半整体式全无缝桥合理结构体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无缝桥是一种通过采用整体式或半整体式桥台、连续桥跨等方式取消了桥梁全部伸缩缝的结构。本文旨在探究半整体式全无缝桥合理结构体系。本文在改进1998年提出的半整体式全无缝桥梁的过程中,提出了一种带地梁的半整体式全无缝桥的结构型式,其工作原理同半整体式全无缝桥,只是在接线路面的末端增加了为控制接线路面长度而设计的地梁。随后2009年初,又提出了带预锯缝的半整体式全无缝桥的结构型式。论文主要是对后两种桥梁结构体系分别进行了实验研究和理论分析,以验证其结构的合理性。主要的研究成果总结如下所示:
     1.为了能有效的控制配筋接线路面的长度,本文提出了带地梁的半整体式全无缝桥结构型式。推导了带地梁的无缝接线路面在均匀温度作用下的内力与变形计算公式;编制了相应的配筋接线路面的配筋计算程序,并将实验获得的各项材料参数带入程序计算,得到了配筋接线路面的裂缝间距及裂缝宽度值;通过对带地梁的半整体式全无缝桥的温降模拟试验,得知带地梁的半整体式全无缝桥具有很强的吸纳梁体变形的能力,延性好。但接线路面裂缝间距不满足道路规范对于裂缝间距的要求,因此设计时不能将该带地梁的配筋接线路面用于吸收太大的梁体变形,否则会影响到配筋接线路面的耐久性。同时,得知锚端地梁随着张拉荷载的增加发生了很大的向桥跨的变形,因此需加强锚端地梁的设计。
     2.为了控制接线路面裂缝的分布规律,减少接线路面与搭板之间的拉力,使裂缝持续的传递到带锯缝接线路面的末端,本文进一步提出了带预锯缝的半整体式全无缝桥体系,其工作原理与半整体式全无缝桥一致。通过对该桥型的温降模型试验,测得带预锯缝的配筋接线路面在张拉作用下的锯缝处裂缝分布规律。通过对最大裂缝宽度处锯缝两侧弯沉的试验测量及锯缝传荷能力的理论分析,发现带预锯缝的配筋路面锯缝有很好的荷载传递能力。实验测得带预锯缝的半整体式无缝桥对台后的土压力影响较小,从而降低了桥台的设计和施工要求。同时通过对比搭板末端张拉位移与锯缝处所有裂缝宽度和的差值,发现带预锯缝的接线路面锯缝有很强的吸纳梁体温降产生的纵向水平位移的能力。最后通过对实验结果的分析,说明模型中设计的长19m的接线路面模型可用于桥跨均匀温降20℃,总长达90m的无缝桥梁接线路面。
     3.通过对带预锯缝的半整体式全无缝桥的实验分析,结合钢筋与混凝土间粘结滑移的线性本构关系,建立了带预锯缝的半整体式无缝桥配筋路面由于梁体温度变化引起的配筋路面受拉变形的应力计算模型及平衡微分方程组,通过解答微分方程组,得到了在梁体温降作用下,预锯缝处裂缝宽度的计算公式及配筋路面内力与变形解析表达式。推导了由于梁体在温降作用时产生的收缩变形,配筋路面干缩和温缩等引起的配筋路面裂缝宽度计算公式。引入了表面裂缝宽度转化系数η,推导出了配筋路面的路面裂缝宽度计算公式。并结合一般路面施工缝施工程序,提出了带预锯缝全无缝桥配筋路面施工应该注意的事项。
     4.分析了在温度和车道荷载的共同作用下,工后沉降对接线路面使用性能的影响。在室内进行了大比例无缝桥模型试验,模拟了温度、车道荷载和台后不均匀沉降的共同作用,测得竖向荷载对半整体式无缝桥梁端反力及变形及台后土压力影响较小,但竖向荷载对加载点及其附近锯缝处的裂缝宽度影响较大。同时文中建立了半整体式全无缝桥3D有限元模型,且建立相同长度的常用搭板模型进行对比分析。从实验结果和3D有限元数值模拟结果来看,虽然半整体式全无缝桥搭板在台后不均匀沉降情况下变形较常用搭板模型小,但台后不均匀沉降量增加的同时也增加了搭板内的应力,且较常用搭板模型大,使搭板处于不利状态。从行车舒适度及路面耐久性的角度考虑,应尽量减少半整体式无缝桥搭板因沉降引起的变形,严格控制台后不均匀沉降量。
     5.对两种半整体式全无缝桥配筋接线路面的延性实验和理论分析。通过带预锯缝的半整体式无缝桥配筋路面往复张拉实验(模拟无缝桥在均匀温度作用下,包含温升、降作用),测得面层和基层间的摩阻力、摩阻系数及锚固力随着往复加载次数的增加而不断减小,但往复张拉增加了预锯缝处裂缝宽度。由于裂缝宽度是影响路面板使用性能及耐久性的控制因素,因此在设计应计入往复荷载对裂缝宽度的影响。因此文中引入往复荷载对裂缝宽度影响的系数ζ。(往复荷载影响系数),计入往复荷载对裂缝宽度影响,得到了裂缝宽度的最终公式。最后通过三个周期往复张拉实验及对其进行位移延性计算,论证了半整体式全无缝桥的高延性性能,即有很强的抗震性能。
Jointless bridge is one kind of bridges which using integral abutment, semi-integral abutment or continuous spans cancelling all the expansion devices. Hunan University research team had put forward one new form of integral abutment jointless bridge in1998. The bridge connects the approach slab and approach pavement with the main girder of the bridge. And the main mechanism of the bridge is using the cracks produced in the approach pavement to absorb the shrink deformation caused by the temperature effect of the main girder. In2008one new form of integral abutment jointless bridge had been put forward based on some improvement of the old integral abutment jointless bridge. The main difference between these two forms is one anchor beam has been added at the end of the approach pavement. Here the anchor beam is used to control the length of the approach pavement. After one year study, the basic performance of the integral abutment jointless bridge with anchor beam had been grasped. At the beginning of2009, a new bridge form named'integral abutment jointless bridge with pre-cut cracks' has been put forward. And the main improvement of the