光纤法珀应变传感器的解调算法改进和复用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤法珀应变传感是80年代末发展起来的一种新型的应变测量技术,具有结构简单、温漂和时漂小等优点,非常适合于智能结构尤其是大型设施的长期在线应变监测,目前已经成为国外应变传感技术研究的重点之一。对于光纤法珀应变传感器系统,应变信息的解调算法是保证其测量结果准确的关键技术之一,而多传感器复用则能降低其应用的成本,是保证其大规模实际应用的关键所在。本课题对相位型光纤珐珀应变传感系统的解调算法和复用技术作了深入研究。
     论文首先阐述了光纤法珀应变传感器的测量原理,分析了实际光源光谱的非均匀分布、波长量化和传感器输出信号中的噪声等对波长域的条纹峰值解调算法的应变测量结果的影响,深入分析了条纹峰值解调算法的局限性。
     接着,将低精细度法珀传感器的干涉近似为双光束干涉,根据傅立叶变换的原理,提出了对传感器输出光强分布进行傅立叶变换、从频域直接求取腔长的方法;并讨论了在实际高斯分布光源的条件下,保证傅立叶变换不发生叠级现象对传感器腔长的限制条件。
     分析了离散傅立叶(DFT)算法存在的栅栏效应及其对测量结果的影响,提出了通过数据补零和频谱数据高斯插值来降低栅栏效应影响、提高计算精度的方法;讨论了抽样密度变化对栅栏效应及计算精度的影响,并作了仿真计算。
     针对实际光强信号在波长域均匀采样,而在频率域非均匀采样的特点,讨论了傅立叶变换的变形——离散腔长变换(DGT)算法。采用黄金分割快速搜索法减小计算量、提高计算速度。
     然后,在光强函数的傅立叶变换域,讨论了传感器的复用问题。重点针对并联复用,分析了影响系统复用能力的三个因素——传感器输出信号的频率分辨率、传感器的腔长变化范围和传感器腔长所能达到的最大值,得出了传感器复用的这几个关键参数与系统复用能力之间的关系。
     最后,用光纤法珀应变传感系统对混凝土的膨胀系数、弹性模量等特性参数进行了测试;利用等强度梁,对峰值解调、DFT、DGT三种算法进行了对比试验;针对传感器复用的特点,进行了三类复用试验,证明了频分复用解调算法的可行性。
The fiber optic Fabry-Perot strain sensing is a new strain measurement invented at the end of 1980.It has become a hot point in the area of "smart structure" in foreign countries since it has the advantage of simple structure and low sensitivity towards temperature. For a fiber optic Fabry-Perot strain sensing system, algorithms used to demodulate the strain information contained in the output of the sensor is the key technology, while the multiplex is the technique used to lower its cost. The thesis is to study the demodulation algorithms and multiplex technology of the phase modulated Fabry-Perot sensor. The main points of the thesis are as follows:
    1. At the beginning of this thesis, the principle of fiber Fabry-Perot strain sensor is presented briefly, and the influence on the results of the peak-to-peak algorithm, brought by the spectrum distribution of light source, wavelength quantification or the noise in the output of the Fabry-Perot sensor is investigated. The limitation of the peak-to-peak algorithm is pointed out.
    2. The output of the low finesse Fabry-Perot sensor is approximated as two-beam interferogram. The DFT (Discrete Fourier Transform) method is use to demodulate the gap length of the low finesse Fabry-Perot sensor.
    3. The accuracy of the results of DFT algorithm is analyzed. Zero-padding on the output data of the Fabry-Perot sensor and Gauss interpolation on their DFT frequency domain can be use to improve the accuracy.
    4. As the spectrometer sample the output signal of the Fabry-Perot sensor uniformly in wavelength domain, so not uniformly in frequency domain, the DGT algorithm is put forward. A peak search method named golden search rule is applied to reduce the computation intensity.
    5. Multiplexing technology of fiber Fabry-Perot strain sensor is studied. The frequency domain algorithms are adopted for demodulating sensors connected in parallel. The capability of this multiplexing method is analyzed.
