混合驱动水下滑翔器系统设计与性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人水下滑翔器(Autonomous Underwater Glider,AUG)是一种利用浮力驱动的新型无人水下航行器,具有续航能力大、噪音小、成本低等优点,航程在几千公里量级上;然而,采用浮力驱动的水下滑翔器只能以锯齿形轨迹航行,且航速较慢。水下自航行器(Autonomous Underwater Vehicle,AUV)一般采用螺旋桨驱动,具有较高的机动性和较快的航速;但AUV航程一般很短,在几百公里量级上。本文将AUG和AUV两者优点集于一身,开发了一种具备浮力驱动和螺旋桨驱动系统的混合驱动水下滑翔器海燕(PETREL)。
     针对开发过程遇到的关键问题,研究了混合驱动水下滑翔器机械系统方案,然后对整体系统进行了详细设计,采用计算流体力学(Computational Fluid Dynamics,CFD)方法分析了主要水动力部件的水动力特性;建立了其一般运动学方程,在此基础上研究了纵平面内的平衡特性和运动稳定性。水域航行试验实现了预期设计功能,验证了本文分析和仿真的正确性。本文主要研究成果和创新点为:
     1.研究和设计了混合驱动水下滑翔器样机PETREL。实现了同一航行器具有浮力驱动下滑翔和螺旋桨驱动下直线航行以及机动航行功能的目标。
     2.建立了混合驱动水下滑翔器的动力学模型,并采用CFD方法获取了表征混合驱动水下滑翔器特征的水动力参数。采用Matlab编写了可视化的动力学仿真程序,为航行器参数评定和设计提供了方便。
     3.采用CFD方法对PETREL主要部件的水动力特性进行了分析和优化设计。分析结果为机翼、尾舵设计提供了水动力学依据;给出了螺旋桨导流罩和整体流场的水动力特性。
     4.提出了水下滑翔器浮力驱动效率以及滑翔航行效率的概念,并对其进行了较为详细的分析计算。揭示了影响驱力驱动效率以及滑翔航行效率的因素,为高性能水下滑翔器的设计提供了理论上的指导。
Autonomous underwater glider (AUG) is a new type of autonomous underwater vehicle (AUV) propelled by buoyancy. AUGs have many advantages, such as low noise, low cost, and long endurance in the order of several thousand kilometers. But they can only travel in a sawtooth pattern at a low speed. AUVs are usually driven by a propeller. They have high maneuverability and velocity, but their range is relatively short, usually up to an order of hundreds of kilometers. This paper develops a hybrid-driven underwater glider PETREL by combining the advantages of AUGs and AUVs. PETREL is equipped with both buoyancy-driven system and propeller- driven system.
     This paper focuses on the mechanical system of the hybrid-driven underwater gliders. The whole system is designed in detail. The characteristics of main hydrodynamic components are studied using Computational Fluid Dynamics (CFD). The equilibrium characteristics and motion stability are studied based on the general equations of motion. All the expected design capabilities of the AUG are fulfilled. The analysis and simulation results were verified by lake trials. The main contributions of this thesis are summarized as follows:
     1. A prototype of the hybrid-driven underwater glider PETREL is proposed to achieve the goal that one underwater vehicle can glide with the buoyancy-driven system and maintain level flight with the propeller-driven system.
     2. The dynamic model of PETREL is formulated. The hydrodynamic parameters are obtained using CFD software and a visual dynamics simulation software is developed using Matlab. The software facilitates parameter evaluation and design of PETREL.
     3. Characteristics of the main hydrodynamic components of PETREL are analyzed and optimized using CFD method. The results provide the hydrodynamic basis for design of wings and rudders, and give the hydrodynamic characteristics of the propeller shroud and the flow field.
     4. The efficiency of buoyancy-driven and the efficiency of navigation of AUGs are defined. Detailed analysis and calculation of these two efficiencies are carried out. Factors that impact the buoyancy-driven efficiency and the navigation efficiency are revealed. The parameter study provides a theoretical guidance for high-performance underwater glider design.
