银杏胚珠发育及胚乳细胞形成的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏(Ginkgo biloba L.)是世界珍贵的孑遗植物,具重要的研究与开发利用价值。银杏种实药膳兼用已发展成为我国重要的支柱产业。本研究选择银杏核用主栽品种‘佛指’为试材,对传粉期胚珠设置三种不同的处理:花粉授粉处理、套袋不授粉处理、GA_3处理。用整体解剖法观察了银杏胚乳游离核分裂、分布及数目的统计,用半薄切片、石蜡切片等技术和方法系统观察和分析了银杏胚珠发育和胚乳细胞形成的机制,一方面对于研究银杏在裸子植物系统分类中的地位具有极为重要的意义,另一方面对于研究银杏种实的调控提供理论依据和技术支撑。主要研究结果如下:
     1、授粉后21 d银杏胚珠发育正常,胚珠横径增长5.7282 mm,胚珠纵径增长6.5972 mm;未授粉处理后21 d银杏胚珠停止生长并脱落,胚珠横径仅增长0.1014 mm,胚珠纵径仅增长0.4011 mm;GA_3处理后21 d银杏胚珠停止生长并脱落,胚珠横径仅增长0.1025 mm,胚珠纵径仅增长0.3111 mm。
     2、授粉后20 d珠被最大厚度达958.8622μm,珠心顶端组织和海绵组织缓慢退化;未授粉和GA_3处理后20 d珠被组织开始解体,珠被最大厚度分别为375.3811μm、381.2312μm,珠心顶端组织和海绵组退化干瘪,且退化速度为:海绵组织>珠心顶端组织>珠被。
     3、授粉后5 d珠被外侧正在形成分泌腔;授粉后15 d珠被外侧细胞不断增大,珠被内侧薄壁细胞层数不断增加;授粉后20 d分泌腔分化成熟。未授粉处理和GA_3处理后15 d,珠被内外侧的细胞出现皱缩,至授粉后20 d,珠被内外侧开始解体,且珠被内侧解体早于珠被外侧。
     4、授粉后5 d,珠心顶端组织由大量排列紧密的薄壁细胞组成,细胞核小且位于细胞一端;授粉后10-15 d,薄壁细胞沿胚珠的纵轴方向伸长,细胞核变大且位于细胞的中央;授粉后20 d,珠心顶端细胞分化减慢,薄壁细胞细胞核变小。未授粉和GA_3处理后10 d,珠心组织开始退化,细胞壁皱缩呈不规则状,细胞核出现解体;处理后15-20 d,珠心组织干瘪,珠被内部形成大空腔。
     5、授粉后3-5 d海绵组织由5-6层细胞紧密排列而成,内层细胞染色较浅,外层细胞中细胞质浓,染色深;授粉后10 d,海绵组织的排列开始疏松,细胞呈近方形;授粉后15-20 d海绵组织开始退化;授粉后25 d海绵组织细胞退化为1-2层。未授粉和GA_3处理后3-6 d,海绵组织由5-6层细胞紧密排列而成;处理后10 d,海绵组织开始疏松;处理后15-17 d,海绵组织退化为1-2层;处理后20 d,海绵组织退化为一层死细胞。
     6、银杏胚乳发育的核期时间较长,约为授粉后5-30 d,游离核以有丝分裂为主,也伴随着无丝分裂的进行。以授粉后5-20 d游离核数目增加最快,以后游离核数目增加缓慢。同时,随着游离核的不断分裂,游离核膜状球体逐渐由椭圆形渐变为圆球形。授粉后5-7 d游离核呈球形,数目较少且多分布于细胞质中央;授粉后9-13 d游离核数目不断增加,同时游离核在膜上分布趋于均匀;授粉后15-20 d游离核数目增加且向四周移动。未授粉处理和GA_3处理的雌配子体游离核在处理后3-6 d游离核数目较少且多分布于细胞质中央;处理后10 d游离核数目不断增多;处理后15-17 d游离核停止分裂且原有分裂的游离核退化消失,仅剩下退化的海绵组织围成的空心。
     7、游离核持续分裂到约4000-5000个时即进入细胞化期,银杏胚乳细胞化的时间约为授粉后30-65 d。授粉后30 d,首先在核周围形成一层开放细胞,靠近中央大液泡一侧无细胞壁,周边的细胞向心游离生长;授粉后45 d,胚乳细胞层数由1层逐渐增加到2-3层,大部分的细胞处于空洞,很少观察到淀粉体的分布;授粉后55 d胚乳细胞层数快速增殖至6-7层;至授粉后60 d所占空腔被胚乳细胞完全填满,胚乳细胞停止分裂,细胞化完成。
     本研究结果对于指导银杏种实的优质生产提供理论依据和技术支撑。
Ginkgo biloba L., a lonely surviving precious plant in the world, has an important value of research and development. It’s seed stone has been used as a medicated alimentation and has been developed into an important industry in our country.‘G. Fozhi’, an important seed-purpose cultivar of Ginkgo, was used as a material to take the below treatments: pollination on ovules, unpollination and GA_3 treatment. The divisive method, distribution and the statistic of number of free nucleus of Ginkgo were accomplished by the method of total dissection. The mechanisms of ovule development and the formation of endosperm cells were systematically observed and analyzed by the techniques and methods of semi-thin section and paraffin section. On the one hand, it has great importance for the study of the position of Ginkgo biloba in the taxonomy of gymnosperms, on the other hand, it provides theory and technical support for the study of the regulation of ginkgo seed. The main results are briefly summarized as follows:
     1. Ovules of Ginkgo developed normally within 21 days after pollination. The diameter of ovule increased by 5.7282 mm, and its length increased by 6.5972 mm; But the unpollinated ones stopped growing and fell off by then, its diameter only increased by 0.1014 mm, the length of it increased by 0.1021 mm; The ovules which were treated by stopped growing and fell off by then either, the diameter of ovule increased by 0.1025 mm, its length increased by 0.3111 mm.
     2. After 25 days by pollination, the maximum thickness of the integuments of ovules reached 958.8622μm, the peak of nucellar tissue and spongy tissue degraded slowly. The integuments of ovules which were not pollinated or GA_3 treated began to disintegrate at 25 days after pollination, their respective maximum thickness is 375.3811μm and 381.2312μm. The peak of nucellar tissue and spongy tissue degraded and shriveled. The rates of degradation are: spongy tissue> peak of nucellar tissue > integument.
     3. After 5 days by pollination, the outer integument began to form secretory cavity; 15 days after pollination, the outer cells of the integument increased constantly, and the parenchyma cells inside the beads were growing; 20 days after the pollination, the secretory cavity was completely differentiated. 15 days after unpollination and GA_3 treatment, cells of the outer integument and inner integument began to shrink; And 20 days after the treatments, cells of the outer and inner integument began to dissolve, and the inner ones dissoved earlier than the outer ones.
     4. After 5 days by pollination, the peak of the nucellar tissue were made up of a large number of close parenchyma cells, the nucleus of the cell was small and it was located in one end; 10-15 days after pollination, the parenchyma cells elongated along the longitudinal axis of the nucleus, the nucleus of the cell became large and it was located in the center of the cell; 20 days after the pollination, the differentiation of the cells of the peak in nucellar tissue slowed down, the volume of the parenchyma cells no longer increased and the nucleus became smaller and smaller. After 10 days by unpollination and GA_3 treatment, the nucellar tissue began to degenerate, the cell wall shrinked and became irregular-shaped. The nucleus of the cell occurs disintegration. 10-15 days after the treatments, the remaining part of the nucellus shriveled and the inner integument formed large internal cavity.
     5. After 3-5 days by pollination, the spongy tissue was arranged in close by 5-6 layers, the inner cells stained shallowly, the cytoplasm of the outer cells was dense and stained deeply; 10 days after pollination, the array of the spongy tissue cells became loose and the shape was nearly square; 5 days later, the inner spongy tissue began to degenerate; 25 days after pollination, the spongy tissue degenerated to 1-2 layers. 3-6 days after unpollination and GA_3 treatment, the spongy tissue was arranged in close by 5-6 layers; 10 days after the treatments, the spongy tissue became loose; 15-17 days after the treatments, the spongy tissue degenerated to 1-2 layers; The spongy tissue degenerated to one layer of dead cell 20days after the treatments.
