高速旋转丝变形表面纳米化及其对离子渗氮的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用强烈塑性变形诱发晶粒细化的机理,构建了高速旋转丝变形实验装置,分别对低碳钢、工业纯钛进行了表面处理,探讨实现表面纳米化的可行性。运用X射线衍射、扫描电子显微镜和透射电子显微镜等研究变形处理后样品的显微结构变化特征。运用显微硬度计对处理样品表面性能进行测试分析。结果表明:经过普通镀铜钢丝轮高速旋转塑性变形处理后,在低碳钢表面可以形成厚度为10~15μm左右的纳米晶层,最表面层的平均晶粒尺寸约为8nm,晶粒尺寸沿深度方向不断增大;表层显微硬度显著提高,与心部基体相比,提高了2倍以上,最高达到约491HV0.05。工业纯钛表面层晶粒细化至纳米量级,尺寸为15nm左右,沿深度方向,晶粒尺寸逐渐增大;表面层硬度高达489HV0.05,约为基体硬度的3倍,随着距表面深度的增加,显微硬度逐渐降低。
     研究了低碳钢和工业纯钛在高速旋转丝变形表面纳米化处理前后的离子渗氮行为。实验结果发现:在500℃以下渗氮时,经过表面纳米化预处理的低碳钢,其表层所形成的化合物层厚于原始渗氮样品,且表层硬度显著提高,是相同条件下原始渗氮样品的1.7倍;当温度高于600℃渗氮5h后,表面纳米化预处理的优势消失。工业纯钛经表面纳米化预处理后,在480℃下渗氮8h,就能够形成化合物,且在600℃以下渗氮,形成较原始样品更厚的化合物层,在相同条件下与原始渗氮样品表层硬度值(703HV0.05)相比,预处理渗氮表层硬度增高到909HV0.05。
Based on the grain refinement mechanism induced by severe plastic deformation, a novel technique of high-speed rotation wire-brushing deformation (HRWD) was used to treat the surface of low carbon steel and commercially pure titanium(TA2) with the purpose of exploring the feasibilities of realizing surface nanocrystallization by HRWD. The experimental set-up was designed and rebuilt. The refined microstructure features were systematically characterized by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. The microhardness variation along the depth of the treated sample was examined by microhardness tester. Experimental evidences showed that after the HRWD treatment with ordinary coppered steel wire, a nanostructured surface layer of about 10-15μm in thickness was formed on low carbon steel. The mean grain size in the top surface layer was approximately 8nm. It was found that a gradient microstructure with grain size from nanoscale to microscale was obtained along the depth of its surface layer. The microhardness of nanostructured surface layer was enhanced significantly after HRWD, compared with that of the original sample, and reached 491 HV0.05. The microstructure of the surface layer was refined into the nanoscale on TA2 by HRWD. Its mean grain size in the top surface layer was up to 15nm. In the top surface nanostructured layer, the microhardness reached 489HV0.05, which was about three times that of the coarse-grained matrix. And along the depth from the top surface, the microhardness in the surface layer gradually decreased to that of the matrix.
     Plasma-nitriding behavior of low carbon steel and commercially pure titanium after the HRWD treatment was investigated in comparison with that in the original materials. Experimental results showed that improved nitrogen transport could be obtained by plasma nitriding after the samples were subjected to HRWD. For low carbon steel nitrided below 500℃, the surface nanocrystallized samples could produce thicker compound layer than untreated samples. With the same nitriding treatment parameters, the surface microhardness of the samples treated by HRWD, increased significantly, which nearly doubled the value of plasma-nitrided coarse-grained ones. However, after 5 hours' nitridation at 600℃, the surface nanostructured samples began to lose their good effects on the nitridation speed during the plasma nitriding. The compound layer came into existence on HRWD commercially pure titaniun nitrided at 480℃for 8 hours. Furthermore, nitrided below 600℃, the surface nanostructured TA2 could form thicker compound layer than untreated samples and raised the surface microhardness from 703HV0.05 (of nitrided coarse-grained TA2) to 909HV0.05.