引文
[1] Yuh J., Design and control of autonomous underwater robots: a survey, Autonomous Robots, 2000, 8(1):7~24
    [2] Costanza R., The ecological, economic, and social importance of the oceans, Ecological Economics, 1999, 31(2):199~213
    [3]朱光文,提升国家海洋技术总体实力推进我国海洋强国建设,海洋技术,2002,21(1):4~6
    [4]蒋新松,封锡盛,王棣棠,水下机器人,沈阳:辽宁科学技术出版社,2000
    [5]赵进平,发展海洋检测技术的思考与实践,北京:海洋出版社,2005
    [6]朱光文,我国海洋监测技术研究和开发的现状和未来发展,海洋技术,2002,21(2):27~32
    [7] Manley J. E., Weirich J. B., Deep frontiers: technology for ocean exploration, Sea Technology, 2005, 46(4):10~15
    [8]温秉权,小型浅水域水下自航行器系统设计与试验研究:[博士学位论文],天津:天津大学,2005
    [9] S. Stommel, The Slocum Mission, Oceanography, 1989, 2(1): 22~25
    [10] Douglas C.W., Paul J. S., and Clayton P. J., SLOCUM: An underwater glider propelled by environmental energy, IEEE Journal of Oceanic Engineering, 2001, 126(4): 447~452
    [11] Eriksen C. C., Osse T. J., Light R .D., et al, Seaglider: a long-range autonomous underwater vehicle for oceanographic research, IEEE Journal of Oceanic Engineering, 2001, 126(4): 424~436
    [12] Sherman J., Davis R. E., Owens W. B., Valdes J., The autonomous underwater glider“spray”, IEEE Journal of Oceanic Engineering, 2001, 126(4): 437~446
    [13] Eriksen C. C., Autonomous underwater gliders, autonomous and lagrangian platforms and sensors (ALPS) workshop, Sea Lodge, La Jolla CA, 2003
    [14] S. A. Jenkins, D. E. Humphreys, J. Sherman, et al, Underwater glider system study, Technical Report, Office of Naval Research, 2003.
    [15]封锡盛,从有缆遥控水下机器人到自治水下机器人,中国工程科学,2000,2(12):29~33
    [16] Smith S. M., Dunn S. E., The Ocean Voyager II: an AUV designed for coastal oceanography, Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology, 1994. 139~147
    [17] Damus R., Manley J., Desset S., et al, Design of an inspection class autonomous underwater vehicle, Ocean's 2002 Conference and Exhibition, 2002.180~185
    [18] Singh H., Bellingham J.G., Hover F, et al, Docking for an autonomous ocean sampling network, IEEE Journal of Oceanic Engineering, 2001, 26(4): 498-514
    [19] Frye D.E., Kemp J., Paul W., et al, Mooring developments for autonomous ocean-sampling networks, IEEE Journal of Oceanic Engineering, 2001, 26(4): 477~486
    [20] Von A. C., Allen B., Austin T., et al,Remote environmental measuring units, autonomous underwater vehicle technology, Proceedings of the 1994 Symposium on AUV, 1994: 13~19
    [21] Allen B., Stokey R., Austin T., REMUS: a small, low cost AUV; system description, field trials and performance results, OCEANS '97 MTS/IEEE Conference Proceedings, 1997. 994~1000
    [22] Purcell M., Von A. C., Allen B., New capabilities of the REMUS autonomous underwater vehicle, OCEANS 2000 MTS/IEEE Conference and Exhibition,2000. 147~151
