半刚性基层沥青路面损坏模式与结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机结合料稳定类半刚性基层的应用,从根本上消除了过去石灰土基层路面常见的春融翻浆、变形等病害,大大改善了路面行驶质量和使用寿命。半刚性基层突出的优点在于能够较好地利用当地原材料,具有较高的强度和稳定性。然而伴随着经济的日益发展,公路上交通量和汽车载重量剧增,加之部分路面存在着设计上不合理,以及施工质量不高等原因,路面结构的损坏正日渐加重,路面使用品质呈逐年下降趋势,早期修建的路面已接近其使用寿命,某些新建的路面在远未达到设计年限时也出现了不同程度的损坏,公路路面出现的破损现象已不容忽视。
     路面病害的产生直接影响到车辆行驶的安全性和舒适性,目前对于路面病害的研究更多的投入到了路面病害的处理上,而对路面病害产生的原因、破坏机理等问题的研究较少,因此进行半刚性基层沥青路面损坏现象与损坏模式分析的研究工作是十分必要的。半刚性基层材料具有一定的适用性,针对不同的使用环境、荷载等级合理地进行半刚性基层材料组成设计和半刚性基层沥青路面结构设计,对于提高路面整体性能、延长路面使用寿命有很大意义。
     本文通过对具有代表性的半刚性基层沥青路面损坏情况进行详细的现场调查,系统分析了半刚性基层沥青路面的各种损坏现象;运用BISAR、PADS程序以及ANSYS有限元分析软件对半刚性基层沥青路面进行力学计算分析;考虑了基层开裂情况下半刚性基层沥青路面的力学性能;基层开裂导致模量衰减时,引入开裂度和开裂系数来表征路面结构力学性能的变化;结合对半刚性基层沥青路面力学性能的分析结果,针对寒冷、高温和多雨条件进行了研究,给出了相应情况下半刚性基层沥青路面的结构优化方案。
     研究认为:
     (1)半刚性基层沥青路面常见破坏现象有纵向裂缝、横向裂缝、龟裂、网裂、车辙、松散、坑槽、沉陷、泛油。其中裂缝类损坏是首要病害,车辙、松散等病害为次要病害。
     (2)半刚性基层沥青路面出现损坏的主要原因是面层和基层结构承载力不足、荷载作用、温度变化和水分入侵,次要原因是面层与基层结构和材料不均匀性。
     (3)力学分析表明,为使路面结构具有良好的力学性能,合理的半刚性材料厚度显得尤为重要。在半刚性基层上方铺筑沥青碎石层或级配碎石层可很大程度上改善路面的力学性能,考虑施工厚度要求,半刚性底基层厚度为20cm较为适宜。重载敏感性分析表明,沥青稳定碎石基层沥青路面的重载适应性较强,适合于现阶段我国高等级公路上重载较多的情况。
     (4)由于裂缝的存在,原有结构的力学性能发生改变,并且导致结构层内的应力重新分布。路面开裂且模量未衰减时,为避免进一步的破坏,当荷载不超过150KN时,基层厚度宜在30cm以上;当荷载为150-200KN时,基层厚度宜在35cm以上。路面开裂并导致模量衰减时,即使基层开裂严重,较厚的基层仍可以使路面结构保持良好的承载能力,减小基层裂缝向上反射的可能性。
     (5)对于多雨环境下的半刚性基层沥青路面,设置水泥稳定碎石排水基层有利于使沥青下面层和排水基层成为连续体系,延缓沥青路面出现水损坏,延长沥青路面的使用寿命。
The application of binder stabilized mixture in semi-rigid has eliminated the diseases of asphalt pavement like frost boiling and deformation, also greatly improved the riding quality and service life. The advantages of semi-rigid base include:use local materials effectively, high strength and stability. But with the economy growing, road traffic and vehicle load increase rapidly, combined with some unreasonable design and construction, the damages of pavement increase badly, pavement quality decreases year by year. Many early roads close to their life time, damages occur on some new roads too. The surface damages of road cannot be ignored.
     Damages affect the safety and comfortableness of vehicle driving. The present study of pavement damages cost much time and energy on disposal method, but the study on damage causes and failure mechanism is still little. Semi-rigid base material has a certain applicability, in different environment and different loads, reasonably design of material composition and structure is very essential in improving the whole performance and prolong the service life.
     Based on the detailed field survey of damages on typical semi-rigid asphalt pavements, various damage phenomena of pavement were recognized systematically; using analysis softwares include BISAR, PADS and ANSYS, the mechanical calculation of semi-rigid base asphalt pavement was analysed; consider the mechanical properties in the case of semi-rigid base cracking; as the base cracks and modulus degrades, the degree of cracking and cracking coefficients were used to describe the mechanical properties of pavement structure; combined with the analysis of mechanical properties, the cold, heat and wet conditions were studied and the corresponding semi-rigid asphalt pavement structure optimal case were proposed.