引文
[1]张立德,牟季美等.纳米材料和纳米结构[M].北京:科学出版社,2001
    [2]K.Lu.Nanocrystalline metals crystallized from amorphous solids:Nanocrystallization,structure and properties[J].Materials Science & Engineering,1996,16(4):161-221
    [3]H.Gleiter.Nanocrystalline materials[J].Progress in mater Sci.,1989,33:223-315
    [4]冯淦,石连捷,吕坚,等.低碳钢超声喷丸表面纳米化的研究[J].金属学报,2000,36(3):300-303
    [5]H.W.Zhang,Z.K.Hei,G Liu,et al.Formation of nanostructured surface layer on AISI304 stainless steel by means of surface mechanical attrition treatment[J].Acta Materialia,2003,51:1871-1881
    [6]刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状[J].中国表面工程,2001,3:1-5
    [7]徐滨士.纳米表面工程[M].北京:化学工业出版社,2003
    [8]K.Lu,J.Lu.Surface nanocrystallization(SNC)of metallic materials-presentation of the concept behind a new approach[J].Mater.Sci.Technol.,1999,15(3):193-197
    [9]赵新奇,熊天英,徐政,等.40Cr钢表面纳米化的研究[J].同济大学学报,2004,32(2):218-221
    [10]张俊宝,刘志文,宋洪伟,等.高能机械加工表面纳米化40Cr钢组织结构与力学性能[J].航空材料学报,2004,24(6):11-15
    [11]Lu K,Lu J.Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J].Materials Science and Engineering A,2004,375-377:38-45
    [12]Z.B.Wang,N.R.Tao,S.Li,et al.Effect of surface nanocrystallization on friction and wear properties in low carbon steel[J].Materials Science and Engineering A,2003,352:144-149
    [13]熊天英,刘志文,李智超,等.超音速微粒轰击金属表面纳米化新技术[J].材料导报,2003,17(3):69-71
    [14]N.R.Tao,Z.B.Wang,W.P.Tong,et al.An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J].Acta Materialia,2002,50:4603-4616
    [15]Y.M.Wang,K.Wang,D.Pan,et al.Microsample tensile testing of nanocrystalline copper[J].Scripta Materialia,2003,48:1581-1586
    [16]温爱玲,陈春焕,郑德有,等.高能喷丸表面纳米化对工业纯钛组织性能的影响[J]。 表面技术,2003,32(3):16-18
    [17]张淑兰,陈怀宁,林泉洪,等.工业纯钛的表面纳米化及其机制[J].有色金属,2003,55(4):5-9
    [18]赵永庆,朱康英.纯Ti纳米结构表层的探讨[J].稀有金属材料与工程,2004,33(6):615-619
    [19]K.Y.Zhu,A.Vassel,F.Brisset,et al.Nanostructure formation mechanism of α-titanium using SMAT[J].Acta Materialia,2004,52:4101-4110
    [20]Y.Li,et al.Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel[J].Corrosion,2004,60(10):891-896
    [21]Xingping Yong,Gang Liu,Ke Lu,et al.Characterization and properties of nanostructured surface layer in a low carbon steel subjected to surface mechanical attrition[J].Journal of Materials Science and Technology,2003,19(1):1-4
    [22]卑多慧,吕坚,顾剑锋,等.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报,2002,23(1):19-24
    [23]G.Liu,J.Lu,K.Lu.Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J].Materials Science and Engineering A,2000,286:91-95
    [24]王爱香,刘刚,周蕾,等.表面机械研磨处理后316L不锈钢的表层结构及硬度的热稳定性[J].金属学报,2005,41(6):577-582
    [25]吕爱强,刘刚,刘春明.机械研磨诱导316L不锈钢表层组织的演变[J].金属学报,2004,40(9):943-947
    [26]吕爱强,刘春明,刘刚.表面机械研磨316L不锈钢诱导表层纳米化[J].东北大学学报(自然科学版),2004,25(9):848-850
    [27]吕爱强,张洋,刘春明,等.表面纳米化316L不锈钢在酸性介质中腐蚀性能的研究[J].材料与冶金学报,2004,3(2):129-132
    [28]吕爱强,张洋,李瑛,等.表面纳米化对316L不锈钢性能的影响[J].材料研究学报,2005,19(2):118-124
    [29]吕爱强,张洋,李瑛,等.异步轧制对表面纳米化316L不锈钢组织和性能的影响[J].金属学报,2005,41(3):271-276
    [30]赵新奇,徐政,张俊宝,等.40Cr钢表面纳米层的微观结构[J].材料科学与工程学报,2003,21(5):706-710
    [31]胡兰青,李茂林,王科,等.铝合金表面纳米化处理及显微结构特征[J].中国有色金属学报,2004,14(12):2016-2020
    [32]X.Wu,N.Tao,Y.Hong,et al.Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP[J].Acta Materialia,2002, 50:2075-2084
    [33]K.Dai,J.Villegas,Z.Stone,et al.Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process[J].Acta Materialia,2004,52:5771-5782