    [23] Stokey R., Purcell M., Forrester N., et al, A docking system for REMUS: an autonomous underwater vehicle, OCEANS '97. MTS/IEEE Conference Proceedings, 1997: 1132~1136
    [24] Anon, Unmanned vehicles tested in the Gulf, Warship Technology, 2004, (3):16~17
    [25] Crimmins D., Deacutis C., Hinchey E., et al, Use of a long endurance solar powered autonomous underwater vehicle (SAUV II) to measure dissolved oxygen concentrations in Greenwich Bay, Rhode Island, U.S.A, OCEANS’05 Europe Conference Proceedings , 2005: 896~901
    [26] Babenko V. V., Korobov V. I., Moroz V. V., Bionics principles in hydrodynamics of automotive unmanned underwater vehicles, OCEANS 2000MTS/IEEE Conference and Exhibition, 2000: 2031~2036
    [27] Ura T., Obara T., Nagahashi K., et al, Introduction to an AUV "R2D4" and its kuroshima knoll survey mission, OCEANS 2004 MTS/IEEE Conference Proceedings,2004: 840~845
    [28] Nasahashi K., Ura T., Asada A., et al, Underwater volcano observation by autonomous underwater vehicle "R2D4", OCEANS’05 Europe Conference Proceedings, 2005: 557~562
    [29] Balasuriya A., Ura T., Autonomous target tracking by Twin-Burger 2, IEEE International Conference on Intelligent Robots and Systems, 2000(2). 849~854
    [30] Kondo H., Maki T., Ura T., et al, Observation of breakwaters and their rock mound by AUV "Tri-Dog1" at Kamaishi Bay, OCEANS’05 Europe Conference Proceedings, 2005(1): 585~590
    [31] Thorleifson J.M., Davies T.C., Black M.R., et al, The Theseus autonomous underwater vehicle: a canadian success story, OCEANS '97 MTS/IEEE Conference Proceedings, 1997. 1001~1006
    [32] Butler B., Den H. V., Theseus: a cable-laying AUV, Engineering in Harmony with Ocean, Proceedings of OCEANS, 1993(1): 1210~1213
    [33] Storkersen N. J., Kristensen A., Indreeide J., HUGIN-UUV for seabed surveying, Sea Technology, 1998, 39(2): 22~27
    [34] Hagen P. E., Storkersen N. J., Vestgard K., HUGIN-use of UUV technology in marine applications, OCEANS '99 MTS/IEEE Conference Proceedings, 1999. 967~972
    [35] Hagen P. E., Storkersen N., Vestgard K., et al, The HUGIN 1000 autonomous underwater vehicle for military applications, Proceedings of Oceans, 2003, 1141~1145
    [36] Hagen P. E., Storkersen N. J., Marthinsen B. E., et al, Military operations with HUGIN AUVs: lessons learned and the way ahead, OCEANS’05 Europe Conference Proceedings,2005. 810~813
    [37] Collar P. G., Mcphail S. D., Autosub: an autonomous unmanned submersible for ocean data collection, Electronics & Communication Engineering Journal, 1995,7 (5): 105~114
    [38]桑恩方,庞永杰,卞红雨,水下机器人技术,机器人技术与应用,2003,(3):8~13
    [39]蒋新松,封锡盛,王棣棠,水下机器人,沈阳:辽宁科学技术出版社,2000
    [40]马伟锋,胡震,AUV的研究现状与发展趋势,火力与指挥控制,2008,33(6): 10~13
    [41]徐玉如,庞永杰,甘永等,智能水下机器人技术展望,智能系统学报,2006,l1(1):9~16
    [42]余立中,商红梅,张少永,Argo浮标技术研究初探,海洋技术,2001(8):35~38.
    [43]余立中,我国的海洋剖面探测浮标—COPEX,海洋技术,2003(5):15~18.
