浮游植物光合作用活性原位测量方法与系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化与饮用水安全预警是当今世界各国共同关注的热点问题和环境科学难题,浮游植物大量增殖形成的“水华”和“赤潮”严重危害人类身心健康和经济可持续发展。光合作用活性原位测量可以获取水体浮游植物的生长状态信息,是“水华”和“赤潮”监测和预警的重要参数。目前缺少可用于浮游植物光合作用活性原位测量的方法和设备。论文研究了基于叶绿素荧光技术的浮游植物光合作用活性原位测量方法,研发了浮游植物光合作用活性原位测量系统,实现了浮游植物光合作用活性的原位在线测量。
     通过对淡水湖泊富营养化水体优势浮游植物的活体荧光光谱特性研究,结合脉冲振幅调制技术和饱和脉冲方法,获取了活体浮游植物叶绿素荧光特征,揭示了叶绿素荧光在光合作用过程中的探针作用,通过计算可以得到浮游植物在光合作用过程中将光能转化为化学能的效率——光合作用活性。
     研究了各波段LED在不同光强激发下浮游植物叶绿素荧光诱导特性,确定了用于激发本底色素荧光的光强范围,为浮游植物光合作用活性原位测量系统研制提供数据支持;在上述研究过程中提取出各波段LED激发的本底色素荧光/入射光强,得到了离散的激发光谱并与三维荧光光谱仪的数据对比,验证了实验系统的性能;比较各波段吸收率数据,提供不同浮游植物样本PSII吸收和荧光发射效率信息,为不同浮游植物的光合作用活性测量中激发光源的波长选取提供参考;活体和失活样本的对比测量结果充分揭示活体浮游植物叶绿素荧光与其他分子荧光的区别,通过活体叶绿素荧光量子产率的变化可以获取浮游植物的光合作用活性大小。
     根据光合作用活性测量原理提出了基于Ft和Fm的浮游植物光合作用活性原位测量方法,设计了以LED和激光二极管为激发光源的浮游植物光合作用活性原位测量系统,利用该系统实现了浮游植物光合作用活性的实时、原位在线测量。文中详细介绍了设计思路以及硬件和软件的设计方案,通过对实验室配制的浮游植物样品测量,分析了系统的线性、稳定性、重复性等性能指标,为了提升仪器在实际应用中的适用性,采用可变增益技术实现了高灵敏度和宽动态范围的准确荧光测量。
     利用浮游植物光合作用活性原位测量系统对巢湖西半湖的浮游植物光合作用活性进行了连续原位测量,同时采用实验室离线分析仪器WATER-PAM对10个取样点位的浮游植物样品进行对比测试。结果表明:原位测量系统得到的浮游植物光合作用活性与离线分析仪器的测量结果具有良好的相关性,蓝藻和绿藻的相关系数分别为:0.9778和0.7768。对比实验结果表明了原位测量系统实际应用的可靠性。
Eutrophication and drinking water safety is a hot issue in environmental science which has been concerned commonly at present. Excess proliferation of phytoplankton usually brings water into the "Harmful Algae Blooms, HABs" and "red tide", it do seriously harm to human health and economic sustainable development. Photosynthesis activity can represent phytoplankton growth state information, and is one of the most important parameters for "HABs" monitoring and early warning. There is no phytoplankton photosynthesis activity measurement method and equipment in situ. This paper studied on the phytoplankton photosynthesis activity measurement method in situ, and developed measurement system which based on chlorophyll fluorescence, and implemented the realtime, online measurement of phytoplankton photosynthesis activity.
     Acording to the research of spectral characteristics about phytoplankton fluorescence in vivo, we developed a measure system with pulse amplituded modulation(PAM) technology and saturated pulse method, obtaining the phytoplankton chlorophyll fluorescence characteristics and using the chlorophyll fluorescence as a probe in the photosynthesis process. The efficiency of phytoplankton photosynthesis process transfering light into chemical energy--hotosynthesis activity could be obtained.