     6. The development of female gametophyte experienced free nucleus stages from 5 to 30 days after pollination. Free nucleus splitted mainly in mitosis, but also associated with the amitosis after pollination. The number of the free nucleus grew the fastest 5-20 days after pollination, later, the number of the free nucleus increased slowly. Meanwhile, with the constant division of free nucleus, membranous oval gradually changed from ball to spherical. 5-7 days after pollination, free nucleus became less; 9-13 days after pollination, the number of the free nucleus increased constantly, at the same time, the free nucleus distributed uniform on the membrane; 20 days after pollination, free nucleus were pushed around. 3-6 days after unpollination and GA_3 treatment, free nucleus were less and mostly distributed in the central of cytoplasm; 10 days after the treatments, the number of the free nucleus increased constantly; 5-7 days later, free nucleus stopped dividing and original divided free nucleus disintegrated and disappeared.
     7. When it had formed about 4,000-5,000 nucleus, it was cellularization period. This period was about 30-65 days after pollination. 30 days after pollination, one layer of opening cells was formed which had no cell wall at the side near central cavum in the periphery. 45 days after pollination, the endosperm cell layers gradually increased from 1 layer to 2-3 layers, most of the cells were in a hollow, the distribution of amyloid was rarely observed; After 55 days by pollination, endosperm cell layers increased to 6-7 layers quickly; Cells around grew centripetal and dissociative, till cavum was filled with endosperm cells and the cellularization was finished after 60 days by pollination.
     The results of the study provides theoretical basis and technical support for the guiding of the high-seed-quality production of Ginkgo biloba.
引文
[1]傅立国.中国大百科全书(生物学卷).北京:中国大百科全书出版社, 1992, 2071-2072
    [2]郑万均,傅立国.中国植物志(第七卷):裸子植物志.北京:科学出版社, 1978, 18-23
    [3]周志炎.中生代银杏类植物系统发育,分类和演化趋向.云南植物研究, 2003, 25: 377-396
    [4]郭善基.中国果树志(银杏卷).北京:中国林业出版社, 1993, 183-191
    [5]王琴,温其标.银杏种仁中活性成分及其药理作用的研究进展.现代食品科技, 2006, 87(22): 164-167
    [6]王莉.银杏种核贮藏处理对品质的影响研究.扬州:扬州大学, 2003: 28-31
    [7]邢世岩,田常杰,王从帮等.国内外银杏核用栽培及利用现状.世界林业研究, 1998, 11(2): 32-37
    [8]王建,王九龄,辛学兵等.银杏种子生长特性及其生理变化的研究.应用生态学报, 2000, 11(4): 507-512
    [9]陈鹏主编.银杏产业的机遇与挑战.东南大学出版社, 2001
    [10] Boralle N. Ginkgo biloba: a review of its chemical composition:In ginkgo chemistry, biology, pharmacology and clinical perspectives. Barcelona. Vol, 3, 1998, 126-138
    [11]张卫明,吴国荣,赵伯涛等.银杏种仁保健功能的研究.南京师大学报, 1998, (3): 72-75
    [12]王伏雄,陈祖铿.裸子植物系统发育的几个问题.植物学通报, 1983, 1: 1-4
    [13]邢世岩,孙霞.银杏胚胎发育研究述评——兼论银杏系统发育.武汉植物学研究, 1996, 14(3): 279-286
    [14]李正理.最近十年(1949-1959)关于银杏的形态解剖学及细胞学研究.植物学报, 1959, 8: 262-270
    [15]曹福亮.中国银杏.南京:江苏科学技术出版社, 2002, 21-35
    [16]陈鹏主编.银杏产业的机遇与挑战.东南大学出版社, 2001
    [17]陈鹏.银杏的综合开发利用.江苏林业科技, 1992
    [18]陈鹏.经济全球化中银杏发展的战略与对策.全国第九次银杏学术研讨会论文集.东南大学出版社, 2001
    [19] Peter D T. The evolution,ecology and cultivation of Ginkgo biloba in BeekT.A.van,Ginkgo biloba.Harwood Academic Publishers, Amsterdam,Netherlands, 2000, 7-23
    [20]陈鹏.目前国内外银杏研究进展概况.浙江林业科技, 1991, 11(4): 70-75
