引信新型弹载压电发电机气流控制进气口内流场数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引信弹载气流压电发电机是配用于现代引信的电源装置,而引信进气口结构是其中气流激励的一个重要机械结构,其进气孔道内的气流速度与湍流度分布情况对发电机正常工作和气流动量传递有着重要的影响。由于应用解析法或实验法分析进气口内流场具有很大的难度,因此,本论文利用计算流体力学(CFD)方法,研究低雷诺数情况下非对称入流对不同特征尺寸的引信进气口结构的流态响应问题。
     首先,简要叙述了流体动力学数值模拟的计算流体力学方法,讨论了近壁面的切应力输运湍流模型,建立了转捩湍流模型。在此基础上,探讨了本论文所采用二阶迎风空间离散格式与改进的压力耦合方程的半隐式(SIMPLEC)迭代算法和混合网格划分方法。
     其次,简要叙述了弹丸激波理论与圆管内附面层转捩理论,并对圆管内气流运动控制方程的边界条件进行探讨。根据理论分析,指出引信气流发电机进气口入流可视为非管轴对称的低雷诺数流动。
     最后,应用改进的湍流转捩模型封闭N-S方程,分别对等截面直孔口、等截面环隙口、变截面喇叭口的三种典型引信进气口进行了内流场数值计算。
     应用计算流体力学的数值方法,模拟引信等截面直孔口、等截面环隙口、变截面喇叭口三种进气口内流场的流态响应。结果表明,这三种进气口内流场的转捩现象、气流速度和湍流度的气流分布差异系数、壁面摩擦阻力系数、附面层厚度等的响应,将随非对称入流条件的改变而呈现不同规律,其中,等截面环隙柱形口具有气流减速、速度截面分布均匀快、转捩起始位置短特点,且间隙越小其效应越显著,故等截面环隙柱形口是合适的引信弹载气流压电发电机进气口结构。
The pneumatic piezoelectric generator of missile-borne fuze is a supply unit for modern fuze, and the air inlet is an important mechanical structure of its air driving system. The distribution of airflow velocity and turbulence intensity in air inlet decides the functioning of generator and the transmission of airflow momentum. Considering that it is very difficult to analyze the flow field in air inlet with analytical method or experimental method, Computational Fluid Dynamics (CFD) is used in the graduation thesis of the research on the response of flow pattern inside the air inlet construction with different characteristic dimensions when the Reynolds number is low and the input flow is asymmetrical.
     First,the numerical simulation method is described,the shear-stress transport turbulence model of near wall, and buildsthe transition model are discussed. On this basis, this paper studied the Second-order Up-wind discrete format, SIMPLEC and the hybrid-grid partition method which would be applied.
     Then, the warhead's shock theory and the transition theory of the boundary layer inside pipe was briefly discussed, and the boundary conditions of governing equation was explored. According to the theoretical analysis, the input flow of the air inlet of the pneumatic piezoelectric generator for fuze can be taken as the asymmetric and low Reynolds number flow.
     Finally, by applying the improved turbulence-transition model to close N-S equation, numerical calculation of flow field was done in three typical air inlets of fuze, namely, uniform section straight orifice, uniform section annular space and variable section trumpet.
     The results indicated that numerical simulation method with CFD can be used to simulate the response of flow pattern inside the air inlet of fuze. The responses of transition in three air inlets of fuze, the distribution-difference coefficient of the velocity and turbulence intensity, wall friction resistance coefficient and the thickness of boundary layer appeared different regularity with the changed asymmetric inflow conditions. The uniform section annular space fuze inlet has features of slowed flow, faster uniformly distribution of velocity by section, and shorter initial transition position. These features are more significant when the gap is smaller. Therefore the uniform section annular space fuze inlet is an appropriate air inlet construction for missile-borne pneumatic piezoelectric generator.