     Phytoplankton chlorophyll fluorescence characteristics was studied under various light intensities and wavelength. This work could support in situ measurement system design of phytoplankton photosynthesis activity. Combined with fluorescence and light intensity, we got a excrete excitation spectrum, compared with3DEEM using Spectrophotometer (Hitachi F7000). Also, the absorbance at each wavelength was tested. The Photosystem H absorbance and fluorescence emission Yield could be obtained. Blue and red light could be used as measure light which were used to excit fluorescence at pigment level. The contrast test was did between phytoplankton in vivo and dead. The fluorescence Yield revealed difference between chlorophyll fluorescence and molecule fluorescence. The value of Photosynthesis activity in vivo could be obtained through the change of chlorophyll fluorescence Yield.
     With the principle of photosynthetic activity measurement, this paper proposed a in situ measurement method which based on chlorophyll fluorescence values Ft and Fm to get phytoplankton photosynthesis activity. A measure system in situ was designed in which LED and laser diode was used as excitation light sources and accomplished phytoplankton photosynthesis activity measurement real-timely. Then the designing details were shown, included hardware, software, optics and mechanic. The performances of system such as linearity, stability, repeatability were tested through phytoplankton samples prepared in laboratory. In order to improve the applicability of the instruments in practice, the variable gain amplifier was used to enlarge dynamic range with high sensitivity.
     Phytoplankton photosynthesis activity measurement system in situ was used in Chaohu lake for more than2months, We got the time series of photosynthesis phytoplankton activity measured in situ. The rising of activity value can forecast the "HABs" with other parameters. Also offline comparision analysis was did between our measurement in situ and instrument in laboratory. Results showed that the system in situ seemed very similarly when comparing with the Water PAM developed by WALZ. The correlation coefficient of cyanobacteria and green algae are0.9778and0.7768. The reliability of the in situ measurement system was shown in comparision experiment.
引文
[1]金相灿,屠清瑛.1990.湖泊富营养化调查规范[M](第二版).北京:中国环境科学出版社.
    [2]韩博平,韩志国,付翔.2003.藻类光合作用机理与模型[M].科学出版社.
    [3]王志刚.2008.水体浮游植物浓度原位分类测量方法研究与系统研制[D]:[博士].合肥:中国科学技术大学.
    [4]Carpenter S R, Carcao N F, Correll D L, et al.1998.Nonpoint of Surface Waters with Phosphorus and Nitrogen[J]. Ecological Applications,8:559-568.
    [5]陈能汪,章颖瑶,李延风.2010.我国淡水藻华长期变动特征综合分析[J].生态环境学报,08:1994-1998.
    [6]高政权,孟春晓.2009.淡水水体中蓝藻水华研究进展[J].安徽农业科学,16:7597-7598.
    [7]王扬才,陆开宏.2004.蓝藻水华的危害及治理动态[J].水产学杂志,01:90-94.
    [8]梁柱,徐恒省,王亚超.2009.湖泊蓝藻水华预警监测技术的应用研究[J].污染防治技术,06:97-99.
    [9]孔繁翔,马荣华,高俊峰等.200.太湖蓝藻水华的预防、预测和预警的理论与实践[J].湖泊科学,03:314-328.
    [10]何家菀.1990.东湖蓝藻有毒水华种类组成及毒性研究[M].见:刘健康等编著.东湖生态学研究.北京:科学出版社.
    [11]Shen PP, Shi Q, Hua ZC, et al.2003. Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake, China[J]. Environment International, 29(5):641-647.
    [12]徐海滨,隋海霞,高士荣等.2003.微囊藻毒素在鲤鱼体内生物富集作用的初步研究[J].中国食品卫生杂志,15(03):202-204.
    [13]张维昊,方涛,徐小清.2001.滇池水华蓝藻中藻毒素光降解的研究[J].中国环境科学,21(01):1-3.
