeded emulsion polymerization of styrene, J Appl Polym Sci, 1985, 30(5), 1903-1926.
    [96] McDonald C J, Bouck K J, Chaput A B, Stevens C J. Emulsion polymerization of voided particles by encapsulation of a nonsolvent, Macromolecules, 2000, 33(5), 1593-1605.
    [97] McDonald C J, Chonde Y, Cohrs W, MacWilliams D. Method for preparing hollow latexes, US Pat, 4973670, 1990.
    [98] Jang J, Lee K. Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization, Chem Commun, 2002, 1098-1099.
    [99] Kitzmiller E L, Miller C M, Sudol E D, El-Aasser M S. Macromol Symp, 1995, 92, 157.
    [100] Bechthold N, Tiarks F, Willert M, Landfester K, Antonietti M. Miniemulsion polymerization: Applications and new materials, Macromol Symp, 2000, 151(1), 549-555.
    [101] Tiarks F, Landfester K, Antonietti M. Encapsulation of carbon black by miniemulsion polymerization, Macromol Chem Phys, 2001, 202(1), 51-60.
    [102] Tiarks F, Landfester K, Antonietti M. Preparation of polymeric nanocapsules by miniemulsion polymerization, Langmuir, 2001, 17(3), 908-918.
    [103] van Zyl A J P, Sanderson R D, Wet-Roos de D, Klumperman B. Core/Shell Particles containing liquid cores: Morphology prediction, synthesis and characterization, Macromolecules, 2003, 36(23), 8621-8629.
    [104] Luo Y W, Zhou X D. Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process, J Polym Sci Part A: Polym Chem, 2004, 42(9), 2145-2154.
    [105] Koh H D, Lee J S. Polymeric nanocapsules cantaining nematic LCs as hydrophobes in miniemulsion polymerization, Macromol Rapid Commun, 2007, 28(3), 315-321.
    [106] Chen Y, Liu H R, Zhang Z C, Wang S J. Preparation of polymeric nanocapsules by radicaion indeuced miniemulsion polymerization, Eur Polym J, 2007, 43(7), 2848-2855.
    [107] Ni K F, Shan G R, Weng Z X. Synthesis of hybrid nanocapsules by miniemulsion (co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane, Macromolecules, 2006, 39(7), 2529-2535.
    [108] Matyjaszewski K, Qiu J, Tsarevsky N V, Charleux B. Atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system: a miniemulsion approach, J Polym Sci Part A: Polym Chem, 2000, 38(S1), 4724-4734.
    [109] Li M, Matyjaszewski K. Reverse atom transfer radical polymerization in miniemulsion, Macromolecules, 2003, 36(16), 6028-6035.
    [110] de Brouwer H, Monteiro M J, Tsavalas J G, Schork F J. Living radical polymerization in miniemulsion using reversible addition-fragmentation chain transfer, Macromolecules, 2000, 33(25), 9239-9246.
    [111] Tsavalas J G, Schork F J, de Brouwer H, Monteiro M J. Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions, Macromolecules, 2001, 34(12), 3938-3946.
    [112] Vosloo J J, de Wet-Roos D, Tonge M P, Sanderson R D. Controlled free radical polymerization in water-borne dispersion using reversible addition-fragmentation chain transfer, Macromolecules, 2002, 35(13), 4894-4902.
    [113] Torini L, Argillier J F, Zydowicz N. Interfacial polyconsensation encapsulation in miniemulsion, Macromolecules, 2005, 38(8), 3225-3236.
    [114] Crespy D, Stark M, Hoffmann-Richter C, Ziener U, Landfester K. Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets, Macromolecules, 2007, 40(9), 3122-3135.
    [115] Jagielski N, Sharma S, Hombach V, Mailander V, Rasche V, Landfester K. Nanocapsules synthesized by miniemulsion technique for application as new contrast agent materials, Macromol Chem Phys, 2007, 208(19-20), 2229-2241.
