预测地下水电站坝体廊道温降的通道单元数学模型及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的地下水电站建设无论是数量还是规模均为世界第一,主要分布在黄河水系和长江水系。在能源越来越匮乏的今天,利用土壤、岩石、水电站坝体中的廊道作为天然冷热源有很好的节能及环保意义。景洪水电站坝体不同高程设有灌浆、排水、观测、交通和检查等多条廊道,并设有专门竖井及相应的水平廊道,使各层廊道上下连通,形成一个巨大的通道网络,为上游副厂房利用坝体廊道通风提供了良好的条件,受到了广泛的关注。
     国内外对等截面直线地下廊道的换热效果进行了大量研究。但是,地下水电站廊道十分复杂,以景洪水电站为例,其坝体各类廊道纵横交错,帷幕灌浆、排水、检查、交通和观测廊道分别在不同的高程,每层之间专门设计了通风竖井相连接,造成各廊道通风换热的相互影响。前人进行了不同角度的研究,各文献提出的方法既有各自的优点,但也存在着一定的局限性。文献[1]的计算方法是按主要廊道的平均风量及平均廊道长度来计算廊道通风的温降,这种方法未考虑廊道结构的影响,且无法确定各廊道空气温度分布。由于坝体廊道结构复杂、体积庞大,若采用直接数值模拟(CFD)的方法,模型的建立复杂,对计算机CPU、内存容量的要求也非常高。本文在通风网络的基础上,提出了简化的通道单元数学模型,即先计算各廊道风量,用等效廊道长度的方法将通风网络和廊道通风温降的理论公式结合起来逐段计算各廊道温降,获得廊道群网络的温度分布。与FLUENT方法的计算结果进行对比,并以景洪水电站地下坝体廊道为例进行了分析,验证通道单元数学模型的可行性。这种方法既考虑了廊道网络结构对通风温降的影响,同时计算模型大为简化,为水电站通风空调设计方案及地下隧道温降风的利用提供参考。
China's underground hydropower station construction in terms of quantity and size were first in the world, mainly in the Yangtze River and Yellow River water system. Increasing energy shortage today, the use of soil, rock, the tunnel in Hydropower Dam as a natural cold and heat source is good energy-saving and environmental significance. JINGHONG Hydropower Dam filling with drainage, observation, inspection and traffic tunnel in different elevation. The tunnels in different elevation connect with specially designed ventilation shaft, forming a huge channel network. This provide good conditions for rational use of dam tunnel ventilation in upstream workshop. Thus subject to a wide range of concerns.
    A great deal of research for the effect of heat transfer in right straight underground tunnel at home and abroad. However, the tunnel in Hydropower Dam is complex. To the JINGHONG Hydropower Project as an example, it fill with drainage, observation, inspection and traffic tunnel in different elevation. The tunnels in different elevation connect with specially designed ventilation shaft. The result is that the tunnel ventilation heat transfer interaction. Predecessors of different angles of study, the literature of both methods with their respective advantages, but there are also some limitations. The literature [1] is calculated by the average major tunnel air volume and the average length of the tunnel to calculate tunnel ventilation temperature drop, This method does not take into tunnel structure, and impossible to determine the temperature distribution of air in tunnel. As the dam tunnel complex and large in size, the computer CPU and memory capacity requirements are very high for the use of numerical simulation (CFD). Study the flow temperature drop and distribution in tunnels of a dam based on the ventilation network theory, advance a simple unit-basis mathematical model. Compared with the results by FLUENT, and prove its efficiency through JINGHONG hydropower dam tunnels. It is useful for the air conditioning design of a hydropower station and exploitation of temperature drop flow in a underground tunnel.
