表面纳米化对钛及其合金疲劳性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及其合金具有高的比强度、优良的耐蚀性和生物相容性等优异性能,被广泛地应用于航空航天、生物医学和化学工业等领域。但是,由于其疲劳强度低、耐磨性差等缺点,大大制约了其进一步的开发与应用。因此,如何提高钛及其合金的疲劳性能成为亟待解决的重要问题。
     自1999年卢柯院士等提出了表面剧烈塑性变形实现金属表面纳米化的基本方法以来,有关表面自身纳米化机理、表面身自纳米化技术及其工程应用等,一直是国内外十分关注的研究热点。因其工艺简单,而且通过这种方法获得的纳米表层与基体组织连续过渡,所以被认为极具开发应用潜力。
     本文通过高能喷丸方法实现钛及其合金的表面自身纳米化,系统研究了表面自身纳米化对钛及其合金疲劳性能的影响规律及机理,同时开辟出提高钛及其合金疲劳极限的表面纳米化新途径,并为表面纳米化技术的工程应用提供理论指导。
     首先采用履带式喷丸机对工业纯钛(TA2)及其合金(TC4)进行不同时间的表面高能喷丸处理,并采用X-射线衍射分析、透射电镜和扫描电镜进行表征分析。综合考虑表面纳米化程度、表面损伤及粗糙度等因素,TA2和TC4在弹丸直径1mm、弹丸速度50m/s、喷丸时间2h条件下的高能喷丸效果最佳,得到了晶粒尺寸约为30nm的纳米表层。
     通过金相观察分析等研究发现了层片状组织钛合金(TC4)在高能喷丸处理过程中存在“不均匀变形机制”,即主要是通过a-Ti层片沿着两相层片间的挤压塑性流变和剪切塑性流变来完成塑性变形,而p-Ti片层变形困难,由此又进一步加剧了不稳定剪切带的不均匀变形,此不均匀变形机制是造成层片状组织钛合金损伤的主要原因。
     对原始试样及不同喷丸时间处理后的试样进行了旋转弯曲疲劳试验研究。结果表明,高能喷丸表面纳米化处理使TA2的疲劳极限提高了34%,由退火态的220MPa提高到295MPa。等轴晶TC4疲劳极限提高了20%,由退火态的485MPa提高到580MPa。同时,高能喷丸造成表面机械损伤及表面粗糙度的增加又强烈地抑制了纳米表层发挥其对疲劳极限的提高作用。因此如何修复或减少表面损伤,充分发挥纳米晶体组织的作用,成为表面纳米化提高疲劳性能的关键问题。
     在以上研究结果的基础上,本文提出了“复合喷丸”表面纳米化的新工艺方法。即,在高能喷丸纳米化之后,再用直径0.5mm的小弹丸进行20min喷丸,以此修复表层显微损伤和降低表面粗糙度。通过这种复合喷丸,使TA2的疲劳极限进一步提高到了335MPa,比未喷丸提高了52%。而等轴晶TC4的疲劳极限进一步提高到了650 MPa,比未喷丸提高了34%。此结果显示了“复合喷丸”具有显著的提高疲劳极限的效果。分析认为,提高疲劳极限的主要原因是复合喷丸改善了表面质量,包括缓减微观局部变形的不均匀性和晶体内应力集中,有效地修复内部晶体缺陷、晶界及相界损伤、乃至表面细观损伤等微观缺陷。
Titanium and its alloys are widely used in aerospace, biomedical and chemical industries and other fields due to the excellent properties as high specific strength, strong corrosion resistance and superior biocompatibility. However, they also have some disadvantages as low fatigue strength and poor wear resistance etc., which greatly restricted their further development and application. Therefore, it is very important to improve the fatigue property of titanium and its alloys.
     Since prof. K. Lu advanced the new concept of surface nanocrystallization (SNC) which induced by surface severe plastic deformation (SPD) in 1999, the research interests of the present authors currently focus on the mechanism, technique and the industrial application. This technique has been supposed that has vast development potential because its simple process and the nanostructured surface layer achieved by means of which continues to the substrate gradually.
     In this paper, the SNC of titanium and its alloys was carried out by high energy shot peening (HESP), then the effect of SNC on the fatigue of titanium and its alloys coupled with the intrinsic mechanism are studied systematically. Furthermore, a new approach that improves the fatigue strength of titanium and its alloys by SNC was proposed. Above mentioned study provides theoretical guidance for the engineering application of SNC.
     Surface anocrystallizationg on commercial pure titanium (TA2) and its alloy (TC4) were carried out by high energy shot peening (HESP) under the various shot time using crawler shot peening equipment. The microstructures on the surface teated by HESP have been characterized by X-ray diffraction analysis, transmission and scanning electron microscopy. Based the considering synthetically SNC degree, surface damage and roughness, both TA2 and TC4 achieved optimum peening result under the condition that the diameter of the shot is 1 mm, the peening velocity of the shot is 50 m/s and duration time is 2h. The average grain size in the as-treated surface layer is about 30 nm.
     It was found by observation of microstructure morphology using SEM that there is non-uniform deformation mechanism in the lamellar-structured titanium alloy (TC4) during HESP, i.e., the deformations are accomplished mainly through the extrusion plastic flowing and shear plastic flowing happened on a phase along the interface of a andβ, while theβlamellar deform hardly. Thus the strain concentration in unstable shear band is more exacerbated. The non-uniform deformation mechanism is the main reason that causes mechanical damage in lamellar-structured titanium alloy during HESP.
