硅烷交联聚乙烯电缆材料的制备与反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在概述和比较几种交联聚乙烯的生产工艺特点、一些商品化产品、交联工艺的新动态、市场前景以及介绍硅烷交联聚乙烯的反应原理、工艺路线、配方、产品性能和应用的基础上,系统地研究了硅烷接枝聚乙烯(SGPE)反应和SGPE的水解交联反应,表征了反应的动力学特性,考察了硅烷品种及用量的影响和作用机理,并讨论了接枝和交联反应中PE和SGPE分子和聚集态结构的变化和交联产物的结构-性能关系。
     在接枝反应过程中存在着少量的硅烷接枝聚乙烯分子链之间的水解缩合反应,熔体流动速率明显降低。SGPE反应遵循一级反应动力学,由DCP引发的VTMOS、VTEOS接枝低密度聚乙烯(LDPE)反应的活化能( )分别为170kJ/mol、185kJ/mol。不同体系的接枝反应速度及其温度、时间依赖性的差异,是其E_a不同所致。
     SGPE水解交联反应是关于催化剂和水分浓度的一级反应,其E_a=39.46kJ/mol。硅烷可交联聚乙烯(SCPE)具有一定的贮存期,在干燥状态可延长贮存期;同时,如果不经水煮,SCPE完全暴露在空气中长时间也可获得满意的交联度。催化剂的催化活性DBTDL>DMTBL>HSt>EAA。
     接枝和交联反应中LDPE结构的主要变化是线形大分子的支化和网络化,伴随结晶度下降和晶粒细化。交联产物的性能取决于上述结构变化的综合效应。随着体系凝胶含量的增加,体积电阻率逐渐上升,但当交联过度时,则呈下降趋势。随着体系凝胶含量的增加,体系的介电常数逐渐升高。
The production presses and their key points of several crosslinked polyethylene materials, their some commercial products the recent advances of the crosslinking techniques, applications and marked prospect were summarized and compared. The reaction mechanism, technological process, prescription, product properties, and application of the crosslinked polyethylene by silane have been presented in the article. The graft reactions of polyethylene by silane (SGPE) and its crosslinking reaction were studied systematically and the reaction kinetics were characterized. The effects of concentration of silanes and their mechanism on reaction were investigated. The structure changes of the molecular and aggregate state in the grafting and crosslinking reaction and the relationship between the structure and properties were inspected in detail.
     In the process of graft the reactions of hydrolytic condensation among the silane grafted polyethylene molecular chain occurred, melt flow rate evidently decreased. The reaction of SGPE follows first order reaction kinetics. The reaction activation energy (E_a) of low density polyethylene (LDPE) grafted by vinyl trimethoxysilane (VTMOS) and vinyl triethoxysilane (VTEOS) initiated by dicumyl peroxide (DCP) are 170 and 185kJ/mol respectively. The grafting reaction velocity and its temperature and time-dependent behavior are controlled by their E_a.
     The crosslinking reaction of SGPE hydrolyzed water decomposition follows first order reaction kinetics on the content of initiator and water and its activation energy is 39.46kJ/mol. The cross-linkable polyethylene by silane (SCPE) can lay up a period and can prolong the storage period in the dry environment. At the same time, if not boiled by water, the SCPE exposed to the air completely during a long time also can acquire a better degree of crosslinking. The catalytic activity relationship DBTDL>DMTBL>HSt>EAA exists between the different catalyst.