    [44] Simonetti P., SLOCUM glider: design and 1991 field trials, Webb Research Corp., Woods Hole Oceanographic Institution, Office of Naval Technology, 1992
    [45] Simonetti P., Low cost endurance ocean profiler, Sea Technology, 1998, 39: 17~21
    [46] Development and Sea Trials of a Shuttle Type AUV "ALBAC",http://underwater. iis.u-tokyo.ac.jp/robot/albac/al-chp2-e.html
    [47] R. E. Davis, C. C. Eriksen and C. P. Jones,“Autonomous buoyancy-driven underwater gliders,”The Technology and Applications of Autonomous Underwater Vehicles. G. Griffiths, ed., Taylor and Francis, London, 2002. 37~58
    [48] Daniel L. Rudnick , Russ E. Davis.,Underwater gliders for ocean research, Marine technology society journal, 2004, 38(2): 73~84
    [49] Thermal glider, online available at: http://thefutureofthings.com/pod/1115/ thermal-glider.html
    [50] Karl Stanley’s cbug, online available at: http://www.vulcaniasubmarine.com /KARL%20STANLEY.htm
    [51] Us navy submarine makes first launch of underwater glide, online available at: http://www.spacewar.com/news/naval-05e.html
    [52] Mini Underwater glider (MUG) for education, online available at: http://www.naoe.eng.osaka-u.ac.jp/naoe/naoe7/MUG.html
    [53] Liberdade XRay advanced underwater glider, online available at: http://www.onr.navy.mil
    [54] Webb D., Design of a mobile and bottom-resting autonomous underwater glidingvehicle, In: Proceedings of the unmanned underwater submersibles technology 2003 conference, Durham, NH, 2003
    [55] J. G Graver, Underwater gliders: dynamics, control and design [Dissertation], The USA:Princeton University, 2003
    [56] N. E. Leonard and J. G. Graver, Model-based feedback control of autonomous underwater gliders, IEEE Journal of Oceanic Engineering, 2001,26(4): 633~645
    [57] Diving deep below the surface, accessed November 2007, online available at: http://thedaily.washington.edu/article/2007/3/30/divingDeepBelowTheSurface
    [58] Underwater deep ocean glider, accessed November 2007, online available at: http://www.physics.otago.ac.nz/px/research/electronics/current-research-projects/underwater-deep-ocean-glider
    [59]王延辉,水下滑翔器动力学行为与鲁棒控制策略研究:[博士学位论文],天津,天津大学,2007.
    [60]王树新,王延辉,张大涛等,温差能驱动的水下滑翔器设计与实验研究,海洋技术,2006,25(1):1~5
    [61]王延辉,王树新,谢春刚,基于温差能源的水下滑翔器动力学分析与设计,天津大学学报,2007,40(2):133~138
    [62]胡克,俞建成,张奇峰,水下滑翔机器人载体外形设计与优化,机器人,2005,27(2):108~112
    [63]俞建成,张奇峰,吴利红等,水下滑翔机器人系统研究,海洋技术,2006,25(1):6~10
    [64]马峥,张华,张楠等,水下滑翔机滑翔运动的能量分析及水动力性能研究,船舶力学,2006,10(3):53~60
    [65]葛晖,徐德民,周秦英,基于变质心控制的低速水下航行器动力学建模,机械科学与技术,2007,26(3):327~331
    [66]阚雷,张宇文,范辉等,浮力驱动式水下滑翔机运动仿真,计算机工程与应用,2007,43(18):199~201
    [67] R.Bachmayer, N.E.Leonardy, J.Gravery, et al, Underwater gliders: recent developments and future applications, Proc.IEEE International Symposium on Underwater Technology (UT'04), Tapei, Taiwan, 2004: 195~200
    [68] Ikuo Yamamoto, Research and development of past, present, and future AUV technologies, Online available at: http://www.noc.soton.ac.uk/CASEE/CASEE2/pages/Masterclass/R&D%20past%20present%20future%20AUV%20tech-2.pdf:1~15