     The fatigue strength of original and as-peened samples was examined by rotary bending fatigue test. The results show that the fatigue limit of TA2 has been improved about 34% after SNC, namely improved from 220 MPa of fatigue limit of annealed specemen to 295 MPa. While the fatigue strength of equiaxial structured TC4 has been improved 20%, namely improved from 485 MPa (annealed fatigue strength) to 580 MPa. Meanwhile, HESP cause surface mechanical damage and surface roughness coarsening, which restrains the positive effect of surface nanostructure on the enhancement of fatigue resistance dramatically. Therefore, how to repair or reduce the surface damage so that let the nanocrystalline structure play full role on improvement of fatigue limit becomes a key factor.
     Based on the above mentioned results, a combined shot peening for surface nanocrystallization (CSPN) was presented as novel process of SNC, i.e. use smaller shots (0.5 mm in diameter) to peen the surface for 20 min after HESP, aiming at repairing the surface micro-damage and lowering the surface roughness. After CSPN, the fatigue limit of TA2 has improvee further to 335 MPa,52% higher than that of the anealled spcemen. While the fatigue limit of equiaxial structured TC4 increases further to 650 MPa,43% higher than the anealled spcemen. This result indicates that CSPN has marked effect on the fatigue limit enhancement, which is the most effective method that improves the fatigue limit of titanium and its alloy by means of SNC reported so far. The reason is due to CSPN may improve the surface quality, which inclose slowing down the inhomogeneity of local micro-deformation, reduction of the internal stress concentration in the crystal, and repairing crystal defects and damage in grain boundaries and phase boundaries as well as micro-damage caused by HESP.
引文
[1]J.C. Williams, G. Lutjering. Titanium [M]. Berlin, Germany:Springer-Verlag Berlin Heidelberg, 2003.
    [2]S.Wua, K.Fana, P. Jiang. Grain Refinement of Pure Ti during Plastic Deformation, Materials Science and Engineering A 527 (2010) 6917-6921
    [3]C.莱茵斯,M.皮特尔斯编,陈振华等译.钛与钛合金.北京:化学工业出版社,2005.
    [4]王桂生.钛的应用技术.长沙:中南大学出版社,2007.
    [5]Rostlund T, Albrektsson B, Albrektsson T, McKellop H. Wear of Ion Implanted Pure Titanium against UHIVIWPE, Biomaterials,1989, Vol.10:176-181.
    [6]Gaggl A, Schultes G, Muller W D. Scanning Electron Microscopical Analysis of Laser-treated Titanium Implant Surfaces-a Comparative Study, Biomaterials,2000, Vol.21(10):67-73.
    [7]Wilson A, Mettews A, Honsdon J. Properties of Titanium Nitrided by PVD Method, Surface and Coatings Technology,1993, Vol.62(1):600-605.
    [8]He J., Bai C.D., Xu K.W., et al. Improving the Anticorrosion and Mechanical Behaviour of PACVD TiN, Surface and Coatings Technology,1995, Vol.75(1):387-392.
    [9]Schutz R.W. Surface Treatment for Expending Titanium Alloy Application Limits:An Overview. in Surface Performance of Titanium, (Proceeding of a Symposium on Surface Performance of Titanium. held at the 1996 Fall TMS Meeting) Eds. Gregory J. K. et al, USA:TMS.1997.1.
    [10]虞忠良.Ti-6-22-22合金的热机械疲劳行为和表面处理对其疲劳性能的影响.中国科学院研究生院博士学位论文.2004.
    [11]孙希泰.材料表面强化技术.北京:化学工业出版社,2005.
    [12]Zhang J.B., Fan D., Yu S.R.. The Effect of Shot Peening on the Fatigue Strength of Pure Titanium, Transactions of Materials and Heat Treatment Proceedings of the 14th IFHTSE Congress,2004, Vol. 25(5):271-274.
    [13]冯宝香.TC4-DT钛合金喷丸强化研究.西安建筑科技大学硕士论文,2009.
    [14]王仁智.金属材料的疲劳性能与喷丸强化工艺.北京:国防工业出版社,1977.
    [15]张建斌,季根顺,马勤等.纯钛滚压形变强化的研究.甘肃工业大学学报.2002,28(1):25-27.
    [16]王仁智,吴培远.疲劳失效分析.北京:机械工业出版社,1987.
    [17]Gleiter H. Nanocrystalline materials[J]. Prog Mater Sci,1989, Vol.33(4):223-315.
    [18]N.R. Tao, M.L. Sui J.Lud and K. Lu. Surface Nanocrystallization of Iron Induced By Ultrasonic Shot Peening. NanoStructured Materials,1999, Vol.11(4):433-440.
    [19]巴德玛,马世宁,李长青.SFPB处理的38CrSi钢表面纳米化层微观结构特征.装甲兵工程学院学报.2009,Vol.23(1):81-83.
    [20]R. Singha, S.V. Divinski, H. Rosner, et al. Microstructure Evolution in Nanocrystalline NiTi Alloy Produced by HPT. Journal of Alloys and Compounds,2011, article in press.
    [21]Wang T., Wang D.P., Liu G. Investigations on the Nanocrystallization of 40Cr Using Ultrasonic Surface Rolling Processing. Applied Surface Science 255 (2008) 1824-1829
    [22]S.Wu, K.Fana, P. Jiang. Grain Refinement of Pure Ti During Plastic Deformation. Materials Science and Engineering A,2010, Vol.527;6917-6921.
    [23]张邦维.纳米材料物理基础.北京:化学工业出版社,2009:90-98.
    [24]卢柯,卢磊.金属材料力学性能的研究进展.金属学报.2000,Vol.36(8):785-789.
    [25]Lu K., Lu J. Surface Nanocrystallization (SNC) of Metallic Materials:Presentation of the Concept behind A New Approach. Materials Science and Technology,1999, Vol.15:193-197.