    [21]何凤仁.银杏的栽培.江苏科技出版社, 1989
    [22]陈鹏,何凤仁,褚生华等.银杏品种选优及其结构调整.全国第八次银杏学术研讨会专题报告.全国第八次银杏学术研讨会论文集.武汉:湖北科学技术出版社, 2000
    [23]陈鹏.银杏集约化栽培及其产业化技术开发的研究进展.全国第十次银杏学术研讨会论文集.北京:中国农业科学技术出版社, 2002
    [24]陈鹏,何凤仁,钱伯林等.中国银杏的种核类型及其特征.林业科学, 2004, 40(3): 66-40
    [25]陈鹏,何凤仁,褚生华等.银杏种实丰产单株选优研究.园艺学报, 1997, 24(2): 205-207
    [26] Chen P, He F R, Yu B Y. Seed stone shape and the relative copmponent in kernel of Ginkgo biloba, Forestry Studies in China, 1999, 1(1): 42-47
    [27] Rebers M, Kaneta T, Kawaide H. Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Acta Botanica Sinica, 1999, 17(3): 241-250
    [28] Vivian-Smith A, Luo M, Chaudhury A. Fruit development is actively.restricted in the absence of fertilization in Arabidopsis. Acta Botanica Sinica, 2001, 128(12): 2321-2331
    [29] Gillaspy G, Ben-David H, and Gruissem W. Fruits: a developmental perspective. Plant Cell, 1993, 5: 1439-1443
    [30]吕忠恕,王保民,张承烈.开花前后子房中调节物质的变化及其与结果及单性结果的关系.植物生理学报, 1979, 5(3): 253-260
    [31]姚敦义,张惠娟,王静之.植物形态发生学.北京:高等教育出版社, 1994
    [32]孙敏.被子植物生殖生物学研究新进展.科学技术出版社, 1990, (2): 23-25.
    [33]胡适宜,杨弘远.被子植物受精生物学.北京:科学出版社, 2002
    [34]胡适宜,杨弘远.植物科学.北京:中国林业出版社, 1994
    [35] Erhard K, Horst L. In Vitro Fertilization with Isolated, Single Gametes Resultsin Zygotic Embryogenesis and Fertile Maize Plants. The Plant Cell, 1993, 5: 739-746
    [36] Erhard K, Horst L. Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes . The Plant Journal, 1995, 8(1): 9-23
    [37] Erhard K, Petravon W, Hartmut Q, Horst L. Endosperm Development after Fusion of Isolated, Single Maize Sperm and Central Cells in Vitro. The Plant Cell, 1998, 10: 511-524
    [38] Worrall D. Premature Dissolution of the Microsporocyte Callow Wall Causes Male Sterility in Transgenic Tobacco. The Plant Ce11, 1992, 4(7): 759-771
    [39] Label P A. Quantization and GC-MS identification of abscisic acid in stigma,ovary and pedicel of pollinated poplar flowers(Populus nigra L.). Tree Physiology, 1994, 14(5): 521-530
    [40] Femandez, Maria C, Rodriguez-Garcia. Pollen grain apertures in Oleaeuropaea L, (Oleaceae). Review of Palaeobotany and Palynology, 1995, 85(1-2): 99-109
    [41] Zinkl G M. Pollen-stigma adhesion in Arabido Psis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development, 1999, 126(23): 5431-5440
    [42] Kasha K J. Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley Hordeum vulgare L. Journal of Experimental Botany, 2001, 52(6): 1227-1238
    [43] Barinova I. Antirrhinum majus microsopre maturation and transient transformation in vitro. Journal of Experimental Botany, 2002, 53(371): 1119-1129
    [44] Zheng M Y. The effect of ovary-conditioned medium on microspore embryogenesis in common wheat (Tritlcum aestivum L.). Plant Cell Reports, 2002, 20(9): 802-807
    [45] Dias J S, Correia M C. Effect of medium renovation and incubation temperature regimes on trenched cabbage microspore culture embryogenesis. Scientia Horticulturae, 2002, 93(3-4): 205-214
    [46]许智宏.植物发育与生殖的研究进展和展望.植物学报, 1999, 41(9): 909-920.
    [47]胡适宜.被子植物双受精发现100周年:回顾与展望.植物学报, 1998, 40(1): 1-13
    [48]中国植物学会编.中国植物学史.北京:科学出版社, 1994
    [49]胡适宜.小麦受精过程的形态学与细胞学的观察.植物学报, 1962, 10: 299-308.