    [14]韩志国,武宝玕,郑解生等.2001.淡水水体中的蓝藻毒素研究进展(综述)[J].臀南大学学报(自然科学与医学版).22(3):129-135.
    [15]戴瑾瑾,陈德辉,高云芳等.2007.蓝藻毒素的研究概括[J].武汉植物学研究.(1):90-97.
    [16]孔繁翔,高光.2005.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,25(3):589-595.
    [17]Istvanovics V., Honti M., Osztoics A.,et al.2005. On-line delayed fluorescence excitation spectroscopy,as a tool for continuous monitoring of phytoplankton dynamics and itsapplication in shallow Lake Balaton (Hungary). Freshwater Biology,50:1950-1970.
    [18]西田澄子.1984.水华发生机制及生长生理学的研究:铜绿微囊藻的增殖受光强度、温度的影响[D].日本筑波大学学位论文.:12-15
    [19]EPPley R W.1972.Temperature and Phytoplank to growth in the sea[J].Fish.Bull, 70:1063-1085.
    [20]Thomann R V.Mueller J A.1987.PrinciPle of surface water quality modeling and control [M]. New York:Haper&ROV,69-78.
    [21]Charles P. Deblois, Philippe Juneau.2010. Relationship between photosynthetic processes and microcystin in Microcystis aeruginosa grown under different photon irradiances[J], Harmful Algae,9:18-24.
    [22]聂琴,樊大勇,高文荣等.2004.光声光谱技术在光合作用研究中的应用[J].广西科学,11(1):61-68.
    [23]Snel J F H, Kooijman M, Vredenberg W J.1990.Correlation between chlorophyll fluorescence and photoacoustic signal transients in spinach leaves[J].PhotosynthRes,25:259-268.
    [24]Owens T G, Carpentiet R, Leblanc R M.1990.Detection of photosynthetic energy storage inphotosystem I reaction center preparation by photoacoustic spectroscopy[J].Photosynth Res, 24:201-208.
    [25]Canaani O, Barber J, Malkin S.1984.Evidence that phosphorylation and dephosphor-ylation Regulate the distribution of excitation energy between the photosystems of photosynthesis in vivo;photoacoustic and gluorimetric study of an intact leaf[J]. Pro Natl Acad Sci USA, 81:1614-1618.
    [26]Yakir D, Rudich J, Bravdo B A, et al.1986.Prolonged chilling under moderate light-effect on photosynthetic activity measured with the photoacoustic method[J].Plant Cell Environ,9:581-588.
    [27]Yakir D, Rudich J, Bravdo B A.1985. Photoacoustic and fluorescence measurements of the chilling response and their relationship to carbon dioxide uptake in tomato plants[J].Planta, 164:345-353.
    [28]Adams M J, Beadle B C, King A A, et al.1976. Analytical photoacoustic spectrometery, psrt Ⅱ.Ultra-violet and visible opto-acoustic spectra of some inorganic. biochemical and phytochemical samples[J].Analyst,101:553-556.
    [29]Malkin S, Churio M S, Shochat S,et al.1994.Photochemical energy storage and volume changes in the microsecond time range in bacterial photosynthesis-a laser induced opto-acoustic study[J].J Photochem Photobiol B Biol,23:79-85.
    [30]Bults G, Horwitz B A, Malkin S, et al.1981.Photoacoustic measurements of photo-synthetic activities in whole leaves photochemistry and gas exchange[J]. Biochim Biophys Acta, 679:452-465.
    [31]Charlebois.1993. Study of photosynthetic activity with the aid of photoacoustic spectroscopy: potential application on ecotoxicology[J]. Water pollution research journal of Canada,28(4): 743-756.
    [32]Bukata R P, Bruton J E.1983.Use of Chromaticity in Remote Measurements of Water Quality[J]. Remote sensing of Environment,13:161-177.
    [33]Basnyat P, Teeter L D, Lockaby B G, et al.2000.The use of remote sensing and GIS in water shed level analyses of non-point source pollution problems[J].Forest Ecology andManagement, 128:65-73.