    [116] Scott C, Wu D, Ho C C, Co C C. Liquid-core capsules via interfacial polymerization: a free-radical analogy of the Nylon rope trick, J Am Chem Soc, 2005, 127(12), 4160-4161.
    [117] Wu D, Scott C, Ho C C, Co C C. Aqueous-core capsules via interfacial free radical alternationg copolymerization, Macromolecules, 2006, 39(17), 5848-5853.
    [118] Luo Y W, Gu H Y. A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization, Macromol Rapid Commun, 2006, 27(1), 21-25.
    [119] Luo Y W, Gu H Y. Nanoencapsulation via interfacially condined reversible addition fragmentation transfer (RAFT) miniemulsion polymerization, Polymer, 2007, 48(11), 3262-3272.
    [120] Lu F J, Luo Y W, Li B G. A facile route to synthesize highly uniform nanocapsules: Use of amphiphilic poly(acrylic acid)-block-polystyrene RAFT agents to interfacially confine miniemulsion polymerization, Macromol Rapid Commun, 2007, 28(7), 868-874.
    [121] Klumperman B. Styrene/Maleic anhydride macro-RAFT-mediated encapsulation, Macromol Chem Phys, 2006, 207(10), 861-863.
    [122] Ren Y, Wang G W, Huang J L. Preparation of liquid-core nanocapsules from poly[(ethylene oxide)-co-glycidol] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of pyrene, Biomacromolecules, 2007, 8(6), 1873-1880.
    [123] Peng B, Chen M, Zhou S X, Wu L M, Ma X H. Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique, J Colloid Inter Sci, 2008, 321(1), 67-73.
    [124] Jovanovic A V, Underhill R S, Bucholz T L, and Duran R S. Oil core and silica shell nanocapsules: toward controlling the size and the ability to sequester hydrophobic compound, Chem Mater, 2005, 17(13), 3375-3383.
    [125] Underhill R S, Jovanovi A V, Carino S R, Varshney M, Shah D O, Dennis D M, Morey T E, and Duran R S. Oil-filled silica nanocapsules for lipophilic drug uptake: implication for drug detoxification therapy, Chem Mater, 2002, 14(12), 4919-4925.
    [126] Jovanovic A V, Flint J A, Varshney M, Morey T E, Dennis D M, and Duran R S. Surface modification of silica core-shell nanocapsules: biomedical implications, Biomactomolecules, 2006, 7(3), 945-949.
    [127] Loxley A, Vincent B. Preparation of poly(methyl methacrylate) microcapsules with liquid core, J Colloid Inter Sci, 1998, 208(1), 49-62.
    [128]Romero-Cano M S, Vincent B. Controlled release of 4-nitroanisole from poly(lactic acid) nanoparticles, J Controlled Release, 2002, 82(1), 127-135.
    [129] Dowding P J, Atkin R, Vincent B, Bouillot P. Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I . Characterization and release rates for microcapsules with polystyrene shells, Langmuir, 2004, 20(26), 11374-11379.
    [130] Dowding P J, Atkin R, Vincent B, Bouillot P. Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. II. Controlling the release profile of active molecules, Langmuir, 2005, 21(12), 5278-5284.
    [131] Barm G, Bachmann R, Sliwka W. Microcapsules and their production, Br Pat, 1375118, 1974.
    [132] Mathiowitz E, Langer R. Preparation of multiwall polymeric microcapsules, US Pat, 4861627,1989.
    [133] Atkin R, Davies P, Hardy J, Vincent B. Preparation of aqueous core/polymer shell microcpsules by internal phase separation, Macromolecules, 2004, 37(21), 7979-7985.
    