    6. Experiments are carried out to demonstrate the validity of algorithm improvement and Multiplexing technology.
引文
[1] Sung-Pil Chang,Sungkon Kim, Online structural monitoring of a cable-stayed bridge, Smart Structure and Materials, SPIE 1996, February Volume2719,P150-158
    [2] 徐日旭,王博义,赵家奎,桥梁检测,北京:人民交通出版社,1992
    [3] 李辉,对用电阻应变片进行应变长期量测的研究,重庆建筑大学学报:98,20(4):21~26
    [4] 张国顺,何家祥,肖桂香.光纤传感技术第一版.水利电力出版社.1987年
    [5] Peter L.Fuhr,Dryver R.hnston,Timothy P.Ambrosse,Euan F.Mowat, Internet Monitoring of an Instrumented Civil Structure, Smart Structure and Materials, SPIE 1995 March Volume2446, P301-307
    [6] Christopher M.Ballard, Stuart S.Chen, Automated Remote Monitoring of Structural Behavior via the Intemet, Smart Structure and Materials, SPIE 1996 February Volume2719,P102-111
    [7] D.A.Krohn, Fiber Optic Sensors, Library of Congress Cataloging-in-Public-ation Data 1991 P32-35
    [8] 封君,朱永,李晓宇,石荣,陈伟民,黄尚廉“光纤珐珀传感器监测混凝土固化期收缩应变的实验研究”光子学报’Vol.29 No.10,2000:908—912
    [9] M A Davis, A D Kersey, etal. Shape and vibration mode sensing using a fiber optic Bragg grating army, Smart Mater. Struct., 1996, Vol.24 (5), P759-765
    [10] Mark Froggatt, Jason Moore. High Spatial resolution distributed strain measurement in optical fiber with Rayleigh scatter. Applied Optics. 1998 Vol.37 (10). P 1735-1740.
    [11] Mark Froggatt, Jason Moore. Distributed measurement of static strain I an optical fiber with multiple Bragg gratings at nominally equal wavelengths. Applied Optics., 1998 Vol.37(10), P1741-1746
    [12] T Coroy, R M Measures. Demodulation system for Bragg grating fiber optic sensors using a quantum well electroabsorption-filtering detector. Smart Mater. Struct.,1998,Vol.27 (7), P265-271
    [13] S Huang, M Ohn, etal. Continuous arbitrary strain profile measurements with fiber Bragg gratings. Smart Mater. Struct. 1998. Vol.27(7). P248-256
    [14] Wei Jin. Investigation of Interferomctric noise in fiber-optic Bragg grating sensors by use of tunalbe laser sourees,Appled Optics. 1998. Vol.37(13). P2517-2525
    [15] Yun-Jiang Rao, Recent Progress in in-fibre Bragg grating sensors:Applications. SPIE. 1998, Vol.3555, P429-441.
    [16] Y.J.Rao, P.J.Henderson, etal. Simultaneous strain, temperature and vibration measurement
    
    using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system. Electronics Letters 1997. Vol.33(24) P2063-2064
    [17] Rao.Y.J,In-fibre Bragg grating sensors, Meas. Sci. Technol., 1997, Vol.26(8), P355-375
    [18] R T Jones, D G Bellemore. etal. Determination of cantilever plate shapes using wavelength division multiplexed fiber Bragg grating sensors and a least-squares strain-fitting algorithm. Smart Mater. Struct. 1998. Vol.27(7). P2178-188
    [19] R M Measures, M M Ohm etal Tunable laser demodulation of various fiber Bragg grating sensing modalities. Smart Mater. Struct, 1998, Vol.27(7), P237-247
    [20] Eric Udd. Fiber Optic Smart Structures. John Wiley&Sons, Inc. 1995
    [21] Sandra LLoret, Daniele Inandi, Samuel Vurpillot, Static and Dynamic Bridge Monitoring with Fiber Optic Sensors, Laser Optoelectronics & Microphotonics, 16-19 September,1998
    [22] Samuel Vurpillot, Daniele Inaudi, Pierre Mivelaz, Low-coherence deformation sensors for the monitoring of concrete structures, European Symposium on Optics for Environmental and A Public Safety, 22-23.6.1995, Munich, Deutschland
    [23] Sandra LLoret, Daniele Inaudi, Branko Glisic, Ian Smith, Towards Monitoring of Dynamic Deformations in Civil Structures using SOFO Sensors, Trends in optical non-desctructive Testing, 3-5.5.2000, Lugano, Switzerland
    [24] Samuel Vurpillot, Daniele Inandi, Jean-Marc Ducret, Bridge monitoring by fiber optic deformation sensors: design, emplacement and results, SPIE, Smart Structures and Materials, 1996, San Diego, USA
    [25] Daniele Inaudi, Coherence multiplexing of incline displacement and temperature sensors, optical Engineering, 1995 Vol.34(7), P1912-1915
    [26] C Doyle, A Martin, etal, In-situ process and condition monitoring of advanced fibre-reinforced composite materials using optical fibre sensors, Smart Mater. Struet, 1998, Vol.27(7), P145-158.
    [27] D Inaudi, S Vurpillot, etal,Structural monitoring by curvature analysis using interferometric fiber optic sensors Smart Mater. Struct, 1998, Vol.27(7), P199-208
    [28] Samuel Vurpillot, Daniele Inaudi, etal, Mathematical model for the determination of the vertical displacement from internal horizontal measurements of a bridge, SPIE. 1996, Vol.2719 P46-53.
