地下水电站进风道气流参数通用计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水电站厂房一般均通过通风洞、交通洞或其它地下通道由室外引入新风。由于岩体的蓄热蓄冷作用,空气流经这些通道时,将与洞壁岩体进行热湿交换,夏季新风温度将会降低,冬季则将会升高。正确地利用地下风道岩体这种对空气的处理能力,将有效降低工程建设初投资及运行管理费用。目前,在国家大力提倡节能的大背景下,深入研究地下风道热工计算问题更具有现实意义。
     本文主要开展了如下几方面研究:
     ①在分析评价现有的各种工程计算理论及研究方法的基础上,提出建立通用计算模型与计算方法的思路。目前的工程计算理论及研究方法主要有工程计算法,图解法,模型实验法,CFD软件模拟法。工程计算法虽然总体上正确反映了各物理量对气流参数的影响特征和基本规律,但也存在一些不足:1)将进风参数视为简谐性变化或恒定不变,与实际情况不符;2)仅考虑通风量的几种间歇通风工作班制的工况或视为恒定值,与实际通风工况的复杂性不符;3)空气结露放出相变热,对气流参数变化有较大影响,工程计算法在计算结露段的气流参数时,认为风道进风参数恒定,壁面温度为年平均地温,与实际情况不符;4)工程计算法中引入了大量的特殊函数,并且要通过查图表的方式获得结果。但这些图表的适用范围有限,同时也容易引入查图误差,降低计算结果的准确度。图解法是在实测数据的基础上,分析总结出的一种经验方法,在应用时对进风道长度及壁面结构形式有所限制,不是一种通用的计算方法。并且该方法是对夏季空气温降的一种简化计算方式,无法反映全年的不同时间的气流参数变化情况。模型实验法则存在投资大、实验周期长等缺点。CFD软件模拟法为了保证计算精度及计算稳定性,往往采用较小的模型网格间距及时间步长,计算时间较长。并且该类问题通常需要连续计算数年,导致软件一般要连续运行几天才能完成计算,显然不符合工程人员的需要。CFD软件模拟法还存在事前准备工作繁琐、对工程技术人员专业知识要求高等缺点。
     因此,在这一背景下,解决这一工程问题的基本思路是:建立全面反映室外气象参数、风道几何与物理条件、风道的通风工况三大要素的、符合工程实际情况的通用数学模型。采用先进的计算方法,建立计算程序对通用数学模型求解,从而避免对模型简化过多,增加计算结果的准确性和信息的丰富性,并且提供便于工程技术人员使用的计算软件与基础数据库。
     ②建立水电站地下进风道的通用数学模型及其求解方法。将进风道简化为“当量圆柱体模型”,减小计算难度。提出等周长、等面积、等边界对流换热三种简化方式,根据传热与实际风道最接近的原则,进行分析比较,得出按“等截面周长”方法为最优简化方法。依据传热学、工程热力学的基本方程,应用圆柱坐标系统,建立了水电站地下风道气流参数计算通用数学模型。
     按照“离散求解的思想”,在时间和空间上进行离散,建立了完整的离散计算模型,采用空间、时间域交替进行、逐步推进的动态算法进行计算。空间纵向方向上的离散,将风道划分为若干个“控制单元”,根据工程实际,划分距离选取10m。离散过程采用显示差分格式,对模型稳定性进行判断,得到网格间距Δr与时间步长Δτ的关系式:Δr >0.0017Δτ。为了提高计算精度,应尽量降低Δr及Δτ,但是当Δτ很小时,将不能保证单元体区域的稳定性,且计算时间较长。综合考虑取Δτ=300s,则Δr >0.03m,取Δr =0.05m,满足稳定性要求,并且计算速度较快。
     ③开发了水电站地下风道气流参数动态计算程序及应用软件。采用C语言编制计算程序,该程序充分考虑了实际工程运行工况、空气结露现象、壁面衬砌结构等。开发了应用软件,该软件能够输出计算时间范围内的任意时刻的气流参数及壁面温度;输入操作简单方便,输出数据采用文字、数据表格、图形相结合的方法,提供信息丰富;软件自带基础数据库,并且允许用户自行完善数据库信息。
     ④利用东风、南桠河冶勒、十三陵、二滩等四个水电站进风道的实测数据,对软件计算结果进行检验。进风温度较高的时刻误差相对较大,为1.8℃左右,这主要是由于测量误差引起的,其余时刻均能保证误差在1℃之内,证实了软件计算结果的合理性、准确性。⑤分析了室外空气参数、风道结构尺寸及风速、岩体的热物性参数、通风工况等因素对进风气流参数的影响规律,以大量的软件模拟计算结果为基础,拟合出适合工程应用的夏季设计温降简化计算公式。对拟合公式与软件计算结果进行对比,相对误差在6%以内,证实了该简化公式的可用性。
Underground hydropower station generally introduce into fresh air through ventilation tunnel, traffic tunnel or other underground tunnel from outside. Owing to the thermal storage effect of the rock mass, the air would exchange heat and humidity with the rock mass of the tunnel wall. The temperature of the fresh air would go down in the summer and go up in the winter. If the exchange effect of the rock mass be properly used, the initial cost of the project and the management fee could be cut down. Nowadays, as the country promoting the energy saving projects, the deep-going research of underground tunnel thermal engineering calculation could be of much more practical significance.
     In this paper, carried out the following several aspects of research:
     ①On the basis of analysis and evaluation of existing various engineering calculations and research methods, the idea of the establishment of universal model and calculation is proposed . The current engineering calculations and research methods have engineering calculations, diagrams, model experiment, CFD simulation. Although the engineering calculation methods correctly reflect the influence and basic laws to flow parameters of the physical characteristics overall,they still have some inadequacies: 1) They regard wind parameters as the harmonic changes or constant, which does not match with the actual situation. 