    [34]喻欢,林波.2007.遥感技术在湖泊水质监测中的应用[J].环境科学与管理,32(7):152-155.
    [35]Dwivedi R M, Narain A. 1987.Remote sensing of Phytoplankton an attempt from the landsat Thematic Mapper[J].INT.J.Remote Sensing,8(10):1563-1569.
    [36]张永江,刘良云,侯名语等.2009.植物叶绿素荧光遥感研究进展[J].遥感学报,13(5):971-978.
    [37]Moya etc.2003.Possible approaches to remote sensing of photosynthetic activity[J]. Geoscienceand Remote Sensing Symposium,1:588-590.
    [38]Gobron etc.2006.Monitoring the photosynthetic activity of vegetation from remote sensing data[J].Advances in Space Research,38(10):2196-2202.
    [39]Rascher U.2007. FLEX-fluorescence explorer:a remote sensing approach to quantify spatio-temporal variations of photosynthetic efficiency from space[J]. Photosynthesis Research, 91:293-294.
    [40]沈玉其,徐彬彬,石晓日等.1992.关于植被激光荧光遥感的若干基本问题[J].环境遥感,7(增):22-33.
    [41]陈莲花,刘雷.2007.叶绿素荧光技术在藻类光合作用中的应用[J].汀西科学,25(6):788-790.
    [42]潘琦.1990.激光诱导叶绿素荧光用于绿色植物诊断的可行性研究[J].量子电子学报,1:56-57.
    [43]隋媛媛.2007.激光强度与激发叶绿素荧光强度关系的研究[D].[硕士]吉林:吉林大学.
    [44]Chappelle E W, Wood F M, Mcmurtrey J E, Newcomb W W.1984.Laser-induced fluorescence of green plants 1:a technique for the remote detection of plants stress and species differentiation[J]. Appl. Opt.,23(1):134-138.
    [45]张守仁.1999.叶绿索荧光动力学参数的意义及讨论.植物学通报,16(4):444-448.
    [46]Chekalyuk, Alexander M, Gorbunov, Maxim Yu.1992Laser remote sensing of phytoplankton photosynthetic activity in situ. Quantum Electronics and Laser Science Conference. Technical Digest Series.
    [47]Barbini.1995.Laser remote monitoring of plant photosynthetic activity[J].Proceedings of SPIE-The International Society for Optical Engineering,2585:57-65.
    [48]赵友全,魏红艳,李丹.等2010.叶绿素荧光检测技术及仪器的研究[J].仪器仪表学报31(6):1342-1346.
    [49]王志刚,刘文清,张玉钧等.2008.基于激发荧光光谱的浮游植物分类测量方法[J].中国环境科学,28(4):329-333.
    [50]林世青,许春辉,张其德等.1992.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,9(1):1-16.
    [51]温晓刚,林世青,匡廷云等.1997.植物ms级叶绿素荧光动力学数据采集和分析软件[J].植物学通报,14(4):51-54.
    [52]Ting-Yun Kuang, Chunhe Xu, Liang-Bi Li. et al.2003. Photosynthesis research in the People's Republic of China[J]. Photosynthesis Research,76:451-458.
    [53]Ulrich Schreiber, Christof Klughammer, Jorg Kolbowski.2012. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer[J]. Photosynthesis Research,113:127-144.
    [54]Schreiber U, Klughammer C, Kolbowski J.2011. High-end chlorophyll fluorescence analysis with the MULTI-COLOR-PAM. I. Various light qualities and their applications. PAM Application Notes, voll, pp 1-19. http://www.walz.com/downloads/pan/PAN11001.pdf.
    [55]Hazem M. Kalaji, Vasilij Goltsev, Karolina Bosa. et al.2012. Experimental in vivo measurements of light emission in plants:a perspective dedicated to David Walker[J]. Photosynthesis Research,114:69-96.