    [29] N.Perregaux, S.Vurpillot, etal,Vertical Displacement of Bridges Using the SOFO System: a Fiber optic Monitoring Method for Structures. Proceedings of the 12th Engineering Mechanics Conference,California, May, 1998 P791-794
    [30] Samuel Vurpillot, Daniele Inaudi, etal,Bridge monitoring by fiber optic deformation
    
    sensors:desigh, emplacement and results, SPIE 1996 Vol.2719, P141-149
    [31] Kazuro Kageyama, Isao Kimpara, etal, Smart marine structures: an approach to the monitoring of ship structures with fiber-optic sensors, Smart Mater. Struct, 1998, Vol.27(7), P472-478
    [32] M.波恩F.沃耳夫光学原理(上) 科学出版社 1978
    [33] Tosbihiko Yoshino, Kiyoshi Kurosawa, Katsuji Itoh, et al Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications IEEE Journal of Quantum Electronics, VOL 18 No.10 October 1982
    [34] A.D.Kersey, D.A.Jackson, and M.Corke, A Simple Fiber Fabry-Perot Sensor Opt. Commun. Vol45 (1983)
    [35] G.L.Mitehell, Intensity-Based and Fabry-Perot Interferometer Sensor. In 'Fiber Optic Sensors: An Introduction For Engineers and Scientists (E.Udd, ed.) Wiley (Interscience), New York, 1991.
    [36] Jaydeep V.Ranade, Electronic signal Processing in an Optical Fiber-Based Magnetometer, Dissertation of the Master to the Faculty of the Virginia Polytechnic Institute and State University, 1998, 8-13
    [37] Vikram Bhatia, Kent A Murphy, Richard O Claus, Mark E Jones, Jennifer L Grace, Tuan A Tran, Jonathan A Greene, Multiple strain state measurements using eonvertional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors, Smart Master, Struet.4(1995)240-245
    [38] M.J.de Vries,V.Bhatia,R.O.Claus,K.A.Murphy,T.A.Tran, Applications of Absolute EFPI Fiber Optic Sensing System for Measurement of Strain, Smart Structure and Materials, SPIE 1995 March, Volume2446,P9-15
    [39] Vikram Bhatia, Kent A Murphy, Richard O Claus, Mark E Jones, Jennifer L Grace, Tuan A Tran, Jonathan A Greene, Multiple strain state measurements using convertional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors, Smart Master, Struct.4(1995)240-245
    [40] Vikram Bhatia, Kent A Murphy, etal,Recent developments in optical-fiber-based extrinsic Fabry-Perot interferometric strain sensing technology, Smart Mater. Struct,1995, Vol.24(4),P246-251.
    [41] Scott A.Meller, Extrinsic Fabry-Perot interferometer System Using Wavelength Modulated Source, Dissertation of the Master to the Faculty of the Virginia Polytechnic Institute and State University, December, 1996.
    [42] Wanku Lee, Jongseo Lee, Craig Henderson, Henry F. Taylor, Ray James,Chung E. Lee, Victor Swenson, Robert A. Atkins, and William G. Gemeiner, "Railroad bridge instrumentation with
    
    fiber-optic sensors", APPLIED OPTICS/Vol. 38, o.7/1 March 1999
    [43] Chang-Sun, Hyung-Joon Bang, Hyun-Kyu Kang, Chun-Gon Kim, Real-time damage detection for smart composite materials using optical fiber sensors
    [44] Claude Belleville and Ga?tan Duplain, White-Light Interferometric multimode fiber-optic Strain Sensor, Optics Letters, Vol. 18 No.1 January 1,1993
    [45] G. Duplain, C. Belleville, S. Bussi?re and P.A. B?langer, "Absolute Fiber-Optic Linear Position and Displacement Sensor", Fiso Technologies, Inc
    [46] Jeong-Tae Kim,Norris Stubbs, Damage localization accuracy as a function of model uncertainty in the I-40 bridge over the Rio Grande, Smart Structure and Materials, SPIE 1995, March Volume2446,P193-203
    [47] Randall L.Mayes, An Experimental Algorithm for Damage Applied to the I-40 Bridge Over the Rio Grande, Smart Structure and Materials, SPIE 1995 March Volume2446,P204-214