bridge is the pre-cut cracks have been added in the approach pavement. Here the pre-cut cracks in the approach pavement are to control the development of the cracks along the approach pavement when the temperature of the main girder changes. After the cracks have been made in the approach pavement, the space of the cracks could be control in allowable value and also the tensile force between the approach pavement and the approach slab could be decreased. This paper mainly focuses on the theoretical and experimental research of these two new bridge forms. The main research results are shown as follows:
     1. In order to control the length of the approach pavement, the integral abutment jointless bridge with anchor beam had been put forward. The internal force and deformation calculation formula of the integral abutment jointless bridge had been deduced. The reinforcement calculation program of the reinforced approach pavement had been complied. The crack spaces and the crack widths had been calculated when all kinds of the experimental parameters had been inputted the program. High absorbing ability of the temperature deformation of the main girder had been approved by the temperature effect simulation experiment of the integral abutment jointless had been carried out in the lab. But also some drawbacks had been found, such as the crack spaces of the cracks in the approach pavement are too small to satisfy with the highway standard allowance. So the bridge form could not be used to absorb the big temperature change of the main girder. At the same time, the bigger displacement of anchor beam toward the end of main girder appeared when the bigger temperature change had been considered. So the design of anchor beam should be pay more attention to.
     2. In order to control the cracks development along the approach pavement, to reduce the tensile force between the approach slab and the approach pavement and to make the cracks transform from the frist one of the approach pavement to the last one of the approach pavement as well, a new bridge form named integral abutment jointless bridge with pre-cut cracks had been put forward. The cracks distribution pattern had been received through the temperature effect simulation experiment of the new bridge form in the lab. All the cracks widths are satisfied with the allowance of the highway specification. High crack load transfer capacity of the crack with the biggest crack width has been found through the theory analysis of the deflection value between the cracks. Small influence of the soil pressure at the end of abutment has been found when the temperature deformation had been considered, so the design and construction requirement of the abutment could be lower. Also high absorbing ability of the temperature deformation of the main girder had been found. In the end, the19m long approach pavement of the experimental model had been approved that it could be used to absorb the total length of90m and considering20degree temperature change of the integral abutment jointless bridge.