    [56]Briantais JM, Vernotte C, Krause GH, et al.1986. Chlorophyll a fluorescence of higher plants: Chloroplasts and leaves. In:Govindjee, Amesz J and Fork CD (eds) Light Emission by Plants and Bacteria, Academic Press, New York.539-583.
    [57]Renger G, Schreiber U.1986. Practical applications of fluorometric methods to algae and higher plant research. In:Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, Academic Press, Orlando.587-619.
    [58]Krause G, Weis E.1991.Chlorophyll fluorescence and photosynthesis:The basics. Ann Rev Plant Physiol Plant Mol Bio,142:313-349.
    [59]Horton, Bowyer JR.1990. Chlorophyll fluorescence transients. In:Harwood JL, Bowyer JR (eds) Methods in Plant Biochemistry, Vol 4, Academic Press, New York.259-296.
    [60]Schreiber U, Bilger W.1993. Progress in chlorophyll fluorescence research:Major developments during the last years in retrospect[J]. Progress in Botany,54:151-173.
    [61]Schreiber U, Bilger W, Neubauer C.1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In:Schulze E-D and Caldwell MM (eds) Ecophysiology of Photosynthesis. Series Ecological Studies, Springer-Verlag, Berlin.100: 49-70.
    [62]Govindjee.1995.Sixty-three years since Kautsky:Chlorophyll a fluorescence[J]. Aust J Plant Physiol,22:131-160.
    [63]Joshi MK, Mohanty P.1995. Probing photosynthetic performance by chlorophyll a fluorescence:Analysis and interpretation of fluorescence parameters[J]. J Sci Industr Res,54: 155-174.
    [64]Mohammed GH, Binder WD, Gillies SL.1995. Chlorophyll fluorescence:Areview of its practical forestry applications and instrumentation[J]. Scand J Forest Res,10:383-410.
    [65]Lazar D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1-28.
    [66]陈国珍,黄贤智,徐金钩等.1990荧光分析法[M].北京:科学出版社,10-34.
    [67]Kautsky H, Appel W, Amann H.1960.Chlorophyllfluoreszenz und Kohlensaureassimilation[J]. Biochemische zeitschrift,332:277-292.
    [68]Schreiber U, Hormann H, Neubauer C, et al.1995. Assessment of Photosystem II photochemical quantum Yield by chlorophyll fluorescence quenching analysis [J]. Aust J Plant Physiol,22:209-220.
    [69]Sakshaug E, Bricaud A, Dandonneau Y et al.1997. Parameters of photosynthesis:definitions, theory and interpretation of results[J]. J Plankton Res,19 (11):1637-1670.
    [70]Nedbal L, Trtflek M, Kaftan D.1999.Flash fluorescence induction:a novel method to study regulation of Photosystem II[J]. J Photochem Photobiol B:Biol,48:154-157.
    [71]付翔.2007.中国近海浮游植物光合作用研究——初级生产力模型计算与活体叶绿素荧光测量[D].青岛:中国科学院海洋研究所,105-109.
    [72]Schreiber U, Bilger W, Neubauer C.1994.Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis[J]. Ecological Studies,100:49-70.
    [73]Grossman A. R., Bhaya D., Apt K. E.et al.1995. Light-harvesting complexes in oxygenic photosynthesis:Diversity, control, and evolution[J]. Annu. Rev. Genet,29:231-288.
    [74]Green B. R., Durnford D. G.1996. The chlorophyll-carotenoid proteins of oxygenic photosynthesis[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol,47:685-714.
    [75]Lincoln Taiz, Eduardo Zeiger.2006. Plant Physiology[M].Springer Publishers.
    [76]Dietz KJ, Schreiber U, Heber U.1985. The relationship between the redox state of QA and photosynthesis in leavesat various carbon-dioxide, oxygen and light regimes[J]. Planta, 166:219-226.
    [77]Schreiber U, Bilger W, Schliwa U.1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynth Res,10:51-62.