     The major structure changes of LDPE during the grafting and crosslinking reaction are the grafting and netting of linear macromolecular, the decrease of the degree of crystallization and the thinning of crystal. The properties of crosslinked materials depend on these structure changes. Along with the increment of the gel
引文
1 李巧娟, 谢大荣. 有机硅接枝改性低密度聚乙烯的研究. 绝缘材料. 2004(1): 8~11
    2 张建耀. 交联电缆用 LDPE 树脂性能及其应用. 现代塑料加工应用. 2005, 17(6): 8~11
    3 敬松. 硅烷交联聚乙烯开发进展. 四川化工与腐蚀控制. 1998, 1(1): 37~41
    4 D. Munteanu. Moisture Cross-linkable Saline-Modified Polyolefms. React. Modif. Polym. 1997, 196~265
    5 B. Tursanyi, E. Fekete, B. Pubanszky et al.. Thermoanaltical Methodsin the Study of Structure/Properties of Modified and Crosslinked Linear Polyethylene J. Thermal. Anal. 1991(36): 1775~1984
    6 黄德骏. 交联聚乙烯管的应用及评价方法. 现代塑料加工应用. 1993, 5(2): 45~47
    7 B. A. Sultan, M. Palmlof. Ruhber and Composite Processing and Applications. Plastic. 1994, 21(2): 65~73
    8 朱爱荣, 曹晓珑. 不同交联方式对交联聚乙烯电缆结晶形态影响的研究. 绝缘材料. 2005, (3): 38~40
    9 段景宽. 硅烷接枝交联聚乙烯技术的研究. 上海塑料. 2005, (3): 4~11
    10 徐绍宏, 江波. 过氧化物交联聚乙烯热收缩管成型研究. 塑料. 2006, 35(1): 93~96
    11 李静辉. 交联聚乙烯开发应用与发展建议. 现代塑料加工应用. 2004, 16(2): 61~64
    12 谢侃, 张建耀, 刘少成等. 硅烷交联聚乙烯电力电缆绝缘料基础树脂的性能. 高分子材料科学与工程. 2006, 22(1): 127~134
    13 J. L. Garnett. Radiation Curing-Twenty Five Yeas on. Radiation Physics and Chemistry. 1995(46): 925~930
    14 S. Machi. New Trends of Radiation Processing Applications. Radiation Physics and Chemistry. 1996(47): 333~339
    15 赵文彦, 侯福珍. 辐射加工技术及产业化. 辐射研究与辐射工艺学报. 1996(14): 182~187
    16 J. Gehring, A. Zyball. Radition Crosslinking of Polymers-Status, Current, Issues,Trends and Challenges. Radiation Physics and Chemistry. 1995(46): 931-938
    17 祝景云, 李敬泽, 甄建等. 可辐照交联聚乙烯热收缩管专用料的研制. 合成树脂及塑料. 1998, 15(3): 10~23
    18 韩飞译, 交联技术的研究进展. 塑料加工与应用. 1995(1): 37~46
    19 焦传梅, 王正洲. 硅烷交联聚乙烯无卤阻燃材料燃烧性能的研究. 中国塑料. 2004, 18(8): 34~39
    20 U. W. Gedde, M. Ifwarson. Molecular Structure and Morphology of Crsslinked Polyethylene in an Aged Hot-Water Pipe. Polymer. 1986(27): 269~276
    21 B. S. Bernstein. Service Life of Crosslinked Polyethylene as High Voltage Cable Insulation. Polymer Preprint. 1988(29): 115~120
    22 史伟, 王伟明. 过氧化物交联聚乙烯管材的生产工艺. 工程塑料应用. 2004,32(7): 26~28
    23 王正洲, 瞿保钧, 范维澄. 聚乙烯的交联技术研究进展. 高分子材料科学工程. 2001, 17(1): 7~9
    24 杨非, 原晓丽, 赵瑞等. 阻燃硅烷交联聚乙烯在电缆上的应用. 工程塑料应用. 2003, 31(5):31~33
    25 安彦杰, 纪春怡, 柳春山. LDPE HDPE LLDPE 的硅烷接枝反应. 塑料工业. 2005, 33: 63~75
    26 Z. Z. Wang, Y. Hu, Z. Gui, et al.. Halogen-Free Flame Retardation and Silane Crosslinking of Polyethylenes. Polymer Testing. 2003, 22:533~538
    27 蒋涛, 黄世强. LDPE 硅烷接枝及其交联副反应研究. 材料导报. 1998, 12(4): 53~56
    28 C. M. Jiao, Z. Z. Wang, X. M. Liang, et al.. Non-Isothermal Crystallization Kinetics of Silane Crosslinked Polyethylene. Polymer Testing. 2005, 24:71~80
    29 杨冬麟, 史一之, 韩宝仁. 硅烷交联聚乙烯的研究. 塑料. 1978(3): 1~14
    30 洪仁英. 塑料科技. 硅烷交联聚乙烯新材料的研制. 1981(2): 19~30
    31 张建耀, 刘少成, 许平等. 硅烷交联聚乙烯电力电缆绝缘料的研制. 合成树脂及塑料. 2005, 22(6): 4~8
    32 段景宽, 罗炎, 王雅珍. 硅烷接枝交联聚乙烯技术. 桂林电子工业学院学报. 2005, 25(3): 84~88
    33 胡发亭, 郭亦崇. 聚乙烯交联改性研究进展. 现代塑料加工应用. 2002, 14(2):61~64