    [26]Lu K, Wang J T, Wei W D. A new method for synthesizing nanocrystalline alloys, Journal of Applied Physics,1991, Vol.69:522-524.
    [27]许并社,陆路,田中俊一郎.电子束照射下金纳米微粒的接合.电子显微学报.2000,Vol.19(4):441-442.
    [28]Yao M.Q., Yng H., Hu L.Q., et al. Preparation and Properties of Nano-sized SiO2 powder. Trans. Nonferrous Met. Soc. China,2002,12(5):833-836.
    [29]R.Z. Valiev, R.K. Islamgaliev, LV. Alexandrov. Bulk Nanostructured Materials from Severe Plastic Deformation. Prog. Mater. Sci.2000,45(2):103
    [30]Zhilyaev A P, Nurislamova G V, Kim B K. Experimental Parameters Influencing Grain Refinement and Microstructural Evolution during High-pressure Torsion. Acta Mater,2003, Vol.51(3): 753-765.
    [31]M. Segal. Equal Channel Angular Extrusion:from Macromechanics to Structure Formation, Mater. Sci. Eng. A,1999, Vol.271:322-333.
    [32]Segal. V., M. Materials Processing by Simple Shear [J], Materials Science Engineering,1995 (A 197):157-164.
    [33]Y.H. Zhao, X.Z. Liao, Z. Jin, et al. Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al alloy Processed by ECAP and Their Evolutions during Annealing, Acta Materialia,2004, Vol.52:4589-4599.
    [34]J.M. Molina-Aldareguial, M.T. Perez-Pradol, R.Z. Valiev, et al. High Strength Ultra-fine Grained Titanium Produced via a Novel Spd Processing Route, Int J Mater Form,2010, Vol.3 Suppl 1: 407-410.
    [35]P. Semenova, R. Z. Valiev, B. Yakushina, et al. Strength and Fatigue Properties Enhancement in Ultrafine-grained Ti Produced by Severe Plastic Deformation, J Mater Sci,2008, Vol.43: 7354-7359.
    [36]G. K. Sadikova, V. V. Latysh, I. P. Semenova, et al. Effect Of Severe Plastic Deformation and Thermomechanical Treatment On The Structure And Properties Of Titanium, Metal Science and Heat Treatment,2005, Vol. (47):512-515.
    [37]S.L. Semiatin, V.M. Segal, R.E. Goforth et al. Workability of Commercial Purity Titanium and 4340 Steel During Equal Channel Angular Extrusion at Cold Working Temperature, Metall. Mater Trans. A,1999, Vol.30 (5):1425-1435.
    [38]Sergueeva, A. V., Stolyarov, V. V., Valiev, R. Z.& Mukherjee, A. K. Advanced Mechanical Properties of Pure Titanium with Ultra-fine Grained Structure, Scripta Materialia,2001, Vol.45(7): 747-752.
    [39]Islamgaliev, R. K., Buchgraber, W., Kolobov, Y. R., et al. Deformation Behavior of Cu-Based Nanocomposite Processed by Severe Plastic Deformation, Mater. Sci. Eng. A,2001, Vol.319-321: 872-876.
    [40]LV Alexandrov, R.Z. Valiev. X-ray Ananlysis of Bulk Nanostructured Metals. Mater. Sci.Forum 2000, Vols.321-324:577-582.
    [41]H. Jiang, Y.T. Zhu, D.P. Butt, et al. Microstructural Evolution, Microhardness and Thermal Stability of HPT-processed Cu, Mater. Sci. Eng. A,2000, Vol.290(1-2):128-138.
    [42]Mazilkin, B.B. Straumal, E. Rabkin, et al. Softening of Nanostructured Al-Zn and Al-Mg alloys after Severe Plastic Deformation, Acta Materialia,2006, Vol.54:3933-3939.
    [43]R.K. Islamgaliev, V.U. Kasyanov, L.O. Shostakovich, A.V. Sharafutdinov, et al. Microstructure and Mechanical Properties of Titanium (Grade 4) Processed by High-pressure Torsion, Materials Science and Engineering A,2008, Vol.493:190-194.
    [44]Y. Ivanisenko, R.Z. Valiev, H.J. Fecht Grain Boundary Statistics in Nano-structured Iron Produced by High Pressure Torsion, Materials Science and Engineering A,2005, Vol.390; 159-165.
    [45]R. Singha, S.V. Divinsk, H. Rosnera, et al. Microstructure Evolution in Nanocrystalline NiTi Alloy Produced by HPT, Journal of Alloys and Compounds,2011, (in press), doi:10.1016/j.jallcom. 2011.01.206.
    [46]G. K. Sadikova, V. V. Latysh, I. P. Semenova, et al. Effect Of Severe Plastic Deformation And Thermomechanical Treatment On The Structure And Properties Of Titanium, Metal Science and Heat Treatment,2005, Vol.(47:512-515.
    [47]Salimgareeva GH, Semenova IP, Latysh VV, et al. Combined SPD Techniques to Fabricate Nanostructured Ti Rods for Medical Applications, Solid State Phenomena.2005, Vol.114:183-188.
    [48]Latysh VV, Semenova IP and Sadikova GH, et al. Asaro RJ et al (2005) In:Conf Proc Ultrafine Grained Materials IV, TMS (The Minerals, Metals and Materials Society), Warrendale, PA:111.
    [49]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004,4-5
    [50]温爱玲,陈春焕,郑德有.高能喷丸表面纳米化对工业纯钛组织性能的影响.表面技术.2003,Vol.32(3):16-18.
    [51]Wu X. N. Tao, Y. Hong, et al. Microstructure and Evolution of Mechanically Induced Ultrafine Grain in Surface Layer of Al-alloy Subjected to USSP, Acta Mater.,2002, Vol.50(8):2075-2084.