    [78]Bilger W, Schreiber U.1986. Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves[J]. Photosynth Res,10:303-308.
    [79]Krause G, Weis E.1991. Chlorophyll fluorescence and photosynthesis:The basics. Ann Rev Plant Physiol Plant Mol Biol,42:313-349.
    [80]Muller P, Li X-P, Niyogii K K.2001. Non-photochemical quenching:a response ti excess light energy[J]. Plant Physiol.,125:1558-1566.
    [81]Ruban A V, Horton P.1995. Regluation of non-photochemical quenching of chlorophyll fluorescence in plants[J]. Aust. J. Plant. Physiol.,22:221-230.
    [82]Fork D C, Bose S, Herbert S K.1986. Radiationless transitions as a protection mechanism against photoinhibition in higher plants and a red alga. Photosynth. Res..10:327-333.
    [83]Gilmore A M, Hazlett T L, Debrunner P G, et al.1996. Comparative time-resolved photosystem II chlorophyll a fluorescence analyses reval distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation[J]. Photochem. Photobiol.,64:552-563.
    [84]Quick WP, Stitt M.1989. An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves[J]. Biochim Biophys Acta.977: 287-296.
    [85]夏丽,陈贻竹.2000.盐藻叶绿素荧光非光化学淬火产生的条件和主要组分的检测[J].海洋与湖沼,32(5):498-505.
    [86]Michael Bradbury, Neil R. Baker.1981.Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of Photosystem Ⅱ electron acceptors and fluorescence emission from Photosystems I and II[J]. Biochimica et Biophsysica Acta, 635(3):542-551.
    [87]Quick WP, Horton P.1984.Studies on the induction of chlorophyll fluorescence in barley protoplasts. Ⅱ. Resolution of fluorescence quenching by redox state and the transthylakoid pH gradient[J]. Proceedings of the Royal Society of London B,220:371-382.
    [88]Schreiber, U.1986. Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer [J]. Photosynthesis Research,9:261-272.
    [89]Cleveland J S, Perry M J.1987.Quantum Yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis[J]. Marine Biology,94(4):489-497.
    [90]Kolber Z, Zehr J, Falkowski P.1988.Effects of Growth Irradiance and Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem Ⅱ [J]. Plant Physiol,,88(3):923-929
    [91]付翔中国近海浮游植物光合作用研究—初级生产力模型计算与活体叶绿素荧光测量[D],2007,博士学位论文.
    [92]尚丽平,杨仁杰.2009.现场荧光光谱技术及其应用[M].北京:科学出版社.309-313.
    [93]王志刚.2008.水体浮游植物浓度原位分类测量方法研究与系统研制[D]:[博士].合肥:中国科学技术大学,28-34.
    [94]Pierre Bennoun, Yung-sing Li.1973. New results on the mode of action of 3,-(3,4-dichlorophenyl)-1,1-dimethylurea in spinach chloroplasts[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics.292(1):162-168.
    [95]Lavorel J, Etienne A-L.1977.In vivo chlorophyll fluorescence[M], In Barber J(ed). Primary Processes of Photosynthesis. Elservior/North-Holland Biomedical Press,203-268.
    [96]Schreiber U.2004.Pulse-Amplitude (PAM) fluorometry and saturation pulse method. In. Papageorgiou G and Govindjee (eds) Chlorophyll fluorescence:A signature of Photosynthesis [M], Kluwer Academic Publishers, Dordrecht, The Netherlands,279-319.
    [97]Krause GH, Weis E.1984.Chlorophyll fluorescence as a tool in plant physiology.Ⅱ. Interpretation of fluorescence signals[J]. Photosynth Res,5:139-157.
    [98]Stirbet A, Govindjee.2011.On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II:Basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry and Photobiology B:Biology,104:236-257.
    [99]U. Schreiber, U. Schliwa, W. Bilger.1986.Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer [J]. Photosynthesis Research,10:51-62.