引文
[1] 朱世琦,王代禹,习亚华.漫湾水电站坝体廊道温降效应研究.制冷,2000,19(4):1-6
    [2] 水利资源,中国水电工程顾问集团公司网站,http://www.checc.cn/zgsd/zgsd_zy.jsp
    [3] 水电开发,中国水电工程顾问集团公司网站,http://www.checc.cn/zgsd/zgsd_kf.jsp
    [4] M. De Paepe, A. Janssens: Thermo-hydraulic design of earth-air heat exchangers, Energy and Building, Vol. 35, 389-394, 2003
    [5] 戴章燕,廊道通风换热过程分析——景洪、糯扎渡水电站坝体廊道通风理论与数值模拟研究,西安建筑科技大学硕士研究生学位论文,2006
    [6] 温建军,坝体廊道换热效果研究及景洪水电站通风廊道网络节点法初探,西安建筑科技大学硕士研究生学位论文,2006
    [7] 付祥钊,水电站地下主厂房顶送风研究,暖通空调,1993(1)
    [8] 刘洪敏,李安桂,龙滩水电站空调系统方案分析比选,西安建筑科技大学硕士论文
    [9] Girja Sharan, Ratan Jadhav: Performance of Single Pass earth-tube Heat Exchanger: An Experimental Study, No 2003-01-07, IIMA Working Papers from Indian Institute of Management Ahmedabad, Research and Publication Department
    [10] Moncef Kartri, Jan F. Kreider: Analytical model for heat transfer in an underground air tunnel, Energy Convers. Mgmt, Vol. 37, 1561-1574, 1996
    [11] Jens Pfafferott: Evaluation of earth-to-air heat exchangers with a standardrized method to calculate energy efficiency, Energy and Building, Vol. 35, 971-983, 2003
    [12] G. Mihalakakou: On the heating potential of a single buried pipe using deterministic and intelligent techniques, Renewable Energy, Vol. 28, 971-927, 2003
    [13] 肖益民.地下洞室群自然通风网络计算机分析模型.暖通空调,2004(8):87-90
    [14] Natural ventilation in Building A DESIGN HANDBOOK[M] FRANCIS ALLARD 1998.
    [15] Chris J. Koinakis: Combined thermal and natural ventilation modeling for long-term energy assessment: validation with experimental measurements,Energy and Buildings 37 (2005) 311-323
    [16] J. Axley, Ph. D, R. Grot, Ph. D: The Coupled Airflow and Thermal Analysis Problem in Biulding Airflow System Simulation[J], Environment&Building 1989, vol6, P621-629
    [17] 王旭,基于网络分析的水电站地下洞室群通风系统设计方法研究,重庆大学硕士研究生学位论文,2004
    [18] 徐瑞龙,通风网路理论,煤炭工业出版社,1993
    [19] 王树禾,图论,北京,科学出版社,2004
    [20] 付祥钊,流体输配管网(第二版),中国建筑工业出版社,2005
    [21] 牟灵泉.地道风降温计算与应用.北京:中国建筑工业出版社,1982
    [22] 杨世铭 陶文铨,传热学(第三版),高等教育出版社,1998,P164
    [23] 水电站机电设计手册编写组,水电站机电设计手册——采暖通风与空调,水利电力出版社,1987,P94
    [24] 陆耀庆,实用供热空调设计手册,中国建筑工业出版社,1993,P20
    [25] 杰姆斯·苏赛克(James Sucec)[美],传热学,俞佐平等译,人民教育出版社,1981,P168
    [26] В.П.伊萨琴科[苏]等著,传热学,王丰等译,高等教育出版社,1987,P253
    [27] 《地下建筑暖通空调设计手册》编写组,地下建筑暖通空调设计手册,中国建筑工业出版社,1983
    [28] 景洪水电站廊道设计方案,国家电力公司昆明勘查设计研究院,2005.3
    [29] Fluent Inc.: FLUENT User Defined Function Manuual, Fluent Inc., 2003
    [30] Patankar, S. V.: Numerical Heat Transfer and Fluid Flow, New York, Hemisphere Publishing Co., 95-96, 1980
    [31] Launder, B. E., Spalding, D. B.: The Numerical Computation of Turbulent Flows, Comput. Methods in Applied Mechanics and Engineering, Vol. 3, 269-289, 1974
    [32] 陶文铨,数值传热学(第2版),西安交通大学出版社,2001。
    [33] Fluent Inc.: FLUENT User's Guide, Fluent Inc., 2003
    [34] 章熙民等.传热学(第三版).中国建筑工业出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700