     3. The stresses calculation model and differential equation formula of force balance of the reinforced approach pavement had been established according to the linear constitutive bond-slip relationship between the reinforcement steel and the concrete. The calculation formula of crack width, the internal force and the deformation had been deduced. The calculation formula of crack width only considers the temperature change of the main girder also had been deduced. In order to get the crack width of the surface of the approach pavement, the surface crack width transform parameter was recommended in this paper. The construction items of the pre-cut cracks in the approach pavement which should be pay attention to had been put forward by combining with the pavement construction procedures.
     4. The performance of the reinforced approach pavement considered the temperature load, lane traffic load and embankment settlement at the end of the abutment had been studied. Also experiment model considered the temperature load, lane traffic load and embankment settlement at the end of the abutment had been simulated in the lab. The3D ANSYS software had been used to simulate the same situation. The whole stiffness of integral abutment jointless bridge was bigger than the non jointless bridge for the connection among the main girder of the bridge, the approach slab and the approach pavement. Big influence of the crack width had been found when considered the settlement at the end of the bridge abutment. In order to control the crack width, the settlement at the end of the abutment should be controlled strictly.
     5. The experimental and the theoretical analysis of the cycle temperature load experiment which added at the integral abutment jointless bridge experimental mode had found that the friction forces and the anchor forces are smaller with load cycle number increased. And big influence of the crack width at the pre-cut joints also had been found. So cycle temperature load should be taken into the crack width calculation theory of the integral abutment jointless bridge with pre-cut cracks. Also high anti-seismic ability of the jointless bridge had been found in the experiment.
引文
[1]Kerokoski O. Soil-structure interaction of long jointless bridges with integral abutments:[dissertation]. Tampere:Tampere University of Technology,2006, 1-15
    [2]李海洋,程潮洋,鲍卫刚. 公路桥梁伸缩装置. 北京:人民交通出版社,1999,23-35
    [3]西部交通建设科技项目可行性研究报告.长沙:湖南大学桥梁研究所(内部资料),2009,10-15
    [4]金晓勤.新型全无缝桥梁体系设计与实验研究:[湖南大学博士学位论文].长沙:湖南大学,2007,1-30
    [5]HAJ-NAJIB R. Integral abutment bridges with skew angles:[dissertation]. Maryland:University of Maryland,2002,30-35
    [6]Jin X Q, Shao X D, Peng W H, et al. A new category of semi-integral abutment in China. Structural Engineering International,2005,15(3):186-189
    [7]Jin X Q, Shao X D. New technologies in China's first jointless integral abutment bridge. In:Metropolitan Habitats and Infrastructure IABSE Symposium, Zurich, 2004,172-173
    [8]Huang J M, Shield C K, French C E W. Parametric Study of concrete integral abutment bridges. Journal of Bridge Engineering,2008,13(5):511-526
    [9]Thippeswamy H K, GangaRao H V S, Franco J M. Performance evaluation of jointless bridges. Journal of Bridge Engineering,2002,7(5):276-289
    [10]Brena S F, Bonczar C H, Civjan S A, et al. Evaluation of seasonal and yearly behavior of an integral abutment bridge. Journal of Bridge Engineering, 2007,12(3):296-305
    [11]DeJong J T, Howey D S, Civjan S A, et al. Influence of daily and annual thermal variations on integral abutment bridge performance. In Proceedings of Geo-Trans, New York,2004,496-505
    [12]Tlustochowicz G. Optimized design of integral abutments for a three span composite bridge:[dissertation]. Lulea:Lulea University of Technology,2005, 1-18