    [50]何孟元.大豆胚胎学的研究.植物学报, 1963, 11: 318-328.
    [51]胡适宜,申家恒.棉花受精过程的研究.北京大学学报(自然科学版), 1980, 1: 75-87
    [52]杨弘远,周嫦.被子植物离体受精与合子培养研究进展.植物学报, 1998, 40(2): 95-101
    [53] Hu S Y. Development of Plant Embryology in China. Acta Botanica Sinica, 2002, 44(9): 1022-1042
    [54]杨小华,陆厚朴.中国植物胚胎学研究概述——基于1991-1998年相关文献的统计分析.广西师范大学学报(自然科学版), 1999, 17(2): 95-98
    [55]马虹,屠骊珠,王迎春等.濒危植物——半日花(Helianthemum songaricum)的双受精作用及胚和胚乳发育.内蒙古大学学报(自然科学版), 1999, 30(1): 91-95
    [56]马虹,屠骊珠.杂交燕麦(Avena nuda X Avena Sativa)的胚胎学研究.蒙古大学学报(自然科学版), 1999, 30(1): 85-90
    [57]杨琴军,黄燕文,李和平.桂花受精作用的研究.华中农业大学学报, 2001, 20(4): 382-390
    [58]罗丽娟,邱德勃,林丹等.西卡柱花草受精作用和胚及胚乳发育的研究.热带作物学报, 2001, 22(2): 30-37
    [59]李兰芝,王哲魁,邱德勃等.橡胶树双受精作用的研究.热带作物学报, 1997, 18(1): 1-9
    [60]潘跃芝,龚询.濒危植物红花木莲大孢子发生和雌配子体发育的研究.西北植物学报, 2002, 22(5): 1209-1214
    [61]杨春雪,申家恒.星星草大、小孢子发生与雌、雄配子体发育的观察.武汉植物学研究, 2003, 21(6): 464-470.
    [62]王庆亚,李扬汉.绞股蓝大小孢子发生和雌雄配子体的发育.南京农业大学学报, 2002, 25(3): 17-21
    [63]庄东红,石田雅士.柿树减数分裂和小孢子形成过程的观察.武汉植物学研究, 2000, 18(5): 356-358
    [64]杨杜英,马绍宾.药用植物粉叶小檗花药发育、小孢子发生和雄配子体形成.云南大学学报(自然科学版), 2003, 25(增刊): 137-141
    [65]孙建云,李吉宁,陈银平.八角枫大孢子发生和雌配子体发育.西北植物学报, 2000, 20(3): 472-475
    [66]潘跃芝,龚询,梁汉兴.濒危植物香木莲的胚胎学研究.武汉植物学研究, 2003, 21(1): 1-8
    [67]金银根.植物学.科学出版社, 2006, 228-234
    [68] Dafni A. Pollination Ecology. Oxford University Press, New York, 1992, 1: 203-212
    [69] Huang S Q, Guo Y H. New advances in pollination biology and the studies in China. Chinese Science Bulletin, 2000, 45: 1441-1447
    [70] Owens J N, Takaso T, Runions C J. Pollination in conifers. Trends in Plant Science, 1998, 12: 478-485
    [71] Villar M, Knox R B, Dumas C. Effective pollination period and nature of pollen-collecting apparatus in the gymnosperm, Laris leptolepis. Annals of Botany, 1984, 53: 279-284
    [72] Xing S P, Chen Z K, Hu Y X. Ovule development, formation of pollination drop and pollination process in Taxus chinensis(Taxaceae). Acta Botanica Sinica, 2000, 42(2): 126-132
    [73] Anderson E D, Owens J N. Microsporogenesis, pollination, pollen germination and male gametophyte development in Taxus brevifolia. Annals of Botany, 2000, 86: 1033-1042
    [74] Xing S P, Zhang Q, Hu Y X, et al. The mechanism of pollination in Platycladus orientalis and Thuja occidentalis (Cupressaceae). Acta Botanica Sinica, 1999, 41(2): 130-132