    [134] Zydowicz N, Nzimba-Ganyanad E, Zydowicz N. PMMA microcapules containing water soluble dyes obtained by double emulsion-solvent evaporation technique, Polym Bull, 2002, 47(5), 457-463.
    [135] Lorenceau E, Utada A S, Link D R, Cristobal G, Joanicot M, Weitz D A. Generation of polymerosomes from double-emulsions, Langmuir, 2005, 21(20), 9183-9186.
    [136] Grigoriev D O, Bukreeva T, Mohwald H, Shchukin D G. New method for fabrication of loaded micro- and nanocontainers: emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core, Langmuir, 2008, 24(3), 999-1004.
    [137] Kizhakkedathu J N, Norris-Jones R, Brooks D E. Synthesis of well-defined environmentally responsive polymer brushes by aqueous ATRP, Macromolecules, 2004, 37(3), 734-743.
    [138] Zhang W Q, Shi L Q, Ma R J, An Y L, Xu Y L, Wu K. Micellization of thermo- and pH-responsive triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyrodine)-b- poly(N-isopropylacrylamide), Macromolecules, 2005, 38(21), 8850-8852.
    [139] Jones C D, Lyon L A. Dependence of shell thickness on core compression in acrylic acid modified poly(N-isopropyacrylamide) core/shell microgels, Langmuir, 2003, 19(11), 4544-4547.
    [140] Zhu M Q, Wang L Q, Exarhos G J, Li A D Q. Thermosensitive gold nanoparticles, J Am Chem Soc, 2004, 126(9), 2656-2657.
    [141] Garnweitner G, Smarsly B, Assink R, Ruland W, Bond E, Brinker C J. Self-assembly of an environmentally responsive polymer/silica nanocomposite, J Am Chem Soc, 2003, 125(19), 5626-5627.
    [142] Chen B, Gao C Y. Robust poly(allyamine)-graft-poly(N-isopropylacrylamide) particles prepared by physical crosslinking with poly(styrene sulfonate), Macromol Rapid Commun, 2005,26(20), 1657-1663.
    [143] Ilmain F, Tanaka T, Kofufuta E. Volume transition in a gel driven by hydrogen bonding, Nature, 1991, 349(6308), 400-401.
    [144] Schild H G, Poly(N-isopropylacrylamide): experiment, theory and application, Prog Polym Sci, 1992, 17(2), 163-249.
    [145] Amiya T, Hirokawa Y, Hirose Y, Li Y, Tanaka T. Reentrant phase-transition of N- isopropylacrylamide gels in mixe-solvent, J Chem Phys, 1987, 86(4), 2375-2379.
    [146] Hirotsu S. Elastic anomaly near the critical point of volume phase transition in polymer gels, Macromolecules, 1990, 23(3), 903-905.
    