    [69] D. Richard Blidberg, The development of autonomous underwater vehicles (AUV); A Brief Summary, IEEE International Conference on Robotics and Automation, Korea 2001:1~12
    [70] Wood. S.,Allen.T., Kuhn. S., et al, The development of an autonomous underwater powered glider for deep-sea biological, Chemical and Physical Oceanography,OCEANS’07 Europe Conference Proceedings,2007, 18(21): 1~6
    [71] A. Alvarez, A. Caffaz, A. Caiti, et al, Folaga:a low-cost autonomous underwater vehicle combining glider and AUV capabilities,Ocean Engineering,2009,136(1): 24~38
    [72] Rudnick, D.L. and M.J. Perry, eds, ALPS: autonomous and lagrangian platforms and sensors, Workshop Report, 2003
    [73]许辑平,潜艇强度,北京:国防工业出版社,1980
    [74]施丽娟,谢祚水,肋骨对环肋圆柱壳壳板稳定性影响的初步研究,华东船舶工业学院学报,1999,13(3):1~5
    [75]谢祚水,施丽娟,环肋圆柱壳结构壳板稳定性研究,海洋工程,2002,20(4):32~36
    [76]陆蓓,刘涛,崔维成,深海载人潜水器耐压球壳极限强度研究,船舶力学,2004,8(1):51~58
    [77]谢祚水,环肋圆柱壳稳定特性研究,中国造船,1998,143(4):73~80
    [78] Yu Zhang , Jianshen Zhi, Tong Jiang ,et al, research on a new buoyancy driven system for underwater glider, The Sixth World Congress on Intelligent Control and Automation,2006. 6169-6172
    [79] ARGO浮标工作原理, Online available at:http://www.argo.gov.cn/argo-china /legend/ARGOfloats.htm#003
    [80] Nickell C. L., Woolsey C. A., Stilwell D. J, A low-speed control module for a streamlined AUV, OCEANS '05 MTS/IEEE Conference Proceedings, Washington, DC, 2005:1680~1685
    [81]王晓鸣,混合驱动水下自航行器动力学行为与控制策略研究[博士学位论文],天津:天津大学,2009
    [82]谢俊元,遥控水下机器人(ROV)分布式控制体系结构,船舶力学,1997,1(2):61~62.
    [83]饶运涛,邹继军,郑勇芸,现场总线CAN原理与应用技术,北京:北京航空航天大学出版社,2003
    [84] Ridao P., Yuh J, On AUV control architecture, The 2000 IEEE International Conference on Intelligent Robots and Systems, 2000, 15(7): 855~860
    [85] Brooks R.A., A robust layered control system for a mobile robot, IEEE Journal of Robotics and Automation, 1996, 2:14~23
    [86]张怀新,潘雨村,CFD在潜艇外形方案比较中的应用,船舶力学,2006,10(4):1~8.
    [87] Tyagi A, Sen Debabrata. Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach, Ocean Engineering, 2006, 33(5/6): 798~809.
    [89] Douglas E.H, Correlation and validation of a CFD based hydrodynamic &dynamic model for a towed undersea vehicle,OCEANS, 2001( 3): 1755~1760
    [90] Yamaguchi, Satoru; Kawanami, Takeo, et al, A study on shape optimization for an underwater vehicle based on numerical simulation, Proceedings of ISOPE Pacific/Asia Offshore Mechanics Symposium, 2002: 43~48
    [91] Arabshahi, A.; Gibeling, H.J., Numerical simulation of viscous flows about underwater vehicles, OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000: 2185 ~2195
    [92]石秀华,水中兵器概论(鱼雷部分),西安:西北工业大学出版社,1995
    [93]李万平,计算流体力学,武汉:华中科学大学出版社,2004
    [94]吴望一,流体力学(下册),高等教育出版社,1982
    [95]何漫丽,水下自航行器水动力学特性数值计算与试验研究[博士学位论文],天津:天津大学,2005
    [96]吴子牛,计算流体力学基础,科学出版社,2001
    [97] Pozrikidis, C., Fluid dynamics - theory, computation, and Numerical Simulation, 2001
    [98] Jenkins S A, Humphreys D E, Sherman J, et al, Alternatives for enhancement of transport economy in underwater gliders, IEEE Proceedings of OCEANS, 2003. 948~950
    [99]马冬梅,马峥,张华等,水下滑翔机水动力性能分析及滑翔姿态优化研究,水动力学研究与进展(A辑),2007,9(5):703~708
