水电站无压尾水洞引风换热试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的持续增长,我国逐步成为了世界能源消耗大国。而煤、油、气等石化能源作为不可再生资源正面临着严重的危机和挑战。因此,寻求节能、环保、可持续发展的空调方式来降低建筑能耗,就是一个急需解决的问题。土壤有巨大的蓄冷蓄热能力,是天然、环保可再生能源,水电站通风空调设计中采用无压尾水洞引风系统,系统简单、节能、造价低廉,有广阔的应用前景。
     本文通过建立地下水电站无压尾水洞引风降温试验模型,测定空气流速为0.5m/s、1.0m/s、1.5m/s,尾水流速为0.1m/s、0.2m/s、0.3m/s,尾水洞壁面为光滑及相对粗糙度为0.01、0.04的情况下不同进深点的温度。得出了无压尾水洞引风降温效果随风速、尾水流速、壁面粗糙度以及隧洞长度的变化规律。
     结果表明尾水洞壁面粗糙度、水流速度、空气速度和隧洞长度对尾水洞引风换热都有影响。当引风速度从0.5m/s到1.0m/s,1.0m/s到1.5m/s时,速度每增加0.5m/s,对流换热系数平均分别增加11.823 w/m~2·℃和8.013 w/m~2·℃;当尾水流速从0.1m/s到0.2m/s,0.2m/s到0.3m/s时,尾水流速每增加0.1m/s时,对流换热系数平均分别增加2.459 w/m~2·℃和2.871w/m~2·℃;当壁面从光管到相对粗糙度为0.01,相对粗糙度为0.01到相对粗糙度为0.04时,对流换热系数平均分别增加2.419w/m~2·℃和1.897w/m~2·℃。
With economical development,China has been one of the large energy consumption country.While the petrochemical energy,including coal,oil,gas etc,as nonrenewable energy sources is further declining.So it is urgent to find an energy conservation,environment protection and sustainable development air conditioning method to reduce building energy consumption.The soil,which has tremendous thermal storage capacity,and the tail water matains relative low temperature,which are natural,renewable and environment protection energy source so that tailrace tunnel ventilation has wide application prospect in ventilation and air conditioning design of hydropower station for its simplity,energy conservation and low costing.
     An experimental study was undertaken to insight into the cooling performance of tailrace tunnel ventilation in hydropower stations.The variation law of that with the inlet air velocity, tail water velocity and the roughness of the inwall can be got from the measurement of air temperature in all stations.
     The result indicates that the roughness of inwall,velocity of tail water,velocity of air and the length of the runnel all have effect to ventilation and heat exchanger of tailrace tunnel.As the air velocity changer from 0.5 m/s to 1.0 m/s,or from 1.0 m/s to 1.5 m/s,the coefficient of heat transfer mean increment are 11.823 w/m~2·℃and 8.013 w/m~2·℃.While the tail water velocity changer from 0.1 m/s to 0.2 m/s,or from 0.2 m/s to 0.3 m/s,the tail water velocity each increase 0.1 m/s,the coefficient of heat transfer mean increment are 11.823 w/m~2·℃and 8.013 w/m~2·℃.When the roughness of the inwall changer from smooth surfeace to the relative roughness factor(RRF)=0.01,or from RRF=0.01 to 0.04,the coefficient of heat transfer mean increment are 2.419 w/m~2·℃and 1.897 w/m~2·℃.All show the inwall of tailrace tunnel is rougher,the effect of heat exchange is stronger,and pushing the velocity of tail water can increase heat exchange.
引文
[1]杨述仁等,地下水电站厂房设计.水利电力出版社,1993
    [2]长江流域规划办公室枢纽处古田溪水电站,水电站厂房通风.空调和采暖,1984
    [3]李辉,李安桂等,坝体廊道通风温降数学模型与景洪水电站廊道空气温度分布预测.2007全国通风空调会议论文集
    [4]水电站机电设计手册(采暖通风与空调),水力水电出版社,271-274
    [5]胡凤山,刘胜全,水电站通风空调设计中的几个技术问题.东北水利水电
    [6]杨合长.天然冷源在黄河小浪底水电站通风空调系统中的应用[J].暖通空调,2002,32(1):67-69
    [7]Thanu N M,Sawhney R L,Khare R N,et al.An experimental of the thermal performance of an earth air pipe system in single pass mode[J].Solar Energy,2001,71(6):353-364.