2) They only consider the ventilation system as some intermittent ventilation work shift or a constant value, which does not match with the complexity of the actual ventilation working conditions. 3) Air condensation releases latent heat ,which has a greater impact to the flow parameters. In the calculation of condensation section of the flow parameters, Engineering calculation methods think that the tunnel wind parameters is constant, and the surface temperature is mean annual ground temperature, which does not match with the actual situation. 4) Engineering calculation methods introduce in a number of special functions, and use the way of searching chart to get through the results. However, the scope of these charts is limited, and it is easy to introduce error and reduce the accuracy of the results. Graphic method is based on the measured data, to get a experience method by analyzing and summarizing ,which is limited to the length of the duct and the wall structure when it is applied. And the method is a simplified method to summer air temperature drop, which does not reflect the changes of flow parameters of different times of the year. Experimental model have the disadvantages of a large investment and long experimental period. In order to ensure the accuracy and stability of computational, CFD simulation often use a smaller model grid spacing and time step ,which cause a long calculate time. And this kind of problem usually requires continuous calculation of several years, resulting in that the software will continuous operation several days to complete the calculation, which is clearly not in accordance with the needs of technicians. CFD simulation still have the disadvantages of tedious preparatory work, high requirements of expertise to engineering and technical personnel.
     Therefore, in this context, the basic idea of this project to solve the problem is that, first, to establish a all-purpose mathematical calculating model, which can conform to the actual situation of the project, and can comprehensively reflect the three conditions of the outdoor meteorological parameters, tunnel geometry and physical conditions, the ventilation condition. Then using of advanced calculation method to establish the calculation procedure for solving all-purpose mathematical model ,to avoid excessive simplification and increase the accuracy of the results and information richness. Then provide for the calculation software and the underlying database ,which are convenient to engineering and technical personnel .
     ②To establish the all-purpose calculation model and solution of underground tunnel. The air duct will be reduced to "equivalent cylinder model", which can reduce the computational difficulty. Proposed three kinds of simplification ways, such as equivalent perimeters, equivalent area, and equivalent boundary heat convection, according to the principle of closest heat transfer with the actual air flue, to analysis and compare, get the conclusion that the“equivalent perimeters”is the most superior simplification method. Based on heat transfer theory, engineering thermodynamics's fundamental equation, using the circular cylindrical coordinate system, has established the all-purpose mathematical computation model of underground air flue flow quality of hydroelectric power station..