    [100]Kate Maxwell, Giles N. Johnson.2000.Chlorophyll fluorescence— practical guide[J]. Journal of Experimental Botany,51(345):659-689.
    [101]Govindjee.1995 Sixty-three years since Kautsky:chlorophyll a fluoresncence[J]. Austrian Journal of Plant Physiol,22:131-160.
    [102]张守仁.1999叶绿素荧光动力学参数的意义及讨论[J].植物学通报,16(4):444-448.
    [103]Genty.B, Briantais J-M, Baker N R.1989.The relationship between the quantum Yield of
    photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim. Biophys. Acta,990:87-92.
    [104]Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis:the basics[J]. Annu. Rev. Plant physiol. Plant Mol. Biol.,1991,42:313-349.
    [105]王可玢,许春辉,赵福洪等.1997.水分胁迫对小麦期叶某些体内叶绿索a荧光参数的影响[J].生物物理学报,13(2):273-278.
    [106]Ruban A V, Horton P.1995. Regulation of non-photochemical quenching of chlorophyll fluorescence in plants[J]. Aust. J. Plant Physiol.,22:221-230.
    [107]Bilger W, Bjorkman O.1990. Role of the xanthophylls cysle in photoprotection elucidated by measurements of light-induced absorbance changes,fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth.Res.,25:173-185.
    [108]Ulrich Schreiber, Jochen F.Muller, Anke Haugg, et al.2002. New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests[J].Photosynthesis Res.,74:317-330.
    [109]Bilger W, Schreiber U, Bock M.1995. Determination of the quenching coefficients of Photosystem Ⅱ and of non-photochemical quenching of chlorophyll fluorescence in the field[J]. Oecologia,102:425-432.
    [110]Gilbert M, Wilhelm C, Richter M.2000.Bio-optical modelling of oxygen evolution using in vivo fluorescence:Comparison of measured and calculated photosynthesis/irradiance (P-I) curves in four representative phytoplankton species[J]. J Plant Physiol.,157:307-314.
    [111]Schreiber U, Hormann H, Asada K et al.1995.02-dependent electron flow in spinach chloroplasts:Properties and possible regulation of the Mehler-Ascorbate Peroxidase Cycle. In: Mathis P (ed) Photosynthesis:from Light to Biosphere. Kluwer Academic Publishers, Dordrecht. Vol Ⅱ,813-818.
    [112]Han B-P.2001.Photosynthesis-irradiance response at physiological level:a mechanistic model[J]. J. theor. Biol.,213:121-127.
    [113]Schreiber U, Gademann R, Ralph PJ et al.1997. Assessment of photosynthetic performance of prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements [J]. Plant Cell Physiol,38:945-951.
    [114]White AJ.Critchley C.1999. Rapid light curves:A new fluorescence method to assess the state of the photosynthetic apparatus[J]. Photosynth Res,59:63-72.
    [115]Rascher U, Liebig M, Luttge U.2000.Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field[J]. Plant Cell Environ,23:1397-1405.
    [116]Ralph PJ, Gademann R, Larkum AWD et al.1999. In-situ underwater measurements of photosynthetic activity of coral zooxanthellae and other reef-dwelling dinoflagellate endosymbionts[J]. Marine Ecology-Progr Ser,180:139-147.
    [117]何树荣,徐洪峰.2002.绿光LED激发荧光的研究[J].光学技术,01:9-10.
    [118]韩博平,韩志国,付翔.2003.藻类光合作用机理与模型[M].科学出版社,58-60.
    [119]杨风波.2008.基于正交光路的低成本、集成化LED诱导荧光检测系统的研制[D].浙江大学.
    [120]杨丙成,关亚风,谭峰等.2003.发光二极管诱导荧光检测器的研制[J].分析试验室,05:89-91.
    [121]尚丽平,杨仁杰.2009.现场荧光光谱技术及其应用[M].科学出版社,23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700