    34 B. Thomas, M. Bowrey. Cross-linked Polyethylene Insulations Using the Sioplas Technology. Wire Journal. 1977, 10(5): 88~92
    35 韩中洗. 电缆工艺. 北京: 机械工业出版社, 1991: 298~303
    36 刘颖, 龙文保, 吴大鸣等. 硅烷交联聚乙烯管材生产过程中的化学反应及其主要影响因素. 塑料. 2001, 30(4): 29~32
    37 程向前. 一步法硅烷交联电缆工艺研究. 石油机械. 2005, 33(4): 38~40
    38 M. Bengtsson, K. Oksman. The Use of Silane Technology in Crosslinking Polyethylene/Wood Flour Composites. Composites: Part A. 2006, 37:752~765
    39 杨玮, 江平开, 王寿泰. 硅烷交联聚乙烯电缆绝缘料的生产工艺. 上海化工. 2003, 12: 17~19
    40 U. Hochstrasser, E. Lausanne. A New One Step Crosslinking Process for MV Cables. Wire Industry. 1985, 52(1): 46~49
    41 张勇, 谭风洁, 吴春霜等. 硅烷交联聚乙烯管材专用料的研制. 中国塑料. 2004, 18(3): 36~39
    42 林红. 日本的共聚法硅烷交联聚乙烯电缆料. 电线电缆, 1993, (4): 24~25
    43 R. Cameron, K. Lien, P. Lorigan. Advance in Silane Cross-linkable Polyethylene. Wire Journal International. 1990, 23(12): 56~58
    44 陈宝胜. 交联电缆的发展状况和硅烷交联的生产工艺. 电线电缆. 1997, (2): 17~22
    45 洪伟年. 水交联共聚物. 光纤与电缆. 1991, (3): 59~62
    46 汪浩, 王勋林, 王寿泰. 聚乙烯接枝不饱和硅烷工艺研究. 电线电缆. 2004, (5): 33~36
    47 R. Bloor. New Way to Crosslink PE: All You Need is Moisture, Plastics Technology. 1981, 21(2): 83~86
    48 蔡宏国, 申建一. 硅烷偶联剂及其进展. 现代塑料加工应用. 1993, 5(5): 47~51
    49 R. Cameron, K. Lien, P. Lorigan. Advances in Silane Crosslinkable Polyethylene. Wire J. Inter. 1991, (12): 56~58
    50 K. Motha, J. Seppala, C. Bergstrom. Grafting of Unsatured Acids and Silane to Ethylene Polymers. Polym. Sci. 1989, 29(22): 1579~1587
    51 刘新民, 崔涛, 李琳. 交联聚乙烯的应用及技术进展. 合成树脂及塑料. 2003, 20(5): 52~60
    52 A. K. Sen, B. Mukherjee. Kinetics of Silane Grafting and Moisture Crosslinkingof Polyethylene and Ethylene Propylene Rubber. J. Appl. Polym. Sci. 1992, 1153~1164
    53 韩非译. 交联技术的研究进展. 塑料加工与应用. 1995, (1): 44~48
    54 蒋涛, 曾邦禄. 硅烷接枝聚乙烯水解交联反应的研究. 塑料工业. 1996, (1): 56~58
    55 韩双冰, 苑会林. 硅烷交联聚乙烯的新工艺. 化工进展. 1999, (3): 64~66
    56 赵燕来. 国外聚乙烯交联技术的最新动向. 塑料工业. 1981(2): 45~49
    57 龙文保, 吴大鸣, 刘颖等. 反应挤出硅烷交联聚乙烯热收缩管坯的研制. 塑料科技. 1996, 113(3): 3~6
    58 沈申康, 金可中. 一步法硅烷交联聚乙烯管生产. 塑料. 1996, 25(3): 23~49
    59 A. K. Sen, B. Mukherjee. Kinetics of Silane Grafting and Moisture Crosslinking of Polyethylene and Ethylene Propylene Rubber. Journal of Applied Polymer Science. 1992, 44(7): 1153~1164
    60 Y. Shich, T. Tsai. Silane Grafting Reactions of Low-Density Polyethylene. Journal of Applied Polymer Science. 1998, 69(2): 255~261
    61 段予忠, 张明连. 塑料母料生产及应用技术. 北京: 中国轻工业出版社, 1999: 4~9
    62 P. B. Rim, K. M. Oconnor. A DSC Study of the Polymerization of Maleic Anhydride Copolymer. Journal of Polymer Science, Part C, Polymer Letters. 1986, 24(2): 95~101
    63 M. Okoniewski, J. S. Ledakowicz. Chemically Induced Graft copolymerization of Acrylic Acid onto Polyester Fabrics, Kinetics Investigation of Grafting. Journal of Applied Polymer Science. 1988, 35(5): 1241~1249
    64 曹胜先, 郝振军, 吴林美等. 硅烷交联聚乙烯管材专用料的研制. 塑料科技. 1996, (3): 10~14
    65 M. Palmlof, T. Hjertberg, B. A. Sultan. Crosslinking Reactions of Ethylene Vinyl Silane Copolymers at Processing Temperatures. Journal of Applied Polymer Science. 1991, 42: 1193~1203
    66 何曼君. 高分子物理. 复旦大学出版社. 1990, 84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700