     The conclusions as follows:
     (1) The common distresses in semi-rigid base asphalt pavement are longitudinal cracks, transverse cracks, chap, network cracks, rutting, loose, pot hole, settlement and flushing asphalt, in which cracks are the primary distresses followed by rutting, loose and so on.
     (2) The main reasons why semi-rigid base asphalt pavement suffers from damages are inadequate structure capacity of surface and base course, load, temperature change and moisture intrusion, and the secondary reasons are the structure and material heterogeneity of surface and base course.
     (3) The mechanical analysis indicates that in order to gain good mechanical properties of pavement structure, reasonable thickness of semi-rigid materials is particularly important. The mechanical properties can be greatly improved by paving asphalt-nacadam and unbound aggregate base on semi-rigid base. Consider the construction conditions, the appropriate thickness of semi-rigid sub-base is 20cm. Sensitivity analysis of heavy load shows that asphalt-treated base asphalt pavement has a strong adaptability aiming at heavy load, suitable for high-grade highways with heavy load in China at the present.
     (4) Due to existence of cracks, the mechanical properties of the original structure change, resulting in stress redistribution in the structure layers. When the base layer appears cracks and its modulus do not decay, in order to avoid further damage, the proper thickness of base is more than 30cm when load is under 150kN and more than 35cm when load is 150-200kN. When cracks exist and the modulus decays, the thicker base still ensure pavement structure to keep a good load capacity and reduce the possibility of reflection crack even the cracking of base is serious.
     (5) For the semi-rigid base asphalt pavement in rainy environment, setting cement-treated porous base will connect the bottom asphalt layer and porous base as a continuous system, which can delay emergence of water damage and prolong the service life of asphalt pavement.
引文
[1]中华人民共和国行业标准.公路沥青路面设计规范(JTG D50-2006).北京:人民交通出版社.2006.12
    [2]沙庆林.高等级公路半刚性基层沥青路面.北京:人民交通出版社1998:360-494
    [3]Simon A. M. Hesp, Benjamin J. Smith & Todd R. Hoare. Effect of the filler particle size on the low and high temperature performance in asphalt mastic and concrete. In:Proceedings of AAPT,2001,70
    [4]D.H. Jung, T. S. Vinson. Low-temperature cracking:test selection.SHRP-A-400.1994.
    [58]D.H.Hung, T. S. Vinson. Low-Temperature Cracking:Binder Validation,SHRP-A-399,April,1994.
    [6]J.W.Button, R.L.Lytton. Guidelines for Using Geosynthetics with Hot-Mix Asphalt Overlays to Reduce Reflective Cracking Transportation Research Record:Journal of the Transportation Research Board 2004 111-119
    [7]M.S.Luther Mechanistic Investigation of Reflection Cracking of Asphalt Overlays.1976 TRB 111-122
    [8]Brooker, Foulkes, M D and Kennedy, C K Influence of mix design on reflection cracking growth rates through asphalt surfacing',6th International Conference on the Structural Design of Asphalt Pavements,1987.107-120
    [9]N.F.Coetzee.C.L.Monismith. Analytical Study of Minimization of Reflection Cracking In Asphalt Concrete Overlays by Use of a Rubber-asphalt Interlayer. TRR 700,1981
    [10]Chieh Min Chang, using pavement distress date to assess to impact construction on pavement performantion 2001.
    [11]何青龙.沥青路面早期损坏技术分析[J]公路与汽运,2003,(3):30-32.
    [12]高英,曹荣吉.超重交通荷载下沥青路面的应力分析[J].公路交通科技,2001,(6):36-40.
    [13]黄学文.半刚性基层沥青路面病害的原因与防治[J].合肥工业大学学报(自然科学版),2000,(5):729-734.
    [14]张蓉,四川省高速公路沥青路面调查报告.四川省交通厅公路勘察设计研究院,2000,10.
    [15]Rebecca S.Mcdaniel Field Evaluation of Asphalt Additives to Control Rutting and Cracking. TRB 2003 Annual Meeting.
