十三陵地下水电站交通洞通风换热效果实测及理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻求节能、环保、可持续发展的空调方式来降低建筑能耗,是目前节约能源一个急需解决的问题。深层土壤或者地下隧洞有巨大的蓄冷或蓄热能力,是天然、环保的可再生能源。如何利用水电站地下交通洞及专用送风洞的天然冷热源,实现水电站内环境的温度调控得到了水电站暖通空调设计人员的广泛重视。
     本文对十三陵水电站厂房采用交通洞送风的方式进行了实测及理论分析,利用实测数据,探讨了水电站交通洞内空气温度及相对湿度的变化规律,查明了地下交通洞对空气温度及湿度的调节作用,并计算空气经过交通洞后能量的变化,分析了交通洞的节能潜力。通过建立水电站地下交通洞换热的理论模型,得出了水电站地下交通洞换热的计算公式,并引入交通洞有效换热长度和最佳换热长度的概念,给出计算交通洞有效换热长度和最佳换热长度的方程式;十三陵水电站交通洞的实测数据表明,该换热公式具有较高的精度,误差小于5%。
     实测分析表明,十三陵水电站交通洞壁面温度为22.3℃,深埋地下交通洞壁面温度基本保持恒定;空气流经水电站交通洞、专用送风洞存在显著的温降或温升,末端出口温度与壁面温度较为接近,误差为±1℃。地下交通洞送风可以为厂房提供良好的工作环境,满足水电站厂房的通风空调设计要求。此外,通过对洞内空气湿度的分析表明,交通洞对空气相对湿度的调节与温度变化趋势相反,有较强的规律性。
     十三陵水电站交通洞(埋深250m)现场测试表明,深埋地下洞室的换热呈常壁温换热状态,论文计算理论公式与实测数据吻合良好。
At present,it is urgent to find a development-sustainable air-conditioning mode to reduce building energy consumption.This air-conditioning mode should save energy and protect environment.Deep soil and underground tunnel has remarkable energy storage ability, which is also a natural and environment protecting renewable resource.Thus,widely attention of hydro power station air conditioning designer is drawn by underground tunnel and air supply tunnel.For the designers,the key is to find the methodology of utilizing the energy storage ability of underground tunnel and air supply tunnel,in order to actualize suitable air conditioning design of hydro power station indoor environment.
     In this paper,a field test and theoretical analysis is done on the tunnel ventilation pattern of Shisanling Hydropower Station.Based on the field test data,indoor temperature and relative humidity change regulation of hydro power station is discussed,while the indoor temperature and relative humidity modulation capability of the tunnel is worked out. Moreover,the energy change when air goes through the tunnel is calculated,in order to analyze tunnel energy saving potential.By building up the heat exchange model of hydro power station tunnel,the heat exchange theoretical function is figured out.Then,the notion and function of tunnel efficient and optimize heat exchange length is introduced respectively. The field test data indicate that these functions have high precisions.Erro is below 5%.
     By analyzing,wall temperature of Shisanling hydro power station tunnel is roughly remain at about 22.3℃.The inlet air can have a significant temperature change,when it goes through hydro power station tunnel or air supply tunnel.After that,the outlet air temperature is close to wall temperature.Erro is±1℃.Thus,tunnel air supply could provide the plant with favorable indoor environment,which meet the need of air conditioning requirement.It is also indicated that the influence of tunnel regulation ability on relative humidity is opposite to that on temperature.
     The field test of Shisanling hydro power station tunnel(deapth 250m),shows that the tunnel heat exchange is in the condition of constant wall temperature,which is proved by the accordance of theoretical function and field test data.