     According to the“thought of discrete solves”, carries on the discrete in the time and the space, has established the complete discrete computation model, uses the dynamic algorithm which the space, the time domain carry on alternately, advance gradually to carry on the computation. The discrete of longitudinal direction is that according to the actual situation, the tunnel is divided into a number of air control unit as a distance of 10m. The discrete process uses the display array of difference. Through judging the stability of the model to get the relationship of the grid spacing△r and time step△t:△r>0.0017(△t)^0.5.To improve accuracy, the△r and△t should be reduced, but when△t is small, the unit cell can not guarantee the stability of the region, and the calculation time is long. Considering that we take△t = 300s, then,△r> 0.03m, take△r = 0.05m, which meet the requirements of stability, and calculate speed.
     ③Dynamic computer program and application software of flow parameters of hydropower station underground tunnel have been Developed. Uses the C language to program. The program has considered fully the actual project operating condition, the air condensation phenomenon, the wall surface lining work structure and so on. Has developed the application software, this software can output in the random time flow quality and the wall surface temperature in the computing time scope, input operation simple convenient, the output data use the method which the writing, the data form, the graph unify, supplies the information to be rich. Software bring foundation database, and permission user voluntarily to perfect database information.
     ④Using the four tunnels’measured data of Dongfeng, Nanya- river Yele, the Ming Tombs,and Ertan hydroelectric power stations to carries on the examination to the software computed result. In the time of high inlet air temperature, the error is relatively large, as about 1.8℃, which is mainly caused by measurement error, and the remaining time can guarantee error within 1℃, the results confirmed the reasonableness and accuracy of the software.
     ⑤Analysis of the influence rule to flow quality of the outdoor air temperature, tunnel structure dimension and velocity, physical parameters of the thermal mass, ventilation working condition etc. Based on a great quantity of software calculation data, a general summer temperature drop simplified formula is obtained. And the equation was compared to the software calculation result with the relative error be controlled in 6%,which confirm the usability of this simplified formula.
引文
[1]张华玲.水电站地下厂房热湿环境研究[D].重庆:重庆大学.2007.
    [2] Goch D.C and Patterson H.S. The heat flow inti tunnels.Jounral of the Chemical metallurgical and mining society of South Africa.1940,41(3):117-128.
    [3] Kato.Shinsuke,Murakami.Shuzo,Takzhashi.Takeo,Gyobu.Tomochika.Chained analysis of wind tunnel test and CFD on cross ventilation of large-scale market building. Jounral of Wind Engineering and industrial Aerodynamic.1997,(67-68):573-587.
    [4] D. B. Nordham, Proc. 4th Nat. Passive Solar Conf. Kansas City (1979).
    [5] D. W. Abrams, C. C. Benton and J. M. Akridge, Proc. 5th Nat. Passive Solar Conf. Amherst, MA. (1980).
    [6] G. E. Schneider, ASME J. Heat Transfer 107, 696 (1985).
    [7] Moncef Krarti. Analytical model for heat transfer in an underground air tunnel. Energy Convers. Mgmt Vol. 1996, 37(10): 1561-1574.
    [8] Nishi.A,Kikugawa.H,Matsuda.YTashiro.D.Turbulence control in multiple fan wind tunnels. Jounral of Wind Engineering and Industrial Aerodynamics.1997,67-68:861-872.
    [9] Sagnier.P, Verant. J-L. On the validation of high enthalpy wind tunnel simulations.Aerospace Science and Technology.1998,2(7):425-437.
    [10] GribnikovZ.S,KorobovV.A,Mitinv.v.The tunnel diode as a thyristor emitter.Solid-State Electronics. 1998, 42(9): 1761-1763.