    [75] Mugnaini S, Nepi M, Guarnieri M. Pollination drop in Juniperus communis: Response to deposited material. Annals of Botany, 2007, 100(7): 1475-1481
    [76] Cresswell J E, Henning K, Pennel C. Conifer ovulate cones accumulate pollen principally by simple impaction. Proceedings of National Academy of Sciences of USA, 2007, 104: 18141-18144
    [77] Rebers M, Kaneta T, Kawaide H. Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Acta Botanica Sinica, 1999, 17(3): 241-250
    [78] Smith A, Luo M, Chaudhury A. Fruit development is actively.restricted in the absence of fertilization in Arabidopsis. Acta Botanica Sinica, 2001, 128(12): 2321-2331
    [79] Gillaspy G, Ben-David H, Gruissem W. Fruits: a developmental perspective. Plant Cell, 1993, 5: 1445-1451
    [80]王小蓉,邓群仙,雷建军等.七个南方梨品种授粉试验初报.中国南方果树, 2004, 33(1): 44-45
    [81]孟玉平,曹秋芬,横田清.两种疏花剂对苹果授粉受精过程的影响.园艺学报, 2003, 30(4): 384-388
    [82]王新建,吴翠云,温丽.不同品种授粉对新梨7号果实的影响.北方园艺, 2003, (4): 60-61
    [83]张绍铃,徐义流,陈迪新等.梨树授粉不结实的原因及授粉品种的选择.中国南方果树, 2002, 31(6): 52-54
    [84]金英善,曲柏宏,曹后男等.苹果梨树最佳授粉受精时间观测.北方园艺, 2001, 139(4): 18-19
    [85]李秀菊,范晖,刘用生等.授粉处理对苹果幼果内源激素与坐果的影响.果树科学, 1997, 14(4): 211-215
    [86]方金豹,陈锦永,张委远.授粉和CPPU对称猴桃内激素水平及果实发育的影响.果树学报, 2000, 17(3): 192-196
    [87]孙涌栋,张兴国,侯瑞贤等.授粉后黄瓜果实膨大相关基因的鉴别.植物生理与分子生物学学报, 2005, 31(4): 403-408
    [88]杜桂森.苏铁类的生殖周期.生物学通报, 1997, 11: 6-9
    [89]曹玉芳,许方,姚敦义.松杉类植物雌雄配子体的发育与胚胎发生.莱阳农学院学报, 1995, 12(3): 206-212
    [90]李莹,王伏雄,陈祖铿.篦子三尖杉的胚胎学研究及其系统位置的探讨.植物分类学报, 1986, 24(6): 411-422
    [91]陈祖铿,王伏雄.穗花杉传粉和受精作用的研究.植物学报, 1985, 27(3): 239-245
    [92]中国科学院植物研究所形态细胞研究室比较形态组.松树形态结构与发育.科学出版社. 1978, 92-119
    [93]陈祖铿,王伏雄.白皮松受精作用的研究.植物学报, 1982, 24(1): 10-16
    [94]贾桂霞,李凤兰,沈熙环.华北落叶松雌雄配子体的形成及胚胎发育.北京林业大学学报, 1994, 16(2): 10-14
    [95]孙儒泳.生活史对策.生物学通报. 1997, 2(5):2-4
    [96]李博.生态学.北京:高等教育出版社. 2000, 77-82
    [97]祖元刚,王文杰,杨逢建等.植物生活史型多样性及其动态分析.生态学报, 2002, 22(11): 1811-1818
    [98]史继孔,樊卫国,文晓鹏.银杏雌花芽形态分化的研究.园艺学报, 1998, 25(1): 33-36
    [99]张万萍,史继孔,樊卫国等.银杏雄花芽的形态分化.园艺学报, 2001, 28(3): 255-258
    [100] Olsen O A. Endosperm development: Cellularization and cell fate specification. Phytomorphology. Acta Botanica Sinica, 2001, 52: 233-267
    [101]高新起,马文祥.胚乳细胞壁的建成及其与胞质微管的关系.植物研究, 2003, 23(4): 419-423
    [102] Otegui M, Staehelin L A. Syncytial– type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell, 2000, 12: 933-947
