用一乙醇胺催化合成甘氨酸及其分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
dd本论文在总结了工业上几种甘氨酸生产工艺的基础上,提出了用一乙醇胺在氢氧化钠的碱液中经Raney Cu催化氧化合成甘氨酸钠,再经中和,电渗析膜分离提纯甘氨酸的新工艺。
     本文用贵金属改性Raney Cu,催化剂的最佳粒径为200~400目,反应温度控制在150℃~190℃,反应压力维持在0.5~1.2MPa。通过多次的对比实验,比较了在不同催化剂的作用下一乙醇胺的转化率、甘氨酸钠的选择性、反应所需要的时间以及催化剂本身的重复使用次数。实验结果表明经改性的Raney Cu催化剂有更好的活性和更长的使用寿命,既提高了一乙醇胺的转化率和甘氨酸钠的选择性,又缩短了反应时间,催化剂的使用寿命达15次以上。一乙醇胺的平均转化率为95%以上,甘氨酸钠的选择性为99%。
     反应后的混合物用盐酸中和,得到甘氨酸和氯化钠的混合物。本文提出用电渗析膜分离的方法除去混合物中的氯化钠,浓缩得到产品甘氨酸。分别研究了不同流量对极限电流、电渗析效率、脱盐率以及能耗的影响,实验取得了比较满意的结果,甘氨酸的收率≥92%,纯度可达98%,实验结果为中试和工业放大提供了可靠的基础。
On the base of summarization of several processes to industrially synthesize glycine, the paper studies a new glycine preparation process: monoethanolamine is contacted with the aqueous solution of sodium hydroxide and oxygenated at the presence of Raney Copper catalyst to obtain sodium salt of glycine, which is neutralized with hydrochloric acid and separated with sodium chloride using electrodialysis and membrane separation technology to obtain pure glycine.
    In this research Raney Copper catalyst is developed with noble metals. The optimal reaction temperature is between 150癈 and 190癈, 0.7MPa - l.lMPa for pressure and 200-400 mu for catalyst size. Through a number of contrastive experiments, we compare the conversion rate of monoethanolamine, selectivity of sodium salt of glycine, repeated times of catalyst itself and reaction time under the action of different catalysts. The experiment result demonstrates that the developed Raney Copper catalyst can not only improve the activity of the catalyst and last the longevity, but also can increase the conversion of monoethanolamine and shorten the reaction time. The conversion of monoethanolamine can reach 95% on the average, the selectivity of sodium salt of glycine is 99 %.
    The reacted mixture is neutralized with hydrochloric acid to obtain the mixture of glycine and sodium chloride. In this paper the electrodialysis and membrane separation technology is introduced to separate sodium chloride from mixture to get pure glycine after being condensed. We research the effect of varied flux on limited electrical current, time, separating rate of sodium chloride and energy consuming. Satisfied results are obtained, the yield of glycine can reach 92%, with 98% purification, which provides the basic data for pilot-experiment and industry producing.