    [100]Wu Baoshan, Xing Fu, Kuang Xiaofeng, et al, Investigation of hydrodynamic characteristics of submarine moving close to the sea bottom with CFD methods, Journal of Ship Mechanics, 2005, 9(3): 19-28
    [101]施生达,潜艇操纵性,北京:国防工业出版社,1995
    [102] P.M.Ostafichuk, AUV hydrodynamics and modeling for improve control [Dissertation], Canada: University of British Columbia, 2004
    [103] Timothy Curtis, B.Eng, The design, conatruction, outfitting, and preliminary testing of the C-SCOUT autonomous underwater vehicle (AUV) [Dissertation], Canada, Faculty of Engineering and Applied Science Memorial University of Newfoundland, 2001
    [104]李军,鱼雷舵铰链力矩的计算,鱼雷与发射技术,2004,1:30~32
    [105] Tyagi A, Sen Debabrata. Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach, Ocean Engineering, 2006, 33(5/6): 798~809
    [106] Y.G.Le Page, Hydrodynamics and control of an autonomous underwater vehicle equipped with a vectored thruster, Florida Atlantic University, 2000
    [107] Wu Baoshan , Pan Ziyi, XI A Xian, et al, Investigation of the hydrodynamic characteristics of body of revolution with stern ring-wing, Journa l o f Ship Mechanics,2003,12,6(7): 54~59
    [108] Yang C.-I., Hartwich P., Sundaram P., A navier-stokes solution of hull-ring wing-thruster interaction, In NAS-NRC, Eighteenth Symposium on Naval Hydrodynamics, :.687~696
    [109]余成伟,郭莹,水下潜器运动控制与仿真研究,舰船科学技术,2009,31(10):137~140
    [110]张宏伟,可着陆水下自航行器系统设计与动力学行为研究:[博士学位论文],天津:天津大学,2007
    [111]荣建德,水下运载器性能的分析与设计,北京:国防工业出版社,2008
    [112] Nickell.C, Modular modification of a buoyant auv for low-speed operation:[ Master Thesis], Virginia: Polytechnic Institute and State University,2005
    [113] N. Mahmoudian, J. Geisbert, & C. Woolsey, Dynamics & control of underwater gliders i: steady motions, Virginia Center for Autonomous Systems Report No. VaCAS- 2007-01, 2009:1~37
    [114]胡志强,林扬,谷海涛,水下机器人粘性类水动力数值计算方法研究,机器人,2007,29(2):145~150
    [115]李天森,鱼雷操纵性,北京:国防工业出版社,1999
    [116]张铭钧,张仁存,李广君等,水下机器人,北京:海洋出版社,2000
    [117]张佐厚,胡志安,船舶推进,北京:国防工业出版社, 1980
    [118] Williams D B, Efficiency analysis and prototyping of a buoyancy powered underwater glider[Dissertation].The USA:Florida Atlantic University, 2000
    [119]严卫生,鱼雷航行力学,西安:西北工业大学出版社,2005
    [120] P. Bhatta, N. E. Leonard, Nonlinear Gliding Stability and Control for Vehicles with Hydrodynamic Forcing,Automatic, 2008, 44(5): 1240~1250
    [121] P. Bhatta, N. E. Leonard, a lyapunov function for vehicles with lift and drag: stablity of gliding, 43rd IEEE Conference on Decision and Control, 2004: 4101~4106
    [122] N. E. Leonard, Stability of a bottom-heavy underwater vehicle, Automatica, 1997, 33(3): 331~346
    [123] P. Bhatta, Nonlinear stability and control of gliding vehicles:[Dissertation], The USA:Princeton University, 2006
    [124] David A. S., Louis L. W., Model-based dynamic positioning of underwater robotic vehicles: theory and experiment,IEEE Journal of Oceanic Engineering,2004, 29(1): 169~186
    [124] Potter I. J., A systematic experimental and analytical investigation of the autonomous underwater vehicle design process with particular regard to power system integration:[Dissertation],University of Calgary,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700