    [103]钱伯林,程水源.银杏种实生长过程细胞发育的研究.湖北农学院学报,1995, 5(3): 214-215
    [104]刑世岩,有祥亮,李可贵等.银杏雄株开花生物学特性的研究.林业科学, 1998, 34(3): 1-58
    [105]曹福亮.银杏培育机理及综合开发利用.北京:中国林业出版社. 2000
    [106]刑世岩.叶用核用银杏丰产栽培.北京:中国林业出版社, 1997
    [107]门秀元.银杏丰产栽培技术.济南:山东科学技术出版社, 1998
    [108]于新,冯彤,庞杰等.不同时期银杏种子成分及呼吸变化.仲恺农业技术学院学报, 1998, 11(2): 19-23
    [109]王建,王九龄,魏刚等.银杏种子生长、脱落与内源激素含量变化的关系.林业科学研究. 2001, 14(1): 106-109
    [110]邢世岩.银杏丰产栽培.济南:济南出版社, 1993, 86-113
    [111]王永平,王莉,陈鹏等.银杏种实发育过程中中种皮的解剖与超微结构观察.植物生理学通讯, 2006, 42(6): 1086-1090
    [112]于维华,陈鹏等.银杏种实发育的解剖和超微结构观察.扬州大学学报(农业与生命科学版), 2004, 25(2): 72-75
    [113]凌裕平,周卫东,陈鹏.银杏种壳超微结构的研究.扬州大学学报, 2002, 3(1): 76-78
    [114] Greene D W. Gibberellins A4+7 lifluence fruit set, fruit quality and return bloom of apples. Amer Society for Horticultural Science, 1989, 114: 619-925
    [115]钟晓红,马定渭,黄远飞.草莓果实发育过程中内源激素水平的变化.江西农业大学学报, 2004, 26(1): 36-42
    [116]樊卫国,安华明,刘国琴等.刺梨果实与种子内源激素含量变化及其与果实发育的关系.中国农业科学, 2004, 37(5): 728-733
    [117]陶汉之,高丽萍.猕猴桃果实发育中内源激素水平变化的研究.园艺学报, 1994, 21(1): 35-40
    [118]周志翔,章文才,夏仁学等.板栗果实发育与子房内源激素含量的关系研究.中国农业科学, 2000, 33(3): 36-42
    [119]蔺经,盛宝龙,常有宏.赤霉素和细胞分裂素类植物生长调节剂在苹果生产中的应用.北方果树, 2000, (1): 1-3
    [120]胥洱,王大元,李建之. 6-BA和GA控制华盛顿脐橙生理落果的研究.园艺学报, 1982, 9(2): 5-10
    [121]魏书,谢东,盛宝龙等.几种生理活性制剂对金晖桃坐果及品质的影响.江苏农业科学, 1994, (4): 54-55
    [122]马锋旺,韩启成,王志军.几种化学物质对杏树坐果的影响.果树科学, 1994, 11(1): 43-45
    [123]刘丙花,姜远茂,彭福田.甜樱桃果实发育过程中激素含量的变化.园艺学报, 2007, 34(6): 1535-1538
    [124]田莉莉,方金豹.甜樱桃开花坐果观察初报.落叶果树, 2001, (6): 10-12
    [125]彭良志,胥洱. BA和GA3对华盛顿脐橙幼果14C-同化物调配的影响.园艺学报, 1990, 17(2): 110-116
    [126]黄卫东,张平,李文清. 6-BA对葡萄果实生长及碳、氮同化物运输的影响.园艺学报, 2002, 29(4): 303-306
    [127]黄卫东,张晓明.苹果短果枝叶片数量对坐果的影响及机理探讨.中国农业大学学报, 2000, 5(3): 68-72
    [128]张上隆.柑桔受粉处理和单性结实子房(幼果)内源IAA、ABA和ZT含量的变化.园艺学报, 1994, 21(2): 117-123
    [129]曾骧.果树生理学.北京:北京农业大学出版社, 1992, 222-234
    [130]施婷婷,陈文婷,刘英武.银杏种实生长发育过程中内源激素含量的变化.种子科技, 2007, (3): 39-41
    [131] Crane J C. The role of hormones in fruit set and development. Amer Society for Horticultural Science, 1969, 4: 108-111
    [132] Gustafson F G. Auxin distribution in fruits and its significance in fruit development. American Journal of Botany, 1939, 26: 189-194
    [133] Nitsch J P. Plant hormones in the development of fruits. Quarterly Review Biology, 1952, 27: 33-57