引文
[1] 梁 诚.甘氨酸合成技术进展及市场分析[J].四川化工与腐蚀控制,(2002),5(3):38—41
    [2] 仁军,朱顺鑫.甘氨酸的合成[J].江苏农药,(1998),(5)6—7
    [3] 刘俊敏,玉立辉.甘氨酸母液甲醇回收精馏塔的设计[J].河北化工,(1999),(2)25-26
    [4] 林保东.甘氨酸生产中甲醇的回收[J].湖北化工,(1996),(4):38—40
    [5] 唐振球.氨基乙酸(甘氨酸)生产方法[J].实用技术之窗,(1995),(5):4—5
    [6] 温辉梁,刘崇波.一种高产率制备甘氨酸的方法闭.南昌大学学报,(2000),24(3):295-297
    [7] 杨久久,赵风清,阎淑萍.氨基乙酸生产新工艺的研究[J].河北化工,(1996),(4):12—14
    [8] George O,Curme Jr., White Plains,N.Y. Preparation of Amino Carboxylic Acids and their Salts.[P]. US:2 384 816,1941
    [9] John J. Bishop, Albert W. Jache. Preparation of alkali mental salts of nitrilotriacetic acid. [P]. US:3 578 709,1976
    [10] Gordon F, Mackenzie, Process for the conversion of ethanolamine.[P]. US: 2 861 995,1956
    [11] Gibson; Charles A, Processes for producing triethylenetriamine from monoethanolamine.[P]. US: 3 578 079,1987
    [12] Ochoa Gomez, Jose Ramon, Martin Ramon, etal. Preparation of iminodiacetic by diethananolamine regenerated Raney Copper.[P]. WO:9 206 069,1993
    [13] Martin Ramon ,Jose Ramon ,Ochoa Gomez ,et, al. Preparation of iminodiacetic by oxidation of diethananolamine.[P].ES:2 022 044,1994
    [14] Takakiyo Goto ,Hiromi Yokoyams ,Hideyuki Nishibayashi. Aminocarboxylic acid salts from amino alcohols.[P].JP:83 185 179,1985
    
    
    [15] Takakiyo Goto. Method of amino-carboxylic acid salts [P]. US: 4 782 183,1988
    [16] Eisenhuth; Ludwig. Catalyst for dehydrogenation of amino alcohols to amino carboxylic acids or of ethylene glycol to oxycarboxylic acids, method for their production and their use [P]. US:6 159 894, 2000
    [17] Franczyk; Thaddeus Stephen. Process to prepare amino carboxylic acid salts [P]. US: 5 292 936, 1998
    [18] Franczyk; Thaddeus Stephen. Process to prepare amino carboxylic acid salts [P]. US: 5 739 390, 1998
    [19] Ochoa Gomez; Jose Martin Ramon; Juan. Procedure for obtaining derivatives from acetic acid [P]. US: 5 225 592, 1993
    [20] Franczyk; Thaddeus Stephen. Process to prepare amino carboxylic acid salts [P]. US: 5 739 390,1998
    [21] Subramanian; N. Method fro preparation of N-phosphonomerthylglycine [P]. US: 4 442 041, 1984
    [22] 段正康等.一乙醇胺碱水催化氧化合成甘氨酸工艺研究[J].精细化工,2000,17(6):345-347
    [23] 孙笠,骨架铜催化剂应用现状及急冷骨架铜催化剂应用前景[J],现代化工,(1994),14(3),22-24
    [24] 王峰云,戴丽珍,Raney Cu 催化剂制备规律的研究[J].燃料化学学报,2000,28(2):97-100
    [25] 刘仲塔,催化剂铜表面积的测定[J].四川化工,(1995),(4),34—37
    [26] David Naden, Michael Streat. Ion Exchange Technology[M],湿法冶金, 1984
    [27] V.A. Shaposhnik, K. Kesore. An early history of electrodialysis with permselective membranes[J]. J Membr Sci., (1997),(136), 35-39
    [28] 马成良.我国电渗析技术发展浅析[J].膜科学与技术,1998,18(4):58-60
    [29] 曾小看,杨高文.电渗析回收亚氨基二乙酸的实验[J].工业用水与废水,(2002),33(1),31-32
    [30] 张鸿发,戎建荣.电渗析在味精工业中的应用[J].中国调味品,2001,(5),8-10
    [31] 周静,张关永.电渗析法分离提纯N—乙酰—L—半胱氨酸研究[J].氨基酸和
    
    生物资源,1999,21(2),1—3
    [32] 刘跃进,施亚钧.电渗析法处理制药厂酸性氨墓酸废水[J],化学工程,(1991),19(1),49—54
    [33] 毛建卫,崔艳丽,离子交换膜法技术在医药工业中的应用工艺[J],中国医药工业杂志,(2000),31(11) 521—523
    [34] 毛建卫,崔艳丽,离子膜法甘氨酸生产新工艺[J],河南化工,(2001),(1),19—20
    [35] 中华人民共和国化工行业标准,工业氨基乙酸,HG2029-91
    [36] 曹连城,吴文珊,电渗析器极限电流的测定及与水型水温的关系[J].湖北化工,(1999),(3),20—24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700