    [16]沙庆林,高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001
    [17]刘益河,张起森,李志勇.沥青路面温度应力的光弹性研究.中国公路学报[J],1991,4(4):20-28
    [18]张起森,郑健龙,刘益河.半刚性基层沥青路面的开裂机理.土木工程学报[J],1992,25(2):13-21
    [19]吴赣昌.沥青路面温度应力分析.中国公路学报[J],1993,6(4):1-9
    [20]吴赣昌,张淦生.沥青路面温缩裂缝的应力强度分析.中国公路学报[J],1996,9(4):37-44
    [21]周志刚,李宇峙.气温和交通荷载对低温缩裂的影响.长沙交通学院学报[J],1996,12(1):34-39
    [22]周志刚,张起森.结构层组合对路面裂缝扩展的影响.中国公路学报[J],1997,10(2):5-10
    [23]岳福青,杨春风.半刚性基层沥青路面温缩裂缝的有限元分析[J].桂林工学院学报,2004.1
    [24]罗睿,黄晓明.基层对层间连续路面应力强度因子影响的研究.东南大学学报[J],2001,31(3):61-64
    [25]罗睿,黄晓明.沥青路面表面裂缝应力强度因子计算方法研究.公路交通科技[J],2002,19(1):12-15
    [26]郑健龙,张起森.半刚性路面反射裂缝及其应力强度因子的有限元分析.岩土工程学报,1990,12(3):22-31
    [27]James A. musselman SUPERPAVE FIELD IMPLEMENTATION FLORIDA'S EARLY EXPERIMENT 1998 Transportation Research Board Annual meeting.
    [28]Hofstra A, Klomp A J GPermanent Deformation of Flexible Pavements Under Simulated Road Traffic Conditions[C]. Proceedings. Third International Conference on the Structural Design of Asphalt Pavements.V01,1,London,1972.613-621
    [29]Dorman G M. The Extension to Practice of a Fundamental Procedure for the Design of Flexible Pavements[C]. Proceedings, First International Conference on the Structural Design of Asphalt Pavements. Ann Arbor. University of Michigan,1962,785-793
    [30]Barksdale R D Laboratory Evaluation of Rutting in Base Course Materials [C].Proceedings,Third International Conference on the Structural Design of Asphalt Pavements.V01.1London,1972.161-174
    [31]Ben Bruscella,Vincent Rouillard,Michael Sek.Analysis of Road Surface Profiles.journal of Transportation Engineering,1999,125(1):55-59
    [32]Eisenmann J, Birman D and Hilmer A. Effects of commercial vehicle design on road stress-research results relating to the roads. Strasse and Autobahn,1987 238-244.
    [33]Weissman,S L,Sackman J L.the Effect of Traffic Wander on Rut Evolution in Pavements with Aasphalt conerete Surface Layer.Symplectic Engineering Corporation,1999.12
    [34]Wahhab. Asphalt Pavement Temperature Related to Arid Saudi Environment 1994 Volume 6,1-14
    [35]彭妙娟.沥青路面车辙分析的非线性理论和方法[D].上海:同济大学道路与铁道工程,2005
    [36]Hmvey, Monismith. Three decades of development and achievements:the heavy vehicle simulator in
    accelerated pavement testing.2006
    [37]朱永灵.沥青路面的车辙研究[D]..上海:同济大学道路与交通工程,1988)
    [38]许志鸿,郭大智,吴晋伟等.沥青路面车辙的理论计算[J].中国公路学报,1990.3(3):27-36
    [39]徐世法.高等级道路沥青路面车辙预估和防治[D].上海:同济大学道路与交通工程,1991
    [40]李一鸣.沥青路面车辙形成机理力学分析.东南大学学报199424(1)90-95
    [41]黄晓明,张晓冰.沥青路面车辙形成规律环道试验研究[J].东南大学学报,2000,30(5):96-101
    [42]周纯秀,谭忆秋..废旧轮胎橡胶颗粒在沥青混合料中的应用[J].合成橡胶工业,2005.28(2):81-84
    [43]张锐.新型沥青混合料添加剂特性及其混合料性能研究[D].东南大学,2005
    [44]钱伯章.废旧塑料回收利用及技术进展[J].橡塑资源利用,2007.NO.2
    [45]沙庆林.空隙率对沥青混凝土的重大影响[J].国外公路,2001,(1):34-41.
    [46]李国强,邓学钧.路面透水表层临界空隙率研究[J].中国公路学报,1996,(2):28-33.
    [47]沈金安.关于沥青混合料的均匀性和离析问题[J].公路交通科技,2001,(6):18-22.
    [48]Cedergren Water:Key cause of pavement failure Civil Engineering, American society of Civil Engineers,1974.
    [49]沙庆林.高速公路沥青路面的水破坏及其防治措施(上)[J].国外公路,2000,(3):1-6.
    [50]张登良.沥青路面[M].北京:人民交通出版社,1999.