    [52]Chen Chunhuan, Ren Ruiming, Zhao Xiujuan and Zhang Yujun. Surface Nanostructures in Commercial Pure Ti Induced by High Energy Shot Peening, Transactions of Nonferrous Metals Society of China, Oct.2004, Vol.14 (S2), P 215-218.
    [53]Ma G., Luo Y., Chen C.H. and Ren R>M. Surface Nanocrystallization of Commercially Pure Titanium by Shot Peening, Trans. of Nonf. Met. Soc. of China,2004, Vol.14, S2:204-209.
    [54]A.L. Wen, R.M. Ren and SW. Wang. Effect of Surface Nano-crystallization on Microstructure and Mechanic Properties of Commercial Pure Titanium[J], Key Eng. Mat. Vols.261-263 (2004):p. 1605-1610.
    [55]张毓隽.工业纯钛表面纳米化及其表层组织热稳定性研究.大连铁道学院学位论文.2004.
    [56]曹扬,陈光,颜银标.钢铁材料表面自身纳米晶化及其应用前景.钢铁研究学报.2005,Vol.17(2):1-6.
    [57]N. R. Tao, Z. B. Wang, W. P. Tong, et al. An Investigation of Surface Nanocrystallization Mechanism in Fe Induced by Surface Mechanical Attrition Treatment, Acta Mater.,2002, Vol. 50(18):4603-4616.
    [58]K.Y. Zhu, A. Vassel, F. Brisset, K.Lu, J.Lu. Nanostructure Formation Mechanism of a-titanium using SMAT, Acta Materialia 2004, Vol.52:4101-4110.
    [59]熊天英,刘志文,李智超.超音速微粒轰击金属表面纳米化新技术.材料导报.2003,Vol.17(3):69-71.
    [60]熊天英,李铁藩,吴杰等.金属表面超声速喷丸强化方法.中国专利:02109192.7,2003.
    [61]Zhang S.L., Chen H.N., Lin Q.H, Liu G. Surface Nanocrystallization Pure Titanium and Its Mechanism, Nonferrous metals,2003, Vol.55(4):5-10.
    [62]Dai, K., Villegas, J., and Shaw, L.. An Analytical Model of the Surface Roughness of Analuminum Alloy Treated with a Surface Nanocrystallization and Hardening Process. ScriptaMater.2004, Vol. 52(4):259-263.
    [63]邹途祥,卫英慧,侯利锋.表面机械研磨诱导纯铝表层纳米化.太原理工大学学报.2008,Vo1.39(3):249-252.
    [64]Zhang Y.S., Han Z., Wang K., et al. Friction and Wear Behaviors of Nanocrystalline Surface Layer of Pure Copper. Wear,2006, Vol.260(9-10):942-948.
    [65]Zhu K Y, Brisset F, et al. Nanostructure Formation Mechanism of a-titanium using SMAT, Acta Mater,2004, Vol.52:4101-4110.
    [66]冯淦,石连捷,吕坚等.低碳钢超声喷丸自纳米化的研究.金属学报.2000,Vol.36(3):300-303.
    [67]雍兴平,刘刚,吕坚,卢柯.低碳钢表面纳米化处理机结构特征.金属学报.2002,Vol.38(2):157-160.
    [68]宋洪伟,刘志文,张俊宝等.表面纳米化40Cr钢的组织特征.机械工程材料.2004,Vol.28(1):35-37.
    [69]Juan C. Villegas, Kun Dai. Nanocrystallization of a Nickel Alloy Subjected to Surface Severe Plastic Deformation, Materials Science and Engineering A,2005, Vol.410-411:257-260.
    [70]巴德玛,马世宁,李长青,熊天英.超音速微粒轰击38CrSi钢表面纳米化的研究.材料工程.2006,Vo1.12:3-7.
    [71]W.P. Tong, Z. Han, L.M. Wang, et al. Low-temperature Nitriding of 38CrMoAl Steel with A Nanostructured Surface Layer Induced by Surface Mechanical Attrition Treatment, Surface& Coatings Technology,2008, Vol.202:4957-4963.
    [72]张洪旺,刘刚,黑祖昆等.表面机械研磨诱导AISI304不锈钢表层纳米化.金属学报.2003,Vol.39(4):342-346.
    [73]Sanda, V. Garcia Navas, O. Gonzalo. Surface state of Inconel 718 Ultrasonic Shot Peened:Effect of Processing Time, Material and Quantity of Shot Balls and Distance from Radiating Surface to Sample, Materials and Design,2011, Vol.32:2213-2220.
    [74]Lu K, Lu J. Nanostructured Surface Layer on Metallicmaterials Induced by Surface Mechanical Attrition Treatment [J]. Materials Science and Engineering A,2004, Vol.375-377:38-45.
    [75]Roland T, Retraint D, Lu K, et al. Fatigue Life Improvement Through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment, Scripta Materialia,2006, Vol. 54:1949-1954.
    [76]Dai K, Villegas J, St one Z, et al. Finite Element Modeling of the Surface Roughness of 5052 Al Alloy Subjected to A Surface Severe Plastic Deformati on Process, ActaMaterialia,2004, Vol.52: 5771-5782.
    [77]Umemoto M., Huang B., Tsuchiya K., et al. For Mation of Nanocrystalline Structure in Steels by Ball Drop Test, Scrip taMaterialia,2002, Vol.46:3832388.
    [78]Umemoto M., Todaka K., Tsuchiya K. Formation of Nanocrystalline Structure in Carbon Steels by Ball Drop and Particle Impact Techniques, Materials Science and Engineering A,2004, Vol. 375-377:899-904.
    [79]Wang X.Y., Li D.Y. Mechanical and Electrochemical Behavior of Nanocrystalline Surface of 304 Stainless Steel, Electrochimica Acta,2002, Vol.47:3939-3947.