    [13]Arockiasamy M P E, Butrieng N, Sivakumar M. State-of-the-Art of integral abutment bridges:design and practice. Journal of Bridge Engineering,2004,9(5): 497-506
    [14]金晓勤,邵旭东,陈华辉等.整体式无缝桥梁新技术的初步试验研究.湖南大学学报(自然科学版),2006,33(4):1-5
    [15]金晓勤,邵旭东.整体式无缝桥梁的研究与应用.重庆交通学院学报,2002,21(3):7-11
    [16]金晓勤,邵旭东.半整体式全无缝桥梁研究.土木工程学报,2009,42(9):68-73
    [17]邵旭东,占雪芳,金晓勤等.带地梁的新型半整体式无缝桥梁温度效应研究.中国公路学报,2010,23(1):43-48+57
    [18]Wolde-Tinsan. Jointless Bridge.长沙:湖南大学土木工程学院(内部资料),1986,18-25
    [19]Maruri R F, Petro S H. Integral abutments and jointless bridges (IAJB) 2004 survey summary. In:FHWA conference on IAJB-2005, Maryland,2005,350-361
    [20]Greimann L F, Wolde-Tinsae A M. Design model for piles in jointless bridges. Journal of Structural Engineering,1988,114(6):1354-1371
    [21]Kunin J, Alampalli S. Integral abutment bridges:current practice in United States and Canada. Journal of Performance of Constructed Facilities,2000,14(3): 104-111
    [22]Paterson G P. The UK department of transport view on continuity/integral bridges. Continuous and Integral bridges,E&FN Spon,2-6 Boundary Row. London:B.P.Pritchard,1994,20-30
    [23]The Department of Transport of UK. Design Manual for Roads and Bridges. London:The Department of Transport of UK,2003,30-35
    [24]Connal J. Integral abutment bridges-Australian and US practice, www.iitr.ac.in/ departments/CE/abe/471-478.pdf,2006-03-24/25
    [25]Petursson H, Collin P. Composite bridges with integral abutments minimizing lifetime cost.www.sbi.se/uploaded/dokument/files/PAP069.pdf,2008-05-11
    [26]Pradeep K T V, Paul D K, Kumar R, et al. Behavior of integral bridges under temperature and seismic loading. www.iitr.ac.in/departments/CE/abe/291-300.pdf, 2006-03-24/25
    [27]Tandon M. Economical design of earthquake-resistant bridges. ISET Journal of earthquake Technology,2005,42(1):13-20
    [28]Greimann L, et al. Design model for piles in jointless bridges. Jounal of Structural Engineering,1988,114(6):86-91
    [29]Sasry V V R N, Meyerhof G G. Behariour of flexible piles under inclined loads. Canadian Geotechnical Journal,1990,27:19-28
    [30]Lehane B M, Keogh D L, O'Brien E J. Simplified elastic model for restraining effects of backfill soil on integral bridges. Computers & Structures,1999,73: 303-313
    [31]Tang N C, England G L, Dunstan T. Soil/structure interaction of integral bridge with full height abutment. In:15th ASCE English Mechanics Conference, New York,2002,1-10
    [32]Munuswamy S. Creep and shrinkage effects on integral abutment bridges: [dissertation]. Florida:Florida Atlantic University,2004,19-40
    [33]Arockiasamy M, Sivakumar M. Time-Dependent behavior of continuous composite integral abutment bridges. Practice Periodical on Structural Design and Construction,2005,10(3):161-170
    [34]Erric Steinberg P E, Sargand S M, Bettinger C. Forces in wingwalls of skewed semi-integral bridges. Journal of Bridge Engineering,2004,9(6):563-571
    [35]Haj-Najib R. Integral abutment bridges with skew angles:[dissertation]. Maryland:Graduate School of the University of Maryland,2002:79-85
    [36]Dicleli M. Simplified model for computer-aided analysis of integral bridges. Journal of Bridge Engineering,2000,5(3):240-248
    [37]Thippeswaamy H K, GangaRao H V S, Franco J M. Performance evaluation of jointless bridges. Journal of Bridge Engineering,2002,7(5):276-289
    [38]Mural D. A rational approach for prestressed-concrete-girder integral bridges. Engineering Structures,2000,22(3):230-245
    [39]Shen J, Lopez M. Seismic performance of integral abutment bridges. In: Proceedings of a session conjunction with the ASCE National Convention in Minneapolis, Minnesota,1997,111-125.