    [51]N.F.Coetzee, C.L.Monismith. Analytical Study of Minimization of Reflection Cracking In Asphalt Concrete Overlays by Use of a Rubber-asphalt Interlayer. TRR 700,1981
    [52]J.P.Marchand, H. Goacolou. Cracking in Wearing Course. Proceedings of the 5th ISAP,1982.
    [53]P.WJayqwickrama, R.E.Smith, R. L. Lytton, M. R. Tirado. Development of Asphalt Concrete Overlay Design Program for Reflective Cracking. Proceedings of RILEM Conf. On Reflective Cracking in Pavements,1989.
    [54]K. Majidzadeh, G. Sacharieh. The Study of Pavement Overlay Design. Final Report, Ohio State University,1977.
    [55]P. Joseph. Low Temperature Reflection cracking though Asphalt Overlays [D].University of Waterloo, Canada,1987.
    [56]J. A. Chen, J. A. D. Vito, G. A. Morris. Finite Element Analysis of Arizona's Three Layer Overlay System of Rigid Pavement to Prevent Reflective Cracking. Proceeding RAPT, Vol 54,1982.
    [57]R. L. Krans, ete. Semi-circular bending test:a practical crack growth test using asphalt concrete cores. Reflective Cracking in Pavements. London,1996:123-132.
    [58]C. L. Saraf, K. Majidzadeh, ete. Effect of reinforcement on fatigue life of asphalt beams.1996, TRR1534:.66-71.
    [59]R. Michael Anderson, Ross A. Bentsen. Voids in the mineral aggregate(VMA) on the mechanical properties of coarse and fine asphalt mixture. In:Proceedings of AAPT,2001,70
    [60]E.P.Jaeeklin,J.Seherer. Asphalt reinforcing using glass fibre grid Glasphalt. Reflective Cracking in Pavements. London,1996:268-277.
    [61]Schapery,, R. A. Models for damage growth and fracture in nonlinear viscoelastic particulate composites. In:Proceedings,9th US Congress of applied Mechanics.American Society of Mechanical Engineerings, Book No. H00228.1982.
    [62]R. L. Lytton. Use of geotextiles for reinforcement and strain relief in asphalt concrete. Geotextiles and Geomembranes 8,1989.
    [63]A. A. A. Molenaar, M. Nods. Design method for plain and geogrid reinforced overlays on cracked pavements. reflective cracking in pavements. London,1996.
    [64]Barsoums. R. S, On the Use of Isoparametric Finite Element in Linear Elastic Fracture Mechanics,Int. J. Numer 1976.10:25-37.
    [65]朱伯芳.有限单元法原理与应用.水利水电出版社[M].1998.
    [66]Haque M E, Zaman M, Soltani A A.Cracking characteristics of model continuously reinforced concrete pavement, TRR,1998(1629):90-98.
    [67]王思和,高速公路沥青路面结构设计若干问题研究,硕土学位论文[D],西南交通大学,2004
    [63]郑健龙,张起森.半刚性路面反射裂缝及其应力强度因子的有限元分析.岩土工程学报,1990,12(3):22-31
    [68]周志刚,张起森.加筋材料阻止沥青路面反射裂缝的桥联增韧的有限元分析,土木工程学报[J].2000,33(1):93-99
    [69]罗睿,黄晓明.利用权函数计算沥青路面层间部分约束的面层底裂缝应力强度因子,岩土工程学报[J],2001,23(5):610-613
    [70]田小革.沥青混合料的低温低频疲劳特性研究.[D]同济大学,2001
    [71]王宏畅,黄晓明,傅智.半刚性基层表面裂缝影响因素[J].交通运输工程学报,2005.6
    [72]张宏超,孙立军.沥青路面新泛油病害及其机理分析[J].公路交通科技,2002,(6):27-31.