    [8]牟灵泉,地道风降温,中国建筑工业出版社,1982
    [9]金峰,我国水电暖通空调简史与长江流域水电站,http://down.zhulong.com/tech/detailpro f119283NT.htm
    [10]Mathisen H M.Indoor Climate Measurement Methods and Resalt for a Concert and Ice Hockey Situation in an Underground Stadium[A],ROOMVENT' 96[C],1996.
    [11]吴会军,朱冬生,李军等.地冷祸合除湿型空调系统的热力学分析[J].华南理工大学学报(自然科学版),2003,31(7):37-41.
    [12]Krarti M,Kreider J F.Analytical model for heat transfer in an undernround air tunnel [J].Energy Conversion and Mananement,1996,37(10):1561-1574.
    [13]Mihalakakou G,Santamouris M,Asimakopoulos D.Modeling the thermal performance of the earth to air heat exchangers[J].Solar Energy,1994,53:301-305
    [14]梁守信,陈郁文等,水电站坝体廊道的湿源分析及其对策.西安建筑科技大学学报,1997(3),278-283
    [15]王慧光,赵鸿佐,无芜坪电站地下厂房湿热环境的动态分析,西安建筑科技大学硕士论文,1993
    [16]朱世琦,王代禹等,漫湾水电站坝体廊道温降效应研究.制冷,2000(4),1-6
    [17]张铮,糯扎渡水电站地下洞室热工环境试验分析、数值计算及方案论证.西安建筑科技大学硕士论文,2001年
    [18]戴章艳,廊道通风换热过程分析——景洪、糯扎渡水电站坝体廊道通风理论与数值模拟研究.西安建筑科技大学硕士论文,2006
    [19]温建军,坝体廊道换热效果研究及景洪水电站通风廊道网络节点法初探.西安建筑科技大学硕士论文,2006
    [20]陈谭,长直尾水洞内热质交换的数值模拟初探.西安建筑科技大学硕士论文,2005
    [21]徐来福,尾水洞内热质交换数值模拟,西华大学硕士论文,2006
    [22]李宪庭,余延顺等,水电站无压尾水洞引风热湿交换过程的研究.暖通空调,2006增刊,241-245
    [23]余延顺,李宪庭等,水电站无压尾水洞引风过程热工计算方法.暖通空调,2007(4),1-6
    [24]余延顺,王政等,水站无压尾水洞引风热湿交换特性的现场测试.暖通空调,2007(10),111-115
    [25]帕坦卡著,传热与流体流动的数值计算.张政翻译,科学出版社
    [26]陶文铨,计算传热学的近代进展.科学出版社,2000年
    [27]周光炯,严宗毅等编,流体力学上册(第二版).高等教育出版社,2000年
    [28]杨合长,天然冷源在黄河小浪底水电站通风空调系统中的应用.全国暖通空调制冷 1998年学术年会论文集(2),1998年,586-589
    [29]章熙民,任泽霈等编,传热学(第三版).建筑工业出版社,1993
    [30]夏春海,周翔等,地道通风系统的数值模拟与分析.太阳能学报,2006(9)923-928
    [31]伊萨琴科等著,传热学.王丰,冀守礼等译,高等教育出版社,1987
    [32]连之伟等编,热质交换原理与设备.中国建筑工业出版社,2001
    [33]吕崇德等编,热工参数测量与处理.清华大学出版社,1990
    [34]周强泰等编,两相流动和热交换.水利电力出版社,1990
    [35]王政,瀑布沟地下厂房利用无压尾水洞引风的设计,水电站设计,第17卷,第1期,2001
    [36]周谟仁,流体力学泵与风机(第三版).中国建筑工业出版社,1994
    [37]Jens Pfafferott.Evaluation of earth-to-air heat exchangers with a standardized method to calculate energy efficiency.Energy and Buildings,35(2003):971-983
    [38]Jae-yong Kim,Afshin J.Ghajar.A general heat transfer correlation for non-boiling gas-liquid flow with different flow patterns in horizontal pipes,International Journal of Multiphase Flow 32(2006);447-465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700