预应力钢束张拉顺序对曲线箱梁内力与变形的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲线梁桥是现代道路交通系统中最重要的桥型之一,随着我国基础设施建设大规模展开,越来越多的曲线梁桥被应用于城市高架桥和公路立交桥工程中。国内外学者对曲线梁桥的计算理论作了大量研究工作,计算机技术应用的普及,使得在结构计算中考虑材料非线性和几何非线性的影响成为可能。曲线梁预应力钢束为三维空间曲线,预应力的作用,使曲线梁处于空间受力状态,“弯-扭”耦合效应进一步加强。为了考察各预应力钢束作用下,曲线梁桥的支座反力分布规律与变形情况,为曲线梁桥预应力的设计和张拉施工提供技术参考,本论文以重庆融侨大道螺旋桥工程为依托,分析了预应力钢束的应力损失,并利用有限元软件ANSYS,对不同张拉方式进行数值模拟,比较内外侧支座反力与梁体位移的变化,另外,通过建立不同曲率半径的曲线箱梁桥模型,探究了半径对支反力分布和位移的影响。通过进行有限元模型计算,得出如下结论:
     ①在自重作用下,连续曲线箱梁桥起终点处支座将产生横桥向支反力,内外侧支座的竖向反力不相等,起终点支座承受的竖向反力小于中间各墩。张拉预应力钢束将引起较大的横桥向、顺桥向支反力,内外侧支座竖向反力差值也将大幅度增加。
     ②张拉单侧腹板中的预应力钢束将引起的支座反力分布严重不均,对称张拉、交错张拉预应力钢束引起的支反力分布较合理,有利于对预应力钢束张拉施工进行控制。内侧支座利用率不高,中间墩支座横向约束对桥梁的径向变形影响显著,边墩支座承受大部分横桥向反力。
     ③连续曲线箱梁桥在自重和预应力作用下,将发生竖向、径向及顺桥向变形,竖向变形为主要变形,箱梁截面发生扭转和畸变,梁体向外侧翻。钢束张拉方式对变形影响较大,对称张拉和交错张拉时,径向变形较小,而当仅张拉单侧钢束时,梁体将发生较大的向内或向外径向位移。
     ④横桥向、顺桥向支反力与桥梁曲率半径不成单调性变化规律,当曲率半径R = 150m时,横桥向支反力值达到峰值,内外侧支座竖向反力差随曲率半径增大而减小,当R > 150m时,差值曲线渐趋于水平,箱梁竖向位移随曲率半径增大而增大,当R > 200m时,这种影响变得不明显,箱梁横截面扭转和畸变变形随曲率半径增大而显著减弱。在进行曲线梁桥设计时,有条件的情况宜避免将半径设计在150 ~200m范围内。
The curved beam bridge is one of the most important bridge forms in model road traffic system, with China's large-scale infrastructure construction, more and more curved girder Bridges are applied to fly-over bridge in city and highway grade-separated interchange. Domestic and foreign scholars have researched a lot on computational theories about curved beam Bridges. And the popularization of computer technology's application makes it possible to consider the influence of material nonlinearity and geometric nonlinearity in structural calculation. The prestressed steel is three-dimensional space curves, and the effect of prestressing force makes curved beam in a state of spatial stress which enhances the "bend - twist" coupling effect. In order to investigate the reaction regulation and deformation of curved beam under the effect of prestressing force, and provide technology references for curved beam prestress force's design and construction, this paper rely on Chongqing Rong qiao avenue spiral bridge and has analyzed the loss of prestressing force. Meanwhile, the finite element software ANSYS has been applied to do numerical simulation for different tension ways. Inner and outer reaction and beam position changes also have been compared. After these, different curved girder bridges models in curvature radius were established to explore the influence radius gave to reaction and deformation changes. Through calculating finite element models, we get some conclusions below.
     ①Under the dead weight, bearings will be counterproductive to the beginning and end of continuous curved girder bridge, the inner and outer vertical reaction is not equal, and which in the beginning and end is less than that in each pier in the middle. Prestressed steels will cause larger reaction in transverse and longitudinal, and longitudinal counterforce D-value inside and outside will increase greatly.
     ②Prestressed steels in unilateral webs will cause serious uneven distribution of reaction, and whose distribution in symmetrical tension prestressed steels and staggered tension prestressed steels is reasonable, it’s conducive to control the construction of prestressed steels. The utilization rate of medial bearings is not high, and the middle piers’transverse constraint affects bridge’s deformation significantly. Side piers mostly bear transverse counterforce.
     ③The continuous curved girder bridge will happen transverse, vertical and radial deformation under gravity and prestressing force. And vertical deformation as the main deformation, box girder section will happen torsion and distortion, beam body will turn outside. Steel beam tension will greatly affect deformation, and less vertical deformation in symmetrical tension and staggered tension. When steel beam tense from unilateral side, large inner or outer displacement will occur on beam body.
     ④Transverse and vertical reactions don’t have monotonicity change rule with bridge curvature radius. When curvature radius R=150m, the transverse reaction reaches to peak. The inner and outer vertical reactions decrease with the increase of curvature radius; When R>200m, this influence is not obvious, box girder cross-sectional torsion and distortion deformation weaken obviously with the increase of curvature radius. Radius should be within 150-200m during designing curved girder bridges when the constructional condition is allowed.