    [34]K.Dai,J.Villegas,L.Shaw.An analytical model of the surface roughness of an aluminum alloy treated with a surface nanocrystallization and hardening process[J].Scripta Materialia,2005,52:259-263
    [35]J.Villegas,K.Dai,L.Shaw,et al.Nanocrystallization of a nickel alloy subjected to surface severe plastic deformation[J].Materials Science and Engineering A,2005,410-411:257-260
    [36]J.Tian,J.Villegas,W.Yuan,et al.A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy[J].Materials Science and Engineering A,2007,468,470:164-170
    [37]Masahide Sato,Nobuhiro Tsuji,Yoritoshi Minamino,et al.Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation[J].Science and Technology of Advanced Materials,2004,5:145-152
    [38]Xiumin Fan,Bosen Zhou,Lin Zhu,et al.Surface nanocrystallization of low carbon steel induced by circulation rolling plastic deformation[J].Materials Science Forum Vols,2005,475,479:133-136
    [39]宋洪伟,刘志文,张俊宝,等.表面纳米化40Cr钢的组织特征[J].机械工程材料,2004,28(1):35-37
    [40]胡国雄,盛光敏,韩靖.塑性变形诱发表面自纳米化的研究及其应用[J].材料导报,2007,21(4):117-125
    [41]刘刚,周蕾.工程金属材料的表面纳米化技术(一)[J].纳米科技,2006,3(1):56-30
    [42]胡德林.金属学原理[M].西安:西北工业大学出版社,1995:230-231
    [43]何利舰,张小农.钛及钛合金的表面处理技术新进展[J].上海金属,2005,27(3):39-44
    [44]Yimin Lin,Jian Lu,Liping Wang,et al.Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel[J].Acta Materialia,2006,54:5599-5605
    [45]W.P.Tong,N.R.Tao,Z.B.Wang.The formation of ε-Fe_(3-2)N phase in a nanocrystalline Fe[J].Scripta Materialia,2004,50:647-650
    [46]李国英.材料及其制品表面加工新技术[M].长沙:中南大学出版社,2002:59
    [47]戴达煌,周克崧,袁镇海,等.现代材料表面技术科学[M].北京:冶金工业出版社, 2004:565-579
    [48]姚寿山,李戈扬,胡文彬.表面科学与技术[M].北京:机械工程出版社,2005:313
    [49]孙希泰等.材料表面强化技术[M].北京:化学工业出版社,2005
    [50]哈尔滨工业大学理论力学教研室.理论力学(下册)[M].第四版.北京:高等教育出版社,1982:142-143
    [51]祁景玉.X射线结构分析[M].上海:同济大学出版社,2003:106-107
    [52]周玉.材料分析方法[M].北京:机械工业出版社,2000:99
    [53]束德林.金属力学性能[M].北京:机械工业出版社,1987:17
    [54]Nieman W,Weertman J R,Siegel R W.Mechanical behavior of nanocrystalline Cu and Pb[J].Journal of Materials Research,1991,6(5):1012
    [55]王宝云,李争显,马东康.钛及钛合金表面强化技术[J].稀有金属快报,2005,(7):6-10
    [56]钱苗根,姚寿山,张少宗.现代表面技术[M].北京:机械工业出版社,1999
    [57]杨磊,赵秀娟,陈春焕,等.纯钛高能纳米化后粗糙度的分析[J].中国表面工程,2006,19(4):43-46
    [58]何晓梅,赵西成,王敬忠,等.喷丸处理实现纯钛表面纳米化的研究[J].热加工工艺,2007,36(16):7-9
    [59]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版,2005:21-24
    [60]C.莱茵斯,M.皮特尔斯.钛与钛合金[M].北京:化学工业出版社,2005:3-5
    [61]张聪慧,刘研蕊,兰新哲.钛合金表面高能喷丸纳米化后的组织与性能[J].热加工工艺,2006,35(2):5-7
    [62]齐宝森,陈路宾,王忠诚等.化学热处理技术[M].北京:化学工业出版社,2006
    [63]K.H.Jack.The iron-nitrogen system:the preparation and the crystal structures of nitrogen-austenite(γ)and nitrogen-martensite(α)[J].Proc.Roy.Soc.,1951,208A:200-215
    [64]胡明娟,潘健生.钢铁化学热处理原理[M].上海:上海交通大学出版社,1996:19-24
    [65]夏立芳,高彩桥.钢的渗氮[M].北京:机械工业出版社,1989:247-248
    [66]王国佐,王万智.钢的化学热处理[M].北京:中国铁道出版社,1980
    [67]M.P.Fewell,J.M.Priest,M.J.Baldwin,et al.Nitriding at low temperature[J].Surface and Coatings Technology,2000,131:284-290
    [68]佟伟平,陶乃镕,王镇波,等.纳米结构纯铁的气体渗氮[J].热处理,2007,22(2):11-15
    [69]孔德谆.化学热处理原理[M].北京:航空工业出版社,1992:184-185
    [70]Weiping Tong,Nairong Tao,Zhenbo Wang,et al.Nitriding Iron and 38CrMoAl Steel with a Nanostructured Surface Layer[J].Journal of the Graduate School of the Chinese Academy of Science,2005,22(2):230-238
    [71]黄辉.离子渗氮气氛对TC4钛合金组织与性能的影响[J].光学精密工程,1997,5(1):43-48
    [72]赵树萍,吕双坤,郝文杰.钛合金及其表面处理[M].哈尔滨:哈尔滨工业大学出版社,2003:112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700