    [11] Squire.L.C.A review of the role of some small lhigh-speed wind tunnels in aeronautical research.Progress in Aerospace Sciences.1998,34(3-4):107-166.
    [12] Diana.G,De ponte.S,Falco.M,Zasso.A.A new large wind tunnel for civil-environmental and aeronautical applications.Journalof Wind Engineering and Industrial Aerodynamics.1998, (74-76): 553-565.
    [13] Miyamura.Kazuo,Hirukawa.Shuichi,Gohshi.Yohichi.Differce in the Tunnel Current-Tunnel Gap Width Dependence of Molecule-Adsorbed and Non-adsorbed.Spectrochimica Acta PartB:Atomic Spectroscopy.1999,54(1):163-166.
    [14] Boulard.T,Wang.S.Mean and turbulent air flows and microclimatic patterns in an empty greenhouse tunnel.Agriculturaland Forest Meteorology.2000,100(2-3):169-181.
    [15] Von Glehn.F.H,Bluhm.S.J.Practical aspects of the ventilation of high-speed developing tunnel -s in hot working envionments.Tunneling and Undergroud Space Technology.2000,15 (4): 471-475.
    [16] Wittwer. AdrianR, Moller.SergioV.Characteristics of the low-speed wind tunnel of the UNNE. Journal of Wind Engineering and Industrial Aerodynamics. 2000, 84(3): 307-32.
    [17] Loredo-Souza A.M,Davenport A.G.A novei approach for wind tunnel modelling of transmission lines.Journal of Wind Engineering and Industrial Aerodynamics.2001,89 (11-12): 1017-1029.
    [18] Choi,S.,Krarti,M.Thermally optimal insulation distribution for underground structures.Energy and Buildings.2000,32(3),251-265.
    [19]水电站机电设计手册编写组.水电站机电设计手册[M].北京.水利电力出版社.1987.
    [20]《地下建筑暖通空调设计手册》编写组.地下建筑暖通空调设计手册[M].北京.中国建筑工业出版社.1983.
    [21]杨述仁.地下水电站厂房设计[M].北京.水利电力出版社.1993.
    [22]黄福其等.地下工程热工计算方法[M].北京.中国建筑工业出版社.1981.
    [23]胡凤山.空气流过地下水电站通风洞时降温计算[J].东北水利水电,1995,(11):6-9.
    [24]王丹宁.空气经地下风道降温的动态模拟与分析[D].哈尔滨:哈尔滨工业大学.2002.
    [25]王晓理.水电站坝体廊道引风降温效应模型实验[D].西安:西安建筑科技大学.2008.
    [26]赵鸿佐.地下建筑通风热计算公式[J].西安冶金建筑学院,西安冶金建筑学院技术情报资料第7303号,1973.
    [27]王海龙.刘小兵.水电站坝体廊道温降效应数值模拟[J].暖通空调,2006,36(9):20-23.
    [28]薛殿华.空气调节[M].北京.清华大学出版社.1991.
    [29]夏烨.大岗山水电站地下厂房热工计算及其节能研究[D].四川:西华大学.2006年.
    [30]张熙民.传热学[M].第四版.中国建筑工业出版社.2001.
    [31]中华人民共和国国家经济贸易委员会《.水力发电厂厂房采暖通风与空气调节设计规程》.中国电力出版社.2003.
    [32]林忠辉.中国陆地区域气象要素的空间差值[J].地理学报.2002,57(1):47-56.
    [33]唐云辉.基于邻域特征的温度缺失值的填补方法[J].中国农业气象.2008,29(4):454-457.
    [34]胡汉华.地下工程通风与空调[M].长沙:中南大学出版社.2005.
    [35]戴章艳.廊道通风换热过程分析—景洪、糯扎渡水电站坝体廊道通风理论与数值模拟研究[D].西安:西安建筑科技大学.2006.
    [36]裴芳.二滩水电站交通洞引风热湿交换特性现场测试[J].制冷与空调. 2009,23(1):24-27.
    [37]牟灵全.地道风降温计算与应用[M].北京.中国建筑工业出版社.1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700