    [40]Dicleli M, Albhaisi S M. Estimation of length limits for integral bridges built in clay. Journal of Bridge Engineering,2004,9(6):572-581
    [41]张亮,宁夏元.设置小边跨的无缝连续梁桥设计.中南公路工程,1998,23(2):18-20
    [42]彭大文,陈朝慰,洪锦祥.整体式桥台桥梁的桥台结点受力性能研究.中国公路学报,2005,18(1):46-50
    [43]洪锦祥,彭大文.桩基础的整体式桥台桥梁受力性能研究. 中国公路学报,2002,15(4):43-48
    [44]彭大文,陈晓东,袁燕.整体式桥台桥梁台后土压力的季节性变化研究.岩土工程学报,2003,25(2):135-139
    [45]胡大琳,王天利,陈峰等.半整体式桥台无伸缩缝桥静力分析.交通运输工程学报,2006,6(1):52-56,62
    [46]马竞,金晓勤.我国第一座整体式全无缝桥梁-广东清远四九桥的设计思路.中南公路工程,2002,27(2):32-34
    [47]金晓勤,邵旭东.新型半整体式无缝桥梁的研究.公路,2007,(11):12-16
    [48]杜永超.半整体式全无缝桥梁的适应性及在弯桥上的研究与应用:[湖南大学硕士学位论文].长沙:湖南大学,2011,12-18
    [49]中华人民共和国行业标准.公路水泥混凝土路面设计规范(JTG D40-2002).北京:人民交通出版社,2002,19-32
    [50]胡长顺,李成才,景彦平等.连续配筋混凝土路面试验路研究.公路,2001,1:28-32
    [51]严学寨.连续配筋砼路面结构设计综述.公路与汽运,2004,101(4):23-25
    [52]Kohler E R, Jeffery R R. Crack width measurements in continuously reinforced concrete pavements. Journal of Transportation Engineering,2005,131(9): 645-652
    [53]McCullough B F, Cawley M L. CRCP design based on theoretical and field performance. In:Proc.2nd Int. Conf. on Concrete Pavement Design, West Lafayette,1991,239-251
    [54]McCullough B F, Dossey T. Considerations for high performance concrete paving:Recommendations from 20 years of field experience in Texas. Washington D.C.:Transportation Research Board,1999,17-24
    [55]中华人民共和国行业标准.钢筋混凝土结构设计规范(TJ10-74).北京:人民交通出版社,1997,20-35
    [56]MHD bridge Manual. Design guidelines and standard details for integral abutment bridges. Boston:Massachusetts Highway Department(MHD),1999, 237-242
    [57]胡长顺,王秉纲.复合式路面设计原理与施工技术.北京:人民交通出版社,1999,1-3
    [58]六中林,田文,史建方等.高等级公路沥青混凝土路面新技术.北京:人民交通出版社,2002,240-255
    [59]毛瑞祥,程翔云.公路桥涵设计手册基本资料.北京:人民交通出版社,1993,89-121
    [60]王舀.半刚性基层路面预裂缝技术之初想.黑龙江科技信息,2007,16:222