引文
[1]邹容光,夏淦.混凝土弯梁桥[M].北京:人民交通出版社.1991.
    [2]刘柱国.曲线梁桥平面位移机理分析[J].交替科技,2007,222(3):20-24.
    [3]陈世宏.曲线梁桥后张预应力施工的质量控制[J].湖南交通科技,2005,31(3):65-67.
    [4]王新定,丁汉闪,吉林,戴航.混凝土连续弯梁桥侧向位移分析及对策研究[J].交通科技,2006,23(11):64-67.
    [5]谭世霖.弯梁桥梁体偏移成因分析与处治[J].水运工程,2008,421(11):20-24.
    [6]刘淑娟.曲线梁桥设计方法探讨[J].河南建材,2009,3(3):148-149.
    [7]王海丰.预应力曲线梁受力特点及设计中应注意的问题[J].北方交通,2009,3(3):86-88.
    [8]程进,沈旭东,孙斌,肖汝诚.基于ANSYS的预应力混凝土曲线梁桥三维施工仿真分析[J].公路交通科技,2007,24(4):108-112.
    [9]熊刚,杨立波.基于ANSYS二次开发的实体单元模型的内力图实现[J].华东交通大学学报,2007,25(4):106-108.
    [10]王新定,丁汉山.混凝土连续弯梁桥的侧向位移分析及对策研究[J].公路交通科技.2006年11月.
    [11]金菊,王淑涛.中小跨径曲线梁桥半径变化对结构变形的影响分析[J].河北工业大学学报,2007,36(4):110-113.
    [12]Vlasov V Z. Thin-walled Elastic Beam .National Science Foundation .Washington D.C,1967
    [13]Heins C P .Bending and torsional design in structural members.lexington books.lexington.massachusetts,1975.
    [14]H. Nilson .Design of Presfressed Concrete.1978.
    [15]Vebo A. Ghali A .Moment-curvature relation of reinforced concrete slabs.Journal of Structure Engineering, ACSE, 1997,103(3):515-531.
    [16]游金兰.预应力混凝土曲线箱梁扭转性能研究[D].长安大学.2008.
    [17]李国豪.桥梁与结构理论研究[M].上海:上海科学技术文献出版社,1983
    [18]李明昭.断面可变形的矩形箱式薄壁圆弧曲杆静力分析法[J].同济大学学报,1982(2):39-52.
    [19]孙广华.曲线梁桥计算[M].北京:人民交通出版社,1995.
    [20]孙全胜,王学松.连续箱梁斜弯桥有机玻璃模型静力试验和分析[J].东北公路,2002,25(4):60-61.
    [21]刘志文.曲线梁桥结构分析、模型试验及程序研制[D].西安:长安大学,2001.
    [22]李建慧,宋徐明.铁路独柱支承弯梁桥扭矩调整[J].华东交通大学学报,2003,20(2):25-28.
    [23]杨冰.预应力混凝土和钢筋混凝土曲线箱梁的非线性有限元分析和试验[D].上海:同济大学,1987.
    [24]李乔.薄壁曲箱梁的空间分析理论[D].成都:西南交通大学,1988.
    [25]Dean William Van Landuyt.The Effect of Duct Arrangement on Breakout of Internal Post-tensioning Tendons in Horizontally Curved Concrete Box Girder Webs[D].University of Texas at Austin,1991.
    [26]姚玲森.曲线梁[M].北京:人民交通出版社.1986.
    [27]黄东.曲线钢箱梁的有限元仿真分析研究[D].成都:西南交通大学,2005.
    [28]吴斌.弯梁桥钢束张拉过程预应力崩塌效应研究[D].武汉:武汉理工大学,2006.
    [29]谢殆权,丁皓江.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社.2004.
    [30]邱波.曲线梁桥的非线性理论研究及其应用[D].长沙:湖南大学,2003.
    [31]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [32]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社.1984.
    [33]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社.1996.
    [34]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社.2002.
    [35]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社.2006.
    [36]解德.断裂力学中的数值计算方法及工程应用[M].北京:科学出版社.2009.
    [37]叶见曙,李国平.结构设计原理[M].北京:人民交通出版社.2004.
    [38]陈惠玲.预应力混凝土工程[M].北京:中国建筑工业出版社.1989.
    [39]F.莱昂哈特,程积高等.预应力混凝土[M].北京:水利水电出版社.1989.
    [40]孙训芳,方孝淑.材料力学[M].北京:高等教育出版社.2002.
    [41]梁会.曲线梁桥空间预应力分析理论与应用研究[D].武汉:武汉理工大学,2005.
    [42]陆启铿.微分几何学及其在物理学中的应用[M].北京:科学出版社,1982.
    [43]中华人民共和国交通部标准公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62-2004)[S].北京:中华人民共和国交通部,2004.
    [44]博弈创作室.APDL参数化有限元分析技术及应用[M].水利水电出版社,2003.
    [45]王新敏. ANSYS工程结构数值分析[M].北京:人民交通出版社.2008.
    [46]陈翰新.融侨大道螺旋桥施工图[Z].重庆:重庆市设计院.2002.
    [47]蒋季丰.预应力张拉工艺[M].北京:中国建筑工业出版社.1982
    [48]项海帆,姚玲森.高等桥梁结构理论[M].北京:人民交通出版社.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700