    [134] Luckwill L C. Gibberellins and other growth hormones in apple seeds. Journal Amer Society for Horticultural Science, 1969, 44: 413-424
    [135]李曙轩.植物生长调节剂与农业生产.北京:科学出版社, 1989, 140-151
    [136]王伏雄,陈祖铿.银杏胚胎发育的研究——兼论银杏目的亲缘关系.植物学报, 1983, 25(3): 199-207
    [137]顾蕴洁,王忠,陈刚.小麦胚乳游离核的分裂及其分裂周期的观察.植物生理学通讯, 1995, 31(1): 52-55
    [138]郭文善,施劲松,周振兴等.小麦胚乳细胞简易计数方法.江苏农学院学报, 1995, 17: 66-67
    [139]陈绍荣,杨弘远.花粉-雌蕊的相互作用机制.植物生理学通讯, 2000, 36(4): 356-361
    [140] Fredrikson M. The development of the female gametophyte of Epipactis (Orchidaceae) and its inference for reproductive ecology. American Journal of Botany, 1992, 79: 61-68
    [141]邓华,贾桂霞.裸子植物有性生殖过程中的细胞程序化死亡.西南林学院学报, 2004, 24(4): 62-67
    [142]吴向阳,仰榴青,陈钧等.银杏外种皮综合利用的研究现状与发展.农业机械学报, 2003, 34(6): 164-166
    [143]王莉,王永平,汪琼等.银杏胚珠发育进程的解剖学研究.西北植物学报, 2007, 27(7): 1349-1356
    [144] Otegui M, Staehelin L A. Syncytial– type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell, 2000, 12: 933-947
    [145]于丽萍.银杏人工授粉的几种方法.湖南林业, 2007, 2: 25
    [146] Marcus M, Thomas S. Morphogenesis of leaves and cones of male short-shoots of GinkgobilobaL.Flora, 2004, 199: 437-452
    [147]符平均,魏远新,赵全申.银杏喷雾法人工授粉技术.现代农业科技, 2007, 22: 58
    [148]徐建峰,沈敏东.银杏人工授粉关键技术.上海农业科技, 2007, 1: 67
    [149]宋堆连.银杏四种授粉方法比较试验.中国南方果树, 2005, 34(1): 49
    [150]李玉洪,银杏的人工辅助授粉技术.广西园艺, 2004, 15(5): 49-50
    [151]王近卫,堀内昭作.授粉处理对葡萄内源赤霉素的影响.植物生理学报, 1991, 17(4): 411-414
    [152] Reid M S. Ethylene in plant growth,development and senescence in: Davies P J.Plant growth and development. Martinus Nijhoff Publishers, 1987, 257-279
    [153]贺普超.葡萄学.北京:中国农业出版社, 1999, 111-112
    [154] Hedden P, Kamiya Y. Gibberllin Biosynthesis:Enzymes,genes and their regulation. ReviewPlant Physiology Plant Molecules Biology, 1997, 48: 431-460
    [155]刘捷,杨丽娜,陶建敏. GA3与CPPU对大濑户葡萄无核化处理果实发育的影响.中外葡萄与葡萄酒, 2007, 5: 11-15
    [156]吴伟民,钱亚明,赵密珍.赤霉素处理对魏可葡萄果穗长度和坐果的影响.江苏农业科学, 2006, 6: 257-258
    [157]刘会宁,肖锋利.赤霉素对早紫葡萄无核及果实品质的效应.长江大学学报(自科版), 2006, 12(3): 139-141
    [158]胡友军.赤霉素对8611葡萄果粒的影响.安徽农业技术师范学院学报, 2000, 14(4): 43-44
    [159]郝庆,杨波,车玉红.硼和赤霉素对提高色买提杏坐果率和果实品质的初步研究.新疆农业科学, 2007, 44(5): 571-574
    [160]王景安,梁晓华,赵春明.赤霉素对杏树生长及产量的影响.河北农业技术师范学院学报, 1995, 9(2): 73-75
    [161]党云萍,王延峰,常海飞.赤霉素对西农早蜜桃果实发育的影响.延安大学学报(自然科学版), 2002, 21(4): 39-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700