    [80]赵新奇,徐政,张俊宝等.40Cr钢表面纳米层的微观结构.材料科学与工程学报.2003,Vol.21(5):706-710.
    [81]Wang T.S, Yu J.K., Dong B.F. Surface Nanocrystallizati on Induced by Shot Peening and Its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel, Surface & Coatings Technology,2006, Vol. 200:4777-4781.
    [82]Raja K S, Namj oshi S A, Misra M. Improved Corrosion Resistance of Ni-22Cr-13Mo-4W Alloy by Surface Nanocrystallization, Materials Letters,2005, Vol.59:570-574.
    [83]邱诗龙,任瑞铭,王生武.高能喷丸表面纳米化对工业纯钛疲劳性能的影响.金属热处理.2005,Vol.30:282-285.
    [84]Juan C., Villegas, Kun Dai, et al. Nanocrystallization of a Nickel Alloy Subjected to Surface Severe Plastic Deformation, Materials Science and Engineering A,2005, Vol.410-411:257-260.
    [85]J.C. Villegas, L.L. Shaw. Nanocrystallization Process and Mechanism in A Nickel Alloy Subjected to Surface Severe Plastic Deformation, Acta Materialia,2009, Vol.57:5782-5795.
    [86]Bohdan N. Mordyuk, Georgiy I. Prokopenko. Ultrasonic Impact Peening for the Surface Properties Management, Journal of Sound and Vibration,2007, Vol.308:855-866.
    [87]C.C. Feng, K. Graff. Impact of spherical tool against a sonic transmission line, Journal of Acoustic Society of America,1972, Vol.52(1):254-262.
    [88]V.A. Kotko, G.I. Prokopenko, S.A. Firstov. Structure Changes in Mo Hardened Using Ultrasound, Soviet Physics Metallurgy Materials,1974, Vol.37(2):444-445.
    [89]M. Sato, N. Tsuji, Y. Minamino, et al. Formation of Nanocrystalline Surface Layers in Various Metallic Materials by Near Surface Severe Plastic Deformation, Science and Technology of Advanced Materials,2004, Vol.5:145-152.
    [90]刘飞燕,樊新民.高速旋转丝变形表面纳米化.材料热处理学报.2008,Vol.29(2):162-165.
    [91]刘刚,周蕾.工程金属材料的表面纳米化技术(一).纳米科技.2006,Vol.3(1):56-60.
    [92]Chakkingal U, Suriadi AB, Thorns PF. Microstructure Development During Equal Channel Angular Drawing At Room Temperature. Scripta Mater,1998, Vol.39:677-684.
    [93]Tao NR, Wu X L, Sui ML, Lu J, Lu K. Grain Refinement at the Nonascale via Mechanical Twinning And Dislocation Interaction in a NICKEl-based Alloy, Mater Res,2004, Vol.19: 1623-1629.
    [94]Chang C.P., Sun P.L., Kao P.W. Deformation Induced Grain Boundaries in Commercially Pure Aluminum, Acta Mater,2000, Vol.48:3377-3385.
    [95]Zhang H.W., Hei Z.K., Liu G., Lu J., Lu K. Formation of Nanostructured Surface Layer on AISI 304 Stainless Steel by Means of Surface Mechanical Attrition Treatment,2003, Acta Mater, Vol.51: 1871-1881.
    [96]Zhu K.Y., Vassel Brisset F., Lu K., Lu J. Nanostructure Formation Mechanism of a-titanium using SMAT, Acta Mater,2004, Vol.52:4101-4110.
    [97]Wu X, Tao N, Hong Y, Liu G, Xu B, Lu J, Lu K. Strain Induced Grain Refinement of Cobalt during Surface Mechanical Attrition Treatment, Acta Mater,2005, Vol.53:681-691.
    [98]Wu X, Tao N, Hong Y, Lu J, Lu K. Martensite Trans Formation and Twinning Deformation in Fcc Cobalt During Surface Mechanical Attrition Treatment, Scripta Mater,2005, Vol.52:547-551.
    [99]Liu G, Lu J, Lu K. Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening. Mater Sci. Eng. A,2000, Vol.286(1):91-95.
    [100]Zhao Y.H., Liao X.Z., Zhu Y.T., et al. Influence of Stacking Fault Energy on Nanostructure Formation under High Pressing Torsion, Mater Sci Eng A,2005, Vol.410-411:188-193.
    [10l]杨钢.等径角挤压变形奥氏体不锈钢的结构演化和力学性能及应用研究.钢铁研究总院博士学位论文,2007.
    [102]Lu K,Lu J. Nanostructured Surface Layer on Metallic Induced by Surface Mechanical Attrition Treatment, Mater Sci Eng A,2004, Vol.375-377:38-45.
    [103]Zhang Y.S., Han Z., Wang K., et al. Friction and Wear Behaviors of Nanocrystalline Surface Layer of Pure Coppe. Wear,2006, Vol.260:942-948.
    [104]Zhao W S.Tao N R,Guo J Y,et al. High Density Nano-scale Twins in Cu Induced by Dynamic Plastic Deformation, Scr Mater,2005, Vol.53:745-749.
    [105]Feng X.M., Al T.T. Microstructure Evolution and Mechanical Behavior of AZ31 Mg Alloy Processed by Equal-channel Angular Pressing, Transactions of Nonferrous Metals Society of China, 2009, Vol.19(2):293-298.
    [106]Mat subara K., Miyahara Y., Horita Z., et al. Developing Superplasticity in a Magnesium Alloy Through A Combination of Extrusion and ECAP,2003, Vol.51(11):3073-3084.