    [73]康静东,孙祖望.沥青路面裂缝和坑槽破损形式分析[J].筑路机械与施工机械化.2002,
    [74]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社.2001.19(5):24-27
    [75]中华人民共和国行业标准.公路沥青路面养护技术规范(JTJ 073.2-2001).北京:人民交通出版社.2001.11
    [76]沈金安.国外沥青路面设计方法总汇[M].人民交通出版社,2004.4
    [77]沈金安,李福普,陈景.高速公路沥青路面早期损坏分析与防治对策[M].人民交通出版社,2004.12
    [78].陈忠达,武建民,张小荣,徐强.干线公路沥青路面典型结构的研究[J].公路交通科技.2001,18(2):9-12
    [79]姚爱玲,孙治军,戴经梁.河南省沥青路面典型结构设计方法[J].西安公路交通大学学报.1999,19(3):18-21
    [80]林有贵,罗竞.广西沥青路面典型结构的研究[J].广西交通科技.2000,(S1):15-18
    [81]申爱琴,孙增智,王小明.陕西沥青路面典型结构设计参数敏感性分析[J].内蒙古公路与运输.2001,(1):31-33
    [82]杨永红,王选仓,韩国杰,等.甘肃黄土地区高等级公路沥青路面典型结构研究[J].公路交通科技.2004,(10):3740
    [83]韩凤华,何光,许志鸿,左明文.关于安徽省公路柔性路面典型结构的研究(一)[J].华东公路.1997,106(3):76-80
    [84]李宇峙,刘朝晖.湖北省半刚性基层沥青路面典型结构[J].公路.1996,(1):39-43
    [85]袁吐林.青海省公路柔性路面典型结构设计[J].青海交通科技.1996,(2):20-25
    [86]杨士炯.关于调整天津市沥青路面典型结构的建议[J].天津建设科技.1994,(1):15-19
    [87]查旭东,武和平,张起森.中南片区高等级公路半刚性基层沥青路面典型结构的研究[J].中国公路学报,1998,11(3):1-8
    [88]李九苏,罗耀芦.沥青路面水损害机理及防治对策[J].公路交通技术.2006,(1):41-44
    [89]沙庆林.高速公路沥青路面的水破坏及其防治措施(下)[J].国外公路.2000,20(4):1-5
    [90]张文佳.沥青路面水损害成因分析及级配研究[D].西安:西安建筑科技大学,2008
    [91]钱国平,郭忠印,朱云升,谢军.重载交通条件下沥青路面损害类型的调查研究[J].中外公路.2004,24(5):20-23
    [92]王辉.重载高温区沥青路面结构与材料研究[D].长沙:中南大学,2008
    [93]钱育锋.四川省高寒地区常见的公路病害及防治措施[J].公路.2003,(8):156-161
    [94]沥青路面设计规范[S](JTGD50-2006).北京:人民交通出版社,2006.
    [95]李贵顺.路基土参数及土基等级划分的研究[D].西安:长安大学,2006.
    [96]苏凯,孙立军,石鸿.半刚性沥青路面结构组合优化设计研究[J].石家庄铁道学院学报,2007,20(1)
    [97]刘英华.连续配筋砼复合式路面层间剪应力分析[J].湖南交通科技,2006,32(3).
    [98]邓学钧.路基路面工程[M].北京:人民交通出版社,1999.
    [99]王新忠.重载交通沥青路面设计方法研究[D].西安:长安大学,2005.
    [100]林宗贤.重车与环境因素对柔性铺面的影响[D].台北:国立中央大学.2003.
    [101]钟梦武,吴善周,谢立新等.我国现行沥青路面设计方法存在问题分析[J].湖南交通科技,2007,33(1).
    [102]孙立军.沥青路面结构行为理论[M].北京:人民交通出版社,2005.
    [103]苏凯,孙立军.高等级沥青混凝土路面车辙预估方法研究综述[J].公路,2006(7)
    [104]孙兆辉,王铁滨,姚百怒.抗车辙能力强的合理路面结构分析[J].辽宁省交通高等专科学校学报,2000,2(1)
    [105]富刚.沥青路面车辙预估及其控制标准[J].工程技术,2008(9)
    [106]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004.
    [107]陈祥.大厚度半刚性基层沥青路面结构计算及其层间处理技术研究[D].长沙:长沙理工大学,2006.
    [108]彭波,李文瑛,戴经梁.半刚性基层沥青面层合理厚度研究[J].交通标准化,2004(7)
    [109]莫介臻,李峰.沥青混凝土路面结构组合力学分析[J].公路,2005(8)
    [110]陈忠达,武建民,张小荣等.干线公路沥青路面典型结构的研究[J].公路交通科技,2001(2).
    [111]Sousa JB, Himar A. Permanent deformation response of asphalt aggregate mixes[R]. Washington Strategic Highway Research Program, National Research Council,1994:8-15.
    [112]刘世武,开军,德潭.整体大厚度半刚性基层沥青路面的结构性能分析[J].林业建设,2000(3).
    [113]许志鸿等.半刚性基层材料的设计参数[J].华东公路,1998.4
    [114]王旭东,郭大进.落锤式弯沉仪模量反算的可靠性研究[J].中国公路学报,1999(2)
    [115]曾胜,吴羽军,徐琦.路面动态模量的特性分析[J].长沙交通学院学报,2004.6
    [116]武和平.高等级公路路面结构设计方法[M].北京:人民交通出版社,1999
    [117]姚祖康.对我国沥青路面现行设计指标的评述[J].公路,2003.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700