引文
[1]马宝华.现代引信的控制功能及特征[J].探测与控制学报,2008,30(1):1-5
    [2]张亚,戚会庆,董少峰.引信零件失效模式研究[J].华北工学院学报,1996,17(1):86-89
    [3]朱丽梅,张绪春.弹载遥测系统电源及其使用的分析研究[J].战术导弹技术,2004(4):18-21
    [4]陈雷.电子时间引信系统研究[D].南京:南京理工大学,2004
    [5]程顺,刘飘楚,崔占忠.适合电子时间引信用新型电源[J].探测与控制学报,2004,26(2):12-27
    [6]崔平,齐杏林,王卫民.从外军引信装备研制情况看引信技术发展趋势[J].兵工学报,2005,25(4):9-12
    [7]陈东林,徐立新,赵广波.引信物理电源技术进展及应用现状[J].探测与控制学报,2009,31:62-65
    [8]王利.电引信设计及其应用[M].北京:国防工业出版社,2006
    [9]宋寿鹏,徐建军.旋翼机构对超音速飞行环境的适应性研究[J].探测与控制学报,1999,21(3):10-14
    [10]刘永.涡轮式空气动力保险机构在迫击炮弹引信上的应用研究[D].南京:南京理工大学,2009
    [11]蒋启凌,陈兴球.燃气压力保险机构在火箭弹引信中的应用[J].探测与控制学报,2006,28(6):25-29
    [12]李传增,孙延臣等.引信调节孔式燃气动力解除保险机构设计[J].沈阳理工大学学报,2007,26(6):58-61
    [13]王晖,陈荷娟.弹底引信燃气气动力保险开关的气动特性[J].系统仿真学报,2007,19(21):4871-4873
    [14]王华,马宝华.气体阻尼机构特性分析与设计准则[J].北京理工大学学报,1997,17(4):339-443
    [15]王华,董少峰.外渗式气阻机构的计算特性的计算特性分析[J].太原机械学院学报,1994,15(2):95-98
    [16]宋丽萍.气动环隙阻尼器性能研究[J].探测与控制学报,2000,22(1):44-46
    [17]宋丽萍.气阻机构在炮弹引信中的应用研究[J].华北工学院学报,1998.19(3):201-203
    [18]王华,宋丽萍.具有气动延期特性的发火机构以及设计规律[J].兵工学报,1997,18(4):312-315
    [19]杨亦春,张文慧,赵智江.利用空气振动发电的引信电源研究[J].南京理工大学学报,1999,23(5):418-421
    [20]李映平.引信压电发电机原理及试验研究[D].南京:南京理工大学,2006
    [21]王利,张冬冬等.涡轮发电机可调喷管技术研究[J].探测与控制学报,2008,30(5):60-62
    [22]郭军献,李福松等.火箭发动机气压驱动的直线发电机[J].探测与控制学报,2011,33(1):51-55
    [21]陈志敏,于昆龙.一种超声速气动发电机实验装置及实验技术研究[J].实验力学,2004,19(3):386-390
    [22]娄文忠,周宇.弹头引信飞行气动热数值模拟及传热规律研究[J].中北大学学报.2008,29(4):316-320
    [23]娄文忠,齐斌.火箭弹弹头引信空气附面层热特性数值仿真研究[J].兵工学报,2007,28(4):406-410
    [24]李松福,马旭辉等.某火箭标准外形引信气动加热计算[J].实验力学,2008,23(3):119-204
    [25]John D, Anderson.计算流体力学基础以及应用[M],北京:机械工业出版社,2008
    [26]蔡飞超.超声速战术导弹进气道/弹身气动干扰数值研究[D].南京:南京理工大学,2005
    [27]宋寿鹏.旋翼机构在超音速条件下的动力特性分析[J].弹道学报,2002,14(3):48-56
    [28]张国伟.旋翼机构在超音速条件下的数学模型分析[J].现代引信,1996,2:48-55
    [29]徐长江.引信侧进气涡轮发电机气动优化研究[D].南京:南京理工大学,2007
    [30]王起飞.冲压发动机导弹进气道设计的几个问题[J].火箭推进,2004,30(2):24-28
    [31]徐明友.箭弹飞行动力学[M].北京:国防工业出版社,2003
    [32]刘惠枝,舒宏纪.边界层理论[M].北京:人民交通出版社,1991
    [33]Moin P, Kim J. Numerical Investigation of Turbulent Channel Flow[J]. J. Fluid Mech, 1982,118:341~337
    [34]Maeder T, Adams N A, Kleiser L. Direct simulation of turbulent supersonic boundary layers by an extended temporal approach[J]. J. Fluid Mech,2001,429:187~216
    [35]Rist U, Fasel H. Direct numerical simulation of controlled transition in a flat-plate boundary layer[J]. J. Fluid Mech,1995,298:211~248
    [36]Williams D R. Fasel H. Hama F R. Experimental determination of the three-dimensional vorticity field in the boundary layer transition process[J]. J. Fluid Mech,1984,149:179~203
    [37]王博.二维可压缩流动转捩计算[D].西安:西北工业大学,2004
    [38]张坤,宋文萍.NS方程计算中耦合转捩自动判断的阻力精确计算方法初探[J].空气动力学学报,2009,27(4):400-403
    [39]樊鹏飞,宋文萍.NS方程中耦合转捩判断的风力机翼型气动力数值模拟[J].航空计算技术,2010,40(3):38-40
    [40]邓磊,乔志德,熊俊涛. RANS方程和附面层方程耦合求解转捩位置的方法[J].2009,39(1):27-30
    [41]陈奕,高正红. Gamma-Theta转捩模型在绕翼型流动问题中的应用[J],空气动力学学报.2009,27(4):411-417
    [42]沈慧俐,郑小清,刘锋.对k-co湍流模型的改进[J].航空动力学报,1997,12(4):377-380
    [43]Dhawan S, Narasimha R. Some properties of boundary-layer flow during transition from laminar to turbulent motion [J]. Journal of Fluid Mechanics,1958,3(4):414-436
    [44]Cho J R, Chung M K. A k-ε-γ equation turbulence model [J]. Journal of Fluid Mechanics,1992,237:301~322
    [45]Steelant J, Dick E. Modeling of laminar-turbulent transition for high free-stream turbulence [J]. Journal of Fluids Engineering,2001,123:22~30
    [46]Abu-Ghannam B J, Shaw R. Natural transition of boundary layers-the effect of turbulence, pressure gradient, and flow history [J]. Journal of Mechanical Engineering Science,1980,22(5):213~228