    [48] K.D.Bennet,L.R.Mclaughlin, Monitoring of corrosion in steel structures using optical fiber sensors, Smart Structure and Materials, SPIE 1995 March Volume2446,P48-59
    [49] M.J.de Vries,V.Bhatia,R.O.Claus,K.A.Murphy,T.A.Tran, Applications of Absolute EFPI Fiber Optic Sensing System for Measurement of Strain, Smart Structure and Materials, SPIE 1995 March, Volume2446,P9-15
    [50] Steve E.Watldns, John F.Unser, Antonio Nanni, K.Chandrashekhara, Abdeldjelil Belarbi, "Instrumentation and manufacture of a smart composite bridge for short-span applications"
    [51] M.A.Davis,D.G.Bellemore,T.A.Berkoff, A.D.Kersey, Design and Performance of a Fiber Bragg Grating Distributed Strain Sensor System, Smart Structure and Materials, SPIE 1995 March Volume2446,P227-235
    [52] Craig E.Miller, M.G.Sharma, James A.Sherwood, Measuring soil strains using fiber optic sensors, Smart Structure and Materials, SPIE 1996, February Volume2719, P2-13
    [53] Samuel Vurpillot, Daniele Inaudi, Jeean-Marc Ducret, Bridge monitoring by fiber optic deformation sensors: design, emplacement and results, Smart Structure and Materials, SPIE 1996 February Volume2719,P141-149
    [54] Edgar Conley, Chris Morgan, Speckle photograghy applied to measure deformation of very large structurec Smart Structure and Materials, SPIE 1995, March Volume2446,P161-168
    [55] Samuel Vurpillot, Daniele Inaudi, Antonio Scano, Mathematical model for the determination of the vertical displacement from internal horizontal measurements of a bridge, Smart Structure and Materials, SPIE 1996,February Volume2719,P46-53
    [56] John W.Ayres, Craig A.Rogers, Qualitative heath monitoring of a steel bridge joint via piezoelectric actuator/sensor patches, Smart Structure and Materials, SPIE 1996, February
    
    Volume2719,P123-131
    [57] Lawrence, C.M., Nelson, D.V., Bennett, T.E., Spingnm, J.R, Determination of process-induced residual stress in composite materials using embedded fiber optic sensors SPIE Vol.3042,154-165(1997)
    [58] Andre Morin, Serge Caron, Richard Van Neste Merv H. edgeeombe, Field monitoring of the ice load of an icebreaker propeller blade using fiber optic strain gauges, Smart Structures and Materials, Vol.2718 26-28 February 1996
    [59] Vol.24 No.4,2000
    [60] Shah M. Musa, "Real-Time Signal Processing and Hardware Development for a Wavelength Modulated Optical Fiber Sensor System", Dissertation of the degree of Doctor of Philosophy to the Faculty of the Virginia Polytechnic Institute and State University, 1997
    [61] G.F.Fernando, T. Liu, A Frequency Division Multiplexed Low-Finesse Fiber Optic Fabry-Perot Interferometric Sensor System, ICHMCIS'99:144~153
    [62] Farhad Akhavan, Steve E Watkins, K Chandrashekhara, Measurement and analysis of impact-induced strain using extrinsic Fabry-Perot fiber optic sensors, Smart Mater. Struct. 7(1998), 745-751
    [63] 杨朝晖 刘浩吾,F-P型光纤应变传感器混凝土实验研究,实验力学,Vol 18 No 1 Mar 1998
    [64] 赵鸿,曹正元,顾绍德,光纤传感器在土木工程中的应用研究,激光与光电子学进展,2000年6期
    [65] 李天初,绝对测量小距离的波长扫描—光纤双干涉仪系统,计量学报,Vol.19 No.1 January 1998
    [66] 毕卫红,本征不对称光纤法布里-珀罗干涉仪的理论模型,光学学报,Vol.20 No.7,2000
    [67] 孙吉勇,基于可调法珀腔解调的光纤法珀应变传感器的技术研究,重庆大学硕士毕业论文,2002
    [68] 王宁,基于波形分析的光纤法珀应变仪在桥梁应变监测中的应用,重庆大学硕士毕业论文,2002
    [69] 费业泰,误差理论与数据处理,第4版,机械工业出版社,2000.5
    [70] 梁晋文,陈林才,何贡,误差理论与数据处理,计量出版社,1989.8
    [71] 肖明耀,误差理论与应用,计量出版社,1985.8
    [72] 封君,光纤法珀应变传感器及其在桥梁健康监测中的应用,重庆大学博士学位论文,2000
    [73] 靳伟,廖延彪,张志鹏,导波光学传感器:原理与技术,科学出版社,1998
    [74] 王丁,光学讲义(上).重庆大学应用物理系(1995)P1-52
    
    
    [75] 程佩青,数字信号教程,清华大学出版社,1995,P103
    [76] 薛嘉庆.最优化原理与方法(修订版)冶金工业出版社 (1992) P58
    [77] 胡广书.数字信号处理——理论、算法与实现清华大学出版社 (1997) P72
    [78] 粮治明,丘侃,材料力学,高等教育出版社,1997.7
    [79] 伊亨云,朱金明,黄雯莹,概率论与数理统计,重庆大学出版社,1997.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700