    [107]Agnew S R, Horton J A, Lillo T M, et al. Enhanced Ductility in Strongly Textured Magnesium Produced by Equal Channel Angular Processing [J]. Scripta Mater,2004, Vol.50(3):377-381.
    [108]Mathis K., Gubicza J., Nam N.H. Microstructure and Mechanical Behavior of AZ91 Mg Alloy Processed by Equal Channel Angular Pressing, Journal of Alloys and Compounds,2005, Vol. 394(1-2):194-199.
    [109]H.Q. Sun, Y.N. Shi, M.X. Zhang, K. Lu. Plastic Strain-induced Grain Refinement in the Nanometer Scale in a Mg Alloy, Acta Materialia,2007, Vol.55:975-982.
    [110]M. Wen, G. Liu, J.F. Gu, W.M. Guan, J. Lu. Dislocation Evolution in Titanium During Surface Severe Plastic Deformation, Applied Surface Science,2009, Vol.255:6097-6102.
    [111]K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu. Nanostructure formation Mechanism of a-titanium using SMAT, Acta Mater.,2004, Vol.52 (14):4101-4110.
    [112]何晓梅,朱晓雅,董洁,刘晓燕.剧烈塑性变形条件下工业纯钛晶粒细化机理研究.材料热处理技术.2009,Vol.38(22):56-59.
    [113]韩靖,盛光敏,胡国雄.高能喷丸TA17近α钛合金晶粒细化机制.中国有色金属学报.2008,Vol.18(5):799-804.
    [114]张保华,张小农.SMAT纳米钛的组织及力学性能研究.2007,Vol.21(4):129-137.
    [115]何利舰,张小农.钛及钛合金的表面技术新进展.上海金属,2005,Vol.27(3):39-45.
    [116]张淑兰,陈怀宁,林泉洪等.工业纯钛的表面纳米化及其机制.有色金属,2003,55(4):5-8.
    [117]W.S. Zhao, W. Zhang. Microstructure Evolution and Tensile Properties of Pure Ti Subjected to Rapidly Heating and Quenching, J.Mater.Sci.Technol.,2006, Vol.22(2):190-194.
    [118]A.V.Sergueeva, V.V.Stolyarov, R.Z.Valiev, A.K.Mukherjee. Enhanced Superplasticity in a Ti-6A1-4V Alloy Processed by Severe Plastic Deformation, Scripta Mater.,2000, Vol.43:819-824.
    [119]Chichili DR., Ramesh K.T., Hemker K.J. The High-Strain-Rate Response of Alpha-Titanium: Experiments, Deformation Mechanisms and Modeling, Acta Mater,1998, Vol.46:1025-1043.
    [120]V.M. Segal. Equal Channel Angular Extrusion:From Macromechanics to Structure Formation, Mater. Sci. Eng. A,1999, Vol 271:322-333.
    [121]M. Umemoto, X. J. Hao, T.Yasuda, et al. Formation and Annealing Behavior of Nanocrystalline in Steels Produced by Ball Drop Test, Mater. Trans.,2002, Vol.43:2536-2542.
    [122]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [123]T. Wang, D. P. Wang, G. Liu, B. M. Gong, N. X. Song. Investigations on the Nanocrystallization of 40Cr using Ultrasonic Surface Rolling Processing, Applied Surface Science,2008, Vol.255: 1824-1829.
    [124]R.Z. Valiev, N.A. Enikeev, M.Yu. Murashkin et al. On the Origin of the Extremely High Strength of Ultrafine-Grained Al Alloys Produced by Severe Plastic Deformation, Scripta Materialia,2010, Vol. 63:949-952.
    [125]G. Liu, S.C. Wang, X.F. Lou, J. Lu, K. Lu. Low Carbon Steel with Nanostructured Surface Layer Induced by High-Energy Shot Peening, Scripta Mater.,2001, Vol.44:1791-1795.
    [126]J.M. Molina-Aldareguial, M.T. Perez-Pradol, R.Z. Valiev2, I.P. Semenova, I. Sabirovl. High Strength Ultra-Fine Grained Titanium Produced via A Novel SPD Processing Route, Int J Mater Form,2010, Vol.3 Suppl 1:407-410.
    [127]Y.M. Wang, M.W. Chen, F. Zhou, et al. High Tensile Ductility in a Nanostructured Metal. Nature 419(2002):912-915.
    [128]H.W. Hoppel, M. Brunnbauer, H. Mughrabi et al. Cyclic Deformation Behaviour of Ultrafine Grain Size Copper Produced by Equal Channel Angular Extrusion. Proceedings of Werkstoffwoche 2000.
    [129]S.H. Xia, L.V. Vychigzhanina, J.T. Wang, Controllable Bimodal Structures in Hypo-Eutectoid Cu-Al Alloy for both High Strength and Tensile Ductility. Mater. Sci. Eng.2008, A490:471-476.
    [130]张广平,纳米金属多层薄膜的塑性变形不稳定性及疲劳损伤机制,中国基础科学.研究进展.2006,Vol.4:26-27.
    [131]Wang Z. B., Tao N. R., Tong W. P., et al. Diffusion of Chromium in Nanocrystalline Iron Produced by Means of Surface Mechanical Attrition Treatment, Acta Mater.,2003, Vol.51:4319-4329.
    [132]Tong W. P., Tao N. R., Wang Z. B., et al., Nitriding Iron at Lower Temperatures, Science,2003, Vol. 289:686-688.
    [133]佟伟平,陶乃镕,王镇波.纳米结构纯铁的气体渗氮.热处理.2007,Vol.22(2):11-14.
    [134]卑多慧,吕坚,顾剑锋.表面纳米化预处理对低碳钢气体渗氮行为的影响.材料热处理学报.2002,Vol.23(1):19-24.