    [61]刘敬辉,王端宜.采用半刚性基层预裂缝技术减少反射裂缝的方法研究.中外公路,2008,28(6):80-84
    [62]胡学亮,杨文军,朱洪洲等.水泥稳定碎石基层预锯缝间距的探讨.重庆交通大学学报(自然科学版),2009,28(1):74-76
    [63]蒋应军,薛航,薛辉等.半刚性基层预锯缝及铺土工布的路面防裂措施.长安大学学报(自然科学版),2006,26(2):6-9
    [64]蒋应军.水泥稳定碎石基层收缩裂缝防治研究:[长安大学硕士学位论文].西安:长安大学,2001,13-35
    [65]朱春平.底板混凝土(锯割收缩缝)施工技术.建筑工人,2003,11:17
    [66]曹东伟,胡长顺.连续配筋混凝土路面裂缝间距的可靠性分析.西安公路交通大学学报,2001,21(2):1-5
    [67]王龙,孙耀东.级配碎石结构材料类型与压实方法.北华大学学报(自然科学版),2004,5(4):368-372
    [68]王龙,解晓光.级配碎石材料标准振动成型方法的研究.公路交通科技,2005,22(7):26-30
    [69]虎增福.乳化沥青及稀浆封层技术.北京:人民交通出版社,2001,1 10-126
    [70]刘细军.沥青混合料及路面层间抗剪特性研究:(长安大学硕士学位论文).西安:长安大学交通学院,2006,13-14
    [71]中华人民共和国行业标准.公路路面基层施工技术规范(JTJ034-2000).北京:人民交通出版社,2000,55-62
    [72]彭前程.高速公路旧水泥砼路面结构性能评价方法研究:[华中科技大学硕士学位论文].武汉:华中科技大学交通学院,2006,35-43
    [73]关宏信,程海潜.接缝性水泥混凝土路面接缝传荷能力测试方法探讨.中外公路,2007,27(2):44-47
    [74]顾涛.裂缝传荷对连续筋混凝土路面设计的影响.河南科技,2004,8:37
    [75]田宽春,曹东伟.考虑裂缝传荷能力损失的连续配筋混.凝土路面设计.国外公路,2000,20(4):6-7
    [76]潘科明,项巍.路基路面试验检测技术-回弹弯沉检测方法.辽宁交通科技,2005,9:10-11
    [77]彭前程.高速公路旧水泥混凝土路面结构性能评价方法研究:[华中科技大学硕士学位论文].武汉:华中科技大学交通学院,2006,40-41
    [78]中华人民共和国行业标准.公路沥青路面设计规范(JTG D50-2006).北京:人民交通出版社,2006,14-35
    [79]查旭东.连续配筋混凝土路面横向开裂发展规律.交通运输工程学报,2008,8(2):65-68
    [80]顾兴宇,董侨,倪富健.连续配筋水泥混凝土路面裂缝发展规律研究.公路交通科技,2007,24(6):37-40,+45
    [81]梁立军.水泥混凝土干缩性能影响因素及减小措施研究.交通世界(建养机械),2008,7:122-123
    [82]Andrew G J. Thermal and shrinkage effects in high performance concrete structures during construction:[dissertation]. Exshaw:University of Calgary, 2001,96-101
    [83]曹东伟,胡长顺.连续配筋混凝土路面温度应力分析.西安公路交通大学学报,2001,21(2):1-5
    [84]刘寒冰,张云龙,高远.连续配筋混凝土路面温度应力分析.公路交通科技,2008,25(3):1-7
    [85]巨锁基,黄晓明,李宇峙.真实条件下CRCP温度应力通用解析解.公路交通科技,2006,23(6):14-17
    [86]梁中敏.连续配筋水泥混凝土路面结构力学计算与分析:[湖南大学硕士学位论文].长沙:湖南大学道路与铁道工程,2009,4-5
    [87]曹东伟,胡长顺.连续配筋混凝土路面温度应力分析.西安公路交通大学学报,2001,21(2):1-5.