引文
[1]李志浩:基于建筑节能的暖通空调节能措施,电力需求侧管理,6(4),49-50,2004
    [2]卜增文,刘俊跃:基于LEED标准的绿色建筑空调系统设计,暖通空调,34(2),22-26,2004
    [3]M.De Paepe,A.Janssens:Thermo-hydraulic design of earth-air heat exchangers,Energy andBuilding,Vol.35,389-394,2003
    [4]水电站机电设计手册(采暖通风与空调),水力水电出版社,271-274
    [5]王政,瀑布沟地下厂房利用无压尾水洞引风的设计,水电站设计,第17卷,第1期,2001
    [6]杨述仁等:地下水电站厂房设计,水力水电出版社,1993
    [7]长江流域规划办公室枢纽处古田溪水电站,水电站厂房通风、空调和采暖,1984
    [8]田忠保等:地下高大厂房气流组织模化试验研究,通风除尘,1996(1)
    [9]付祥钊:水电站地下主厂房顶送风研究,暖通空调,1996(1)
    [10]田忠保:水电站地下主厂房顶部送风气流组织试验,西北水电,1996(1)
    [11]龙天渝等:水电站地下主厂房通风气流组织的数值模拟,建筑热能通风空调,2000(4)
    [12]刘洪敏,李安桂:龙滩水电站空调系统方案分析比选,西安建筑科技大学硕士论文
    [13]帕坦卡著,传热与流体流动的数值计算.张政翻译,科学出版社
    [14]陶文铨,计算传热学的近代进展.科学出版社,2000年
    [15]周光炯,严宗毅等编,流体力学上册(第二版).高等教育出版社,2000年
    [16]李丽,李安桂,水电站无压尾水洞引风换热试验研究,西安建筑科技大学硕士论文
    [17]余延顺,王政,石文星,李先庭水电站无压尾水洞引风热湿交换特性的现场测试,暖通空调HV&AC,2007年第37卷第10期
    [18]廉乐明等,工程热力学(第四版),中国建筑工业出版社
    [19]赵鸿佐:地下建筑通风热计算公式,西安冶金建筑学院,西安冶金建筑学院技术情报资料第7303号,1973
    [20]戴章燕,李安桂,廊道通风换热过程分析景洪、糯扎渡水电站坝体廊道通风理论与数值模拟研究,西安建筑科技大学研究生学位论文,2006
    [21]李安桂,王易军,钟洋,无衬、深埋、圆隧坝体廊道通风温降数学模型及景洪水 电站廊道空气温度分布预测,水电暖通空调,第16期
    [22]章熙民等,传热学(第三版),中国建筑工业出版社
    [23]E.R.G.Eckert.R.M.Drake,Analysis of Heat and Mass Transfer,McGraw-Hill Book Co.,1972.
    [24]贺平等,供热工程(第三版),中国建筑工业出版社
    [25]Chi-Ji Lin,Yew Khoy Chuah,Chia-Wei Liu,A study on underground tunnel ventilation for piston elects influenced by draught relief shaft in subway system,Applied Thermal Engineering 28(2008) 372-379。
    [26]M.Ohba,K.Irie,T.Kurabuchi,Study on airflow characteristics inside andoutside a cross-ventilation model,and ventilation flow rates using wind tunnel experiments,Journal of Wind Engineering and Industrial Aerodynamics 89(2001) 1513-1524。
    [27]K.Niachou,I.Livada,M.Santamouris,Experimental study of temperature and airflow distributioninside an urban street canyon during hot summer weather conditions,Building and Environment 43(2008) 1383-1392
    [28]Allen D H G;Childs E P:Conjugated heat transfer in disk-type transformer windings.In:Proceedings of the Eighth International Heat Transfer Conference,Vol.6,977-2982,1986
    [29]朱世琦,王代禹,习亚华,漫湾水电站坝体廊道温降效应研究.制冷,2000,19(4):1-6。
    [30]郑爱萍,地道风降(升温)技术在西北地区的应用
    [31]Moncef Kartri,Jan F.Kreider:Analytical model for heat transfer in an undergrotmd air runnel,Energy Convers.Mgmt,Vol.37,1561-1574,1996
    [32]G.Mihalakakou:On the heating potential of a single buried pipe using deterministic and intelligent techniques,Renewable Energy,Voi.28,917-927,2003
    [33]Dr G.G.Maidment,Dr J.F.Missenden,SUSTAINABLE COOLING SCHEMES FOR THE LONDON UNDERGROUND RAILWAY NETWORK

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700