    [147] Heskins M, Cuillet J E. J Macromol Sci Chem, 1969, 2, 1441-1446.
    [148] Lin S Y, Chen K S, Liang R C. Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water, Polymer, 1999, 40(10), 2619-2624.
    [149] Sun Q H, Deng Y L. In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization, J Am Chem Soc, 2005, 127(23), 8274-8275.
    [150] Luo Y, Schork J F, Deng Y, Yan Z. Emilsion/miniemulsion polymerization of butyl acrylate with the cumene hydroperoxide/tetraethlenepentamine redox initiator, Polym React Eng, 2001, 9(3), 183-197.
    [151] Gao H F, Yang W L, Min K, Zha L S, Wang C C, Fu S K. Thermosensitive poly(N- isopropylacrylamide) nanocapsules with controlled permeability, Polymer, 2005, 46(4), 1087-1093.
    [1]Tissot I,Novat C,Lefebvre F,Bourgeat-Lami E.Hybrid latex particles coated with silica,Macromolecules,2001,34(17),5737-5739.
    [2]Ni K F,Shan G R,Weng Z X,Sheibat-Othman N,Fevotte G,Lefebvre F,Bourgeat-Lami E.Synthesis of hybrid core-shell nanoparticles by emulsion(co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane,Macromolecules,2005,38(17),7321-7329.
    [3]Marcu I,Daniels E S,Dimonie V L,Hagiopol C,Roberts J E,El-Aasser M S.Incorporation of alkoxysilanes into mdel latex systems:vinyl copolymerization of vinyltriethoxysilane and n-butyl acrylate,Macromolecules,2003,36(2),328-332.
    [4]倪克钒,单国荣,翁志学,Bourgeat-Lami E,Fevotte G.有机-无机杂化核壳型乳胶粒的制备及其粒径控制,化工学报,2005,56(2),352-357.
    [5]倪克钒,单国荣,翁志学.甲基丙烯酸 3-三甲氧基硅丙酯与苯乙烯乳液共聚合的过程分析,高分子学报,2006,7,912-916.
    [6]Zhang S W,Zhou S X,Weng Y M,Wu L M.Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and γ-methacryloxypropyltrimethoxysilane,Langmuir,2006,22(10),4674-4679.
    [7]Luo Y W,Xu H J,Zhu B.The influence of monomer types on the colloidal stability in the miniemulsion copolymerization involving alkoxysilanes monomer,Polymer,2006,47(14),4959-4966.
    [8]Rajot I,Brne S,Graillat C,Hamaide T.Nonionic nanoparticles by miniemulsion polymerization of vinyl acetate with oligocaprolactone macromonomer or Miglyol as hydrophobe,application to the encapsulation of Indomethacin,Macromolecules,2003,36(20),7484-7490
    [9]Maron,S.H.;Elder,M.E.;Ulevitch,I.N.J.Colloidlnterface Sci.1954,9,89-103.
    [10]Ni K F,Sheibat-Othman N,Shan G R,Fevotte G,Bourgeat-Lami E.Kinetics and modeling of hybrid core-shell nanoparticles synthesized by seeded emulsion (co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane,Macromolecules,2005,38(22),9100-9109.
    [11]Bourgeat-Lami E,Tissot I,Lefebvre F.Synthesis and characterization of SiOH-functionalized polymer latexes using methacryloxy propyl trimethoxysilane in emulsion polymerization,Macromolecules,2002,35(16),6185-6191.
    [12]倪克钒,单国荣,翁志学.甲基丙烯酸 3-三甲氧基硅丙酯的水解-缩合反应速率常数,化工学报,2006,57,2987-2990.[13]Maxwell I A,Morisson BR,Napper D H,Gilbert R G.Entry of free radicals into latex particles in emulsion polymerization,Macromolecules,1991,24(7),1629-1640. [14]Hansen F K,Ugelstad J.Particle nucleation in emulsion polymerization.I.A theory for homogenous nucleation,JPolym Sci Polym Chem,1978,16(8):1953-1979. [15]Rao V L,Babu G N.Copolymerization of styrene,acrylonitrile,and methyl methacrylate with γ-methacryloxypropyl trimethoxysilane,Eur Polym J,1989,25(6),605-609. [16]Gilbert,R.G.in "Emulsion Polymerization:A Mechanistic Approach",Ottewill,R.H and Rowell,R.L.(Eds.) Academic Press,London,p.362,1995. [17]Nomura M,Tobita H,Suzuki K.Emulsion polymerization:Kinetic and mechanistic aspects,Polymer Particles,2005,175,1-128. [18]Cohen EM,Lyons R A,Gilbert R G.Effects ofpoly(acrylic acid) electrosteic stabilizer on entry and exit in emulsion polymerization,Macromolecules,1996,29(15),5128-5135 [19]Cheong I W,Kim J H.Effects of surface charge density on emulsion kinetics and secondary particle formation in emulsifier-free seeded emulsion polymerization of methyl methacrylate,Colloid Polym Sci,1997,275(8),736-743.v
    [20]Thickett,S C,Gaborieau M,Gilbert RG.Extented mechanistic description of particle growth in electrosterically stabilized emulsion polymerization systems.Macromolecules,2007,40(13),4710-4720 [21]Parks,G.A.The isoelectric points of solid oxides,solid hydroxides,and aqueous hydroxo complex systems,Chem Rev,1965,65,177-198. [22]Blythe P J,Klein A,Phillips J A,Sudol E D,El-Aasser M S.Miniemulsion polymerization of styrene using the oil-soluble initiator AMBN,J Polym Sci Part A:Polym Chem,1999,37(23):4449-4457. [23]Alduncin J A,Forcada J,Barandiarian M J,Asua J M.On the main locus of radical formation in emulsion polymerization initiated by oil-soluble initiators,J Polym Sci Part A:Polym Chem,1991,29(9),1265-1270. [24]Bechthold N,Landfester K.Kinetics of miniemulsion polymerization as revealed by calorimetry,Macromolecules 2000,33(13),4682-4689. [25]曹同玉,刘庆普,胡金生.聚合物乳液聚合原理性能及应用.化学工业出版社,北京,p337-338,2002. [26]Erdem B,Sully Y,Sudol E D,Dimonie V L,El-Aasser M S.Dtermination of miniemulsion droplet size via soap titration,Langmuir,2000,16(11):4890-4895.
    [27] Huang H, Zhang H, Hu F, Ai Z, Tan B, Cheng S, Li J. Miniemulsion copolymerization of styrene and butyl acrylate initiated by redox system at lower temperature: reaction kinetics and evolution of particle-size distribution, J Appl Polym Sci, 1999, 73, 315-322.
    