    [135]Gu J. F., Bei D. H., Pan J. S., et al. Improved Nitrogen Transport in Surface Nanocrystallized Low-carbon Steels during Gaseous Nitridation, Mater. Lett.,2002,55,340-343
    [136]Tong W. P., Zhang H. W., Tao N. R., et al. Low Temperature Nitriding by Means of SMAT, Trans. Mater. Heat Treat.,2004, Vol.25:301-306.
    [137]W.P. Tong, Z. Han a, L.M. Wang, J.Lu, K.Lu. Low-temperature Nitriding of 38CrMoAl Steel with a Nanostructured Surface Layer Induced by Surface Mechanical Attrition Treatment, Surface & Coatings Technology 202 (2008) 4957-4963.
    [138]李杨,徐久军,王亮.42CrMo钢表面纳米化对离子渗氮的影响.中国表面工程.2010,Vol.23(3):60-63.
    [139]Y.M. Lin, J. Lu, L.P. Wang, et al. Surface Nanocrystallization by Surface Mechanical Attrition Treatment and Its Effect on Structure And Properties of Plasma Nitrided AISI 321 Stainless Steel, Acta Materialia,2006, Vol.54(20):5599-5605.
    [140]Zhang H. W., Wang L., Hei Z. K., et al. Low-temperature Plasma Nitriding of AISI 304 Stainless Steel With Nanostructured Surface Layer, Z. Metallkd.,2003, Vol.94:1143-1147.
    [141]Y. Li, L. Wang, D. Zhang, L. Shen. The Effect of Surface Nanocrystallization on Plasma Nitriding Behaviour of AISI 4140 steel, Applied Surface Science,2010, Vol.257:979-984.
    [142]M. Aliofkhazraei, S. Ahangarani, A. Sabour Rouhaghdam. Effect of Surface Nanocrystallization and PPEC Time on Complex Nanocrystalline Hard Layer Fabricated by Plasma Electrolysis, Transactions of Nonferrous Metals Society of China,2010, Vol.20:425-431.
    [143]孙建.纯钛表面纳米化及低温离子渗氮研究.东北大学硕士学位论文.2009.
    [144]颜婧,盛光敏.表面纳米化后表层结构的热稳定性研究现状.材料导报.2008,22(6):45-48.
    [145]张安哥,朱成九,陈梦成编著.疲劳、断裂与损伤.成都:西南交通大学出版社,2006.
    [146]熊云龙.纯净超低碳马氏体不锈钢材料的疲劳性能研究.沈阳铸造研究所硕士学位论文.2005.
    [147]B.N. Mordyuk, G.I. Prokopenko. Fatigue Life Improvement of α-titanium by Novel Ultrasonically Assisted Technique, Materials Science and Engineering A,2006, Vol.437:396-405.
    [148]Leon L. Shaw, J.W. Tian, Angel L. Ortizc, et al. A Direct Comparison in the Fatigue Resistance Enhanced by Surface Severe Plastic Deformation and Shot Peening in a C-2000 Superalloy, Materials Science and Engineering A,2010, Vol.527:986-994.
    [149]K. Dai, L. Shaw. Analysis of Fatigue Resistance Improvements via Surface Severe Plastic Deformation, International Journal of Fatigue,2008, Vol.30:1398-1408.
    [150]S. Bagherifard, I. Fernandez Pariente, R. Ghelichi, et al. Fatigue Properties of Nanocrystallized Surfaces Obtained by High Energy Shot Peening, Procedia Engineering,2010, Vol.2:1683-1690.
    [151]W.-J. Kim, C.Y. Hyun, H.K.g Kim. Fatigue Strength of Ultrafine-Grained Pure Ti after severe Plastic Deformation, Scripta Materialia,2006, Vol.54:1745-1750.
    [152]R.Z. Valiev a, A.V. Sergueeva, A.K. Mukherjee. The Effect of Annealing on Tensile Deformation Behavior of Nanostructured SPD Titanium, Scripta Materialia,2003, Vol.49:669-674.
    [153]I.P. Semenovaa, G.Kh. Salimgareevaa, V.V. Latysh,et al. Enhanced Fatigue Strength of Commercially Pure Ti Processed by Severe Plastic Deformation, Materials Science and Engineering A,2009, Vol.503:92-95.
    [154]T. Roland, D. Retraint, K.Lu, J.Lu. Fatigue Life Improvement through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment, Scripta Materialia,2006 Vol. 54:1949-1954.
    [155]石东艳,龙建旭,钟蜀晖.316L不锈钢表面纳米化后疲劳性能影响因素分析.科学之友FRIEND OF SCIENCE AMATEURS,2008(29):
    [156]李东,陈怀宁,刘刚.SS400钢对接接头表面纳米化及其对疲劳强度的影响.焊接学报.2002,Vol.23(2):18-21.
    [157]钟群鹏,赵子华,张峥.断口学的发展及微观断裂机理研究.机械强度.2005,Vol.27(3):358-370.
    [158]T. Hanlon, Y.-N. Kwon and S. Suresh. Grain Size Effects on The Fatigue Response of Nanocrystalline Metals, Scripta Materialia,2003, Vol.49(7):675-680.
    [159]Costa, M. Yoshikawa, Pitanga, et al. Evaluation of Shot Peening on the Fatigue Strength of Anodized Ti-6A1-4V Alloy, Materials Research,2006, Vol.9(1):107-109.
    [160]杨军永,王生武,温爱玲.高能喷丸表面纳米化对工业纯钛疲劳性能的影响.第六届交通运输领域国际学术会议论文集,2006,(下卷):928-933.
    [161]A. Drechsler, T. Dorr, L. Wagner. Mechanical Surface Treatments on Ti-10V-2Fe-3Al for Improved Fatigue Resistance, Materials Science and Engineering A,1998, Vol.243:217-220.