    [88]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2005,239-256
    [89]邓学钧,陈荣生.刚性路面设计.北京:人民交通出版社,2005,427-430
    [90]中华人民共和国行业标准.公路水泥混凝土路面设计规范(JTG D40-2010).北京:人民交通出版社,2010(报批稿),19-40
    [91]夏树山.刚性路面施工中存在的几个问题的初步探讨.甘肃科技,2007,23(7):152-153
    [92]彭竟文.小议水泥混凝土路面裂缝的成因及切缝填封技术.黑龙江科技信息,2009,(11):183
    [93]宫晓飞,刘佑荣.高速公路工后不均匀沉降造成的病害及危害特点.西部探矿工程,2004,100(9):193-194
    [94]Chen D H, Won M, Hong F. Investigation of settlement of a jointed concrete pavement. Journal of Performance of constructed facilitates,2009,23(6):440-446
    [95]Zhang H L, Hu C S. Determination of allowable differential settlement in bridge approach due to vehicle vibrations. Journal of Bridge Engineering,2007, 12(2):154-163
    [96]Lin K Q, Wong I H. Use of deep cement mixing to reduce settlements at bridge approaches. Journal of Geotechnical and Geoenvironmental Engineering,1999, 125(4):309-320
    [97]Seo J B. The bump at the end of the bridge:an investigation:[dissertation]. Texas:Texas A & M University,2003,7-17
    [98]董海,王末顺,张宇.高等级公路容许工后不均匀沉降指标的研究.森林工程,2002,18(2):53-54
    [99]姜友顺.车辆动荷载对路面结构的影响.应用技术,2006,(29):21-23
    [100]Zhan X F, Shao X D, Jin X Q. The settlement analysis of approach slab of innoviative jointless bridge under traffic load and temperature load. In:The 4th international symposium on lifetime engineering of civil infrastructure, Changsha, 2009,844-851
    [101]Dobry R, Ng T T, Petrakis E, et al. General model for contact law between rough spheres. Journal of EM Div,1991,117(6):1365-1381
    [102]Moumena L. Nonlinear Finite element analysis of soil-structure interaction in approaches to bridges:[disseration]. Maryland:University of Maryland,1990, 164-189
    [103]Dicleli M, Erhan S. Effect of soil and substructure properties on live-load distribution in integral abutment bridges. Journal of bridge engineering, 2008,15(3):527-539
    [104]中华人民共和国行业标准.公路桥涵设计通用规范(JTG D60-2004).北京:人民交通出版社,2004,24-28
    [105]Cai C S, Shi X M, Voyiadjis G Z,et al. Structural performance of bridge approach slabs under given embankment settlement. Journal of bridge engineering, 2005,10(4):428-329
    [106]Cai C S, Voyiadjis G Z, Shi X M. Determination of interaction between bridge concrete approach slab and embankment settlement. Louisiana:Louisiana department of transportation and development Louisiana transportation research center,2005,11-28
    [107]中华人民共和国交通部.公路软土地基路堤设计与施工技术规范(JTJ017-1996).北京:人民交通出版社,1996,21-25
    [108]周虎鑫,陈荣生.高等级公路工后不均匀沉降指标研究.东南大学学报(自然科学版),1996,26(1):54-56.
    [109]叶见曙.桥头引道工后沉降控制标准的研究.东南大学学报(自然科学版),1997,27(3):12-17
    [110]Zaman M, Gopalasingam A, Laguros J G. Consolidation settlement of bridge approach foundation. Journal of Geotechnical Engineering,1991,117(2):219-239
    [111]Wu J T H, Helway M B. Alleviating bridge approach settlement with geosynthetic reinforcement. In:Proc.4th Int. Conf. on Geotexiles, Hague,1990, 107-111
    [112]彭大文,洪锦祥,郭爱民等.整体式桥台桥梁的动力试验研究.中国公路学报,2004,17(4):59-63
    [113]彭大文,洪锦祥,郭爱民等.无伸缩缝桥梁的动力特性计算与试验研究.地震工程与工程振动,2005,25(2):72-76
    [114]颜於滕,陈晖敏.从汶川地震看结构延性设计.开发应用,2009,8(21):25+12
    [115]徐国锋.高烈度区连续梁桥延性抗震设计初步研究:[重庆交通大学硕士学位论文].重庆:重庆交通大学,2009,1-3
    [116]林万杰.大跨长联预应力混凝土连续梁桥地震反应分析:[西南交通大学硕士学位论文].成都:成都交通大学,2006,3-5
    [117]贾明晓,章小檀,王君杰,黄娟等.桥梁延性与减隔震设计方法应用研究.公路工程,2008,33(4):29-33+41
    [118]李平昌,雷汲川.钢筋混凝土结构抗震的延性设计.四川建筑,2004,24(2):53-54
    [119]徐胜修.工程抗震概念设计.冶金矿山设计与建设,1999,31(2):47-53
    [120]罗瑞琦. 结构延性与抗震设计. 山西煤炭管理干部学院学报,2002,15(4):89-90
    [121]徐绩青.延性系数确定方法的探讨.水运工程,2004,9:14-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700