    [28] Tissot I, Reymond J P, Lefebvre F, Bourgeat-Lami E. SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles, Chem Mater, 2002, 14(3), 1325-1331.
    
    [29] Landfester K, Eisenblatter J, Rothe R. Preparation of polymerizable miniemulsion by ultrasonication, JCT Res. 2004, 1, 65-68.
    
    [1] McDonald C J, Bouck K J, Chaput A B, Stevens C J. Emulsion polymerization of voided particles by encapsulation of a nonsolvent, Macromolecules, 2000, 33(5), 1593-1605.
    [2] McDonald C J, Chonde Y, Cohrs W, MacWilliams D. Method for preparing hollow latexes, US Pat, 4973670,1990.
    [3] Jang J, Lee K. Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization, Chem Commun, 2002, 1098-1099.
    [4] Tiarks F, Landfester K, Antonietti M. Preparation of polymeric nanocapsules by miniemulsion polymerization, Langmuir, 2001, 17(3), 908-918.
    [5] van Zyl A J P, Sanderson R D, Wet-Roos de D, Klumperman B. Core/Shell Particles containing liquid cores: Morphology prediction, synthesis and characterization, Macromolecules, 2003, 36(23), 8621-8629.
    [6] Ni K F, Shan G R, Weng Z X. Synthesis of hybrid nanocapsules by miniemulsion (co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane, Macromolecules, 2006, 39(7), 2529-2535.
    [7] Luo Y W, Gu H Y. A general strategy for nano-encapsulation via interfacially confined living/controlled radical miniemulsion polymerization, Macromol Rapid Commun, 2006, 27(1), 21-25.
    [8] Luo Y W, Gu H Y. Nanoencapsulation via interfacially condined reversible addition fragmentation transfer (RAFT) miniemulsion polymerization, Polymer, 2007, 48(11), 3262-3272.
    [9] Lu F J, Luo Y W, Li B G. A facile route to synthesize highly uniform nanocapsules: Use of amphiphilic poly(acrylic acid)-block-polystyrene RAFT agents to interfacially confine miniemulsion polymerization, Macromol Rapid Commun, 2007, 28(7), 868-874.
    [10] Scott C, Wu D, Ho C C, Co C C. Liquid-core capsules via interfacial polymerization: a free-radical analogy of the Nylon rope trick, J Am Chem Soc, 2005, 127(12), 4160-4161.
    
    [11] Wu D, Scott C, Ho C C, Co C C. Aqueous-core capsules via interfacial free radical alternationg copolymerization, Macromolecules, 2006, 39(17), 5848-5853.
    
    [12] Hansen F K, Ugelstad J. Particle nucleation in emulsion polymerization. I. A theory for homogenous nucleation, J Polym Sci Polym Chem, 1978, 16(8): 1953-1979.
    
    [13] van Zyl A J P, Bosch R F P, McLeary J B, Sanderson R D, Klumperman B. Synthesis of styrene based liquid-filled polymeric nanocapsules by the use of RAFT-mediated polymerization in miniemulsion, Polymer, 2005, 46(11), 3607-3615.
    
    [14] Heskins, M.; Guillet, J. E. J Macromol Sci Chem, 1969, 2, 1441-1455.
    
    [15] Xiao X C, Chu L Y, Chen W M, Wang S, Xie R. Preparation of submicrometer-size monodispersed thermoresponsive core-shell hydrogel microspheres, Langmuir, 2004, 20(13), 5247-5253.
    
    [16] Kim H, Burgess D J. Prediction of interfacial tension between oil mixtures and water, J Colloid Inter Sci, 2001, 241(2), 509-513.
    
    [1] Li G, Prasad S, Dhinojwala A. Dynamic interfacial tension at the oil/surfactant-water interface, Langmuir, 2007, 23(20), 9929-9932.
    [2] Kim H, Burgess D J. Prediction of interfacial tension between oil mixtures and water, J Colloid Inter Sci, 2001, 241(2), 509-513.
    
    [3] Owens D K, Wendt R C. Estimation of the surface free energy of polymers, J Appl Polym Sci, 1969, 13(8), 1741-1747.
    [4] Torza S, Mason S G. Three-phase interactions in shear and electrical fields, J Colloid Inter Sci, 1970, 33(1), 67-83.
    [5] Huibers P D T, Katritzky A R. Correlation of the aqueous solubility of hydrocarbons and halogenated hydrocarbon with molecular structure, J Chem Int Comput Sci, 1998, 38, 283-292.
    [6] Weiss J, Herrmann N, McClements D J. Ostwald ripping of hydrocarbon emulsion droplets in surfactant solutions, Langmuir, 1999, 15(20), 6652-6657.
    [7] Mandal A B, Nair B U, Ramaswamy D. Determination of the critical micelle concentration of surfactants and the partition coefficient of an electrochemical probe by using cyclic voltammetry, Langmuir, 1988, 4(3), 736-739.
    [8] Fitch R M, Tsai C H. Particle formation in polymer colloids. III. Prediction of the number of particles by a homogenous nucleation theory. In: Fitch R M, Editor. Polymer colloids. New York, Plenum Press, 1971, p73-102.
    [9] Fitch R M, Tsai C H. Homogenous nucleation of polymer colloids. IV. The role of soluble oligomeric radicals. In: Fitch R M, Editor. Polymer colloids. New York, Plenum Press, 1971,p103-116.
    [10] Tiarks F, Landfester K, Antonietti M. Preparation of polymeric nanocapsules by miniemulsion polymerization, Langmuir, 2001, 17(3), 908-918.
    [11] Luo Y W, Zhou X D. Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process, J Polym Sci Part A: Polym Chem, 2004,42(9), 2145-2154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700