    [162]Y. Yamashita, Y. Ueda, H. Kuroki. Fatigue Life Prediction of Small Notched Ti-6Al-4V Specimens Using Critical Distanceq, Engineering Fracture Mechanics,2010, Vol.77:1439-1453.
    [163]Aderico Santana Guilherme, Guilherme Elias Pessanha Henriques, Ricardo Alexandre Zavanelli. Surface Roughness and Fatigue Performance of Commercially Pure Titanium and Ti-6Al-4V Alloy after Different Polishing Protocols, Journal of Prosthetic Dentistry,2005, Vol.93(4):378-285.
    [164]马光.通用抛丸机喷丸表面纳米化研究.大连铁道学院学位论文.2004.
    [165]Juan C. Villegas, Kun Dai, Leon L. Shaw, Peter K. Liaw. Nanocrystallization of a Nickel Alloy Subjected to Surface Severe Plastic Deformation. Materials Science and Engineering A,2005, Vol. 410-411:257-260.
    [166]A.L. Ortiz, L. Shaw. X-ray Diffraction Analysis of a Severely Plastically Deformed Aluminum Alloy. Acta Materialia,2004, Vol.52:2185-2197.
    [167]P.Kubn, H.F.Hardraht. An Engineering Method for Estimating the Notch-SizeEffect in Fatigue Test on Steel NACA TN2805, Washington,1952:75-90.
    [168]R.E.Peterson. Stress Concentration Factors. John Wiley and Sons. New York.1974:135-144.
    [169]A.Buck. Fatigue Strength Calculation. Trans. Tech. Pub. Switzerland-Germany-UK-USA.1988.
    [170]杨扬,张新明,李正华,李青云.高应变率下a-Ti的一种特殊超塑变形行为.材料研究学报,1995,Vol.9(4):317-320.
    [171]孙智,苏铁健,李淑华等.高应变率下工业纯钛TA2变形与失效研究,2007,Vol.30(3):43-47.
    [172]高灵清,朱金华,李慧,孙建科.高应变速率及低温对工业纯钛力学性能的影响.稀有金属材料与工程,2008,Vol.37(6):1051-1055.
    [173]杨振宇.高速冲击下材料的增塑效应、变形形态及性能.兵器材料科学与工程,1990,Vol.1:7-13.
    [174]祝汉良,辛志峰,李志强,王纯孝.高应变速率超塑性研究的新进展.航空制造技术,2003,Vol.52003:13-16.
    [175]Chen C.H, Ren R.M., Zhao X.J., et al. Surface Nanostructures in Commercial Pure Ti Induced by High Energy Shot Peening, Transactions of Nonferrous Metals Society of China,2004, Vol.14 (S2): 215-218.
    [176]张建斌.钛表面机械强化及其激光合金化研究.兰州理工大学博士学位论文.2007.
    [177]李伯奎,刘远伟.表面粗糙度理论发展研究.工具技术.2004,Vol.38(1):63-67.
    [178]张志建.喷丸件表象疲劳极限及喷丸工艺优化研究[D].燕山大学工学硕士学位论文.2003
    [179]徐灏.疲劳强度.北京:高等教育出版社,1988.
    [180]西田正孝.庙力集中.束京:森北出版社,1993.
    [181]张建斌,马勤,季根顺等.喷丸强化对纯钛马氏体疲劳性能的影响.有色金属.2001,Vol.53(3):40-43.
    [182]夏少华.微米晶_超细晶复合增塑及其机制研究.南京理工大学博士论文,1010.
    [183]温爱玲,王生武,任瑞铭,杨军永.高能喷丸表层纳米化对纯钛旋转弯曲疲劳性能的影响.材料开发与应用,2007,Vol.22(4):11-13.
    [184]王光中.材料的疲劳.北京:国防工业出版社,1993.
    [185]张建斌,马勤,季根顺等.表面机械强化工业纯钛疲劳性能的研究.航空材料学报,2001,Vol.21(3):46-50.
    [186]王静宜,周琦,马勤等.表面强化对工业纯钛显微组织的影响.中国有色金属学报,2001,Vol.11(6):1037-1040.
    [187]张志建,姚枚,李金魁等.喷丸强化件表象疲劳极限优化研究.机械工程材料,2003,Vol.27(10):7-10.
    [188]S.W. Wang, S. Nishida, et all. Effect of Plastic Deformation by Roller-working on Fatigue Strength of Notched Specimen, JSME Int. J. Ser. A,2000, Vol.43(4):415-422.
    [191]S.W. Wang, S. Nishida, et all. Effect of Plastic Deformation by Roller-working on Fatigue Strength of Notched Specimen [J], JSME Int. J. Ser. A,2000, Vol.43(4):415-422.
    [192]王长顺,刘刚.低碳钢的表面纳米化组织及其性能.钢铁.2006,Vol.4(12):60-63.
    [193]张保华,张小农.SMAT纳米钛的组织及力学性能研究.材料导报,2007,Vol.21(4):129-137.
    [194]邱诗龙.Ti6Al4V和工业纯钛表面纳米化与性能研究.大连交通大学学位论文.2005.
    [196]张定铨,何家文著.材料中残余应力的X射线衍射分析和应用.西安:西安交通大学出版社,1999.
    [197]Zhao Y H, Sheng H W, Lu K. Microstructure Evolution and Thermal Properties in Nanocrystalline Fe during Mechanical Attrition, Acta Mater,2001, Vol.49(2):365-375.
    [198]屠风华,潘晶,刘新才.金属材料的高应变率塑性变形及纳米化.宁波大学学报(理工版),Vol.22(3):414-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700