    [47]Y. B. Suzen, P. G. Huang. Numerical Simulation of Unsteady Wake/Blade Interactions in Low-Pressure Turbine Flows Using an Intermittency Transport Equation[J],2005, 127(3):431~444
    [48]McDaniel R D and Hassan H A. Study of bypass transition using the framework[R]. AIAA-2000-2310
    [49]杨琳,邹正平等.边界层转捩的数值模拟[J].航空动力学报,2005,20(3):355-360
    [50]Langtry R. B, Menter. F. R. Transition modeling for general CFD applications in aeronautics[R]. AIAA-2005-0522
    [51]F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, et al. A Correlation-Based Transition Model Using Local Variables-Part I:Model Formulation. Journal of Turbomachinery,2006,128(3):413-422
    [52]R. B. Langtry, F. R. Menter, S. R. Likki, Y. B. Suzen, P.G.Huang, S. Volker. A Correlation-Based Transition Model Using Local Variables-Part Ⅱ:Test Cases and Industrial Applications. Journal of Turbomachinery[J],2006,128(3):423-434
    [53]Yujing Lin, Theresa Robinson, Juliana Early, et al. Implementation of Menter's Transition Model on an Isolated Natural Laminar Flow Nacelle. AIAA Journal,2011, 49(4):824~835
    [54]Langtry R B, Menter F R. Transition modeling for general CFD applications in aeronautics[J], AIAA 2005-0522
    [55]Volino R J. A new model for free-stream turbulence effects on boundary layers[J]. ASME J Turbo mach,1998,120:613~620
    [56]Walters D K, Leylek J H. Impact of film-cooling jets on turbine aerodynamic losses[J]. ASME J Turbo mach,2000,122:537~545
    [57]Huang P G, Suzen Y B. An intermittency transport equation for modeling flow transition[R]. AIAA 2000-0287
    [58]董平,黄洪雁,冯国泰.带有压力梯度的平板边界层转捩数值模拟[J].航空动力学报,2007,22(11):1909-1914
    [59]董平,黄洪雁,冯国泰.零压力梯度平板边界层转捩的数值模拟[J].热能动力工程,2007,22(6):586-590
    [60]王亮,符松.一种适用于超音速边界层的湍流转捩模式[J].力学学报,2009,41(2):162-168
    [61]张晓东,高正红.关于补充Langtry的转捩模型经验修正式的数值探讨[J].2010,21(5):544-551
    [62]Goldberg U. Turbulence closure with a topography-parameter-free single equation model[J]. Int J CFD,2003,17(1):27~38.
    [63]孙振旭,赵晓利等.关于一个新型转捩模式的研究与应用[J].应用数学和力学,2009,30(12):1463-1470
    [64]W. A. El-Askary. Numerical simulations of non-equilibrium turbulent boundary layer flowing over a bump[J]. International Journal for Numerical Methods in Fluids,2011, 66(2):230~252
    [65]A. Balabel, W. A. El-Askary. On the performance of linear and nonlinear k-ε turbulence models in various jet flow applications[J]. European Journal of Mechanics B: Fluids,2011,30(3):325~340
    [66]Hoekstra. M. Numerical aspects of including wall roughness effects in the SST k-ω eddy-viscosity turbulence model[J]. Computers and Fluids,2011,40(1):299~314
    [67]Anthony G. Dixon. M. Ertan Taskin, Michiel Nijemeisland and E. Hugh Stitt. Systematic mesh development for 3D CFD simulation of fixed beds:Single sphere study[J]. Computers & Chemical Engineering,2011,35(5):1171~1185
    [68]Song Yin, Donghai Jin, Xingmin Gui, Fang Zhu. Application and comparison of SST model in numerical simulation of the axial compressors [J]. Journal of Thermal Science, 2010,19(4):300~309
    [69]Alistair J. Revell, Tim J. Craft, Dominique R. Laurence. Turbulence Modeling of Unsteady Turbulent Flows Using the Stress Strain Lag Model[J]. Flow, Turbulence and Combustion,2011,86(1):129~151
    [70]马军,刘百仓等.二阶迎风有限体积法方腔流数值模拟[J].应用基础与工程科学学报,2006,14(4):558-565
    [71]Shen W. Z, Michelsen J.A, Sorensen N.N, Sorensen J.N. An improved SIMPLEC method on collocated grids for steady and unsteady flow computations [J]. Numerical Heat Transfer. Part B:Fundamentals,2003,43(3),221~239

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700