用户名: 密码: 验证码:
自由表面旋涡的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由表面旋涡是水工建筑物进水口前常见的水力现象,在水电站引水管道、溢洪道、导流隧洞、泵站和船闸等进水口的上游表面时有发生。自由表面旋涡发展到一定程度将演化为吸气旋涡,给工程建筑物和设备带来严重危害。自由表面旋涡的生成和演化机制复杂,研究自由表面旋涡运动的现象和规律,揭示其流动机理,探求对它们实施控制的有效方法,是大量工程实践提出的迫切需要解决的问题。自由表面旋涡机理的研究还涉及到多项力学的前沿基础理论问题,具有重要的学术价值。
     本文设计并建造了实验水槽来研究自由表面旋涡的生成和演化过程。采用流场染色技术对自由表面旋涡的演化过程进行显示,观测记录自由表面旋涡的旋转方向、生成位置以及不同演化阶段的形状;根据观测结果对自由表面旋涡的形成原因进行分析,定性分析了科氏力在自由表面旋涡形成和演化过程中的作用;测量了不同工况下的临界淹没深度这一反映自由表面旋涡发展程度的重要参数;考察和分析了来流速度、来流湍流度、来流预旋以及吸水口位置等对自由表面旋涡生成和演化的影响。
     在实验观测的基础上,采用粒子图像测速(Particle Image Velocimetry,简称PIV),对自由表面旋涡演化不同阶段的流场结构进行了测量,通过对测量数据进行分析,得到自由表面旋涡流场随时间演化规律和随空间变化的规律。自由表面旋涡在演化过程中,切向速度在半径方向上随着半径的增大先增大后减小,在变化过程中切向速度存在最大值,并以此对应的半径定义了涡核半径。在涡核半径内外,切向速度的变化是不同的。切向速度最大值随着深度的增加先增大后逐渐减小,最大值不在自由表面处,而在自由表面下某一深度。径向速度随着半径的增大逐渐减小,由于自由表面旋涡是一种向心流动,导致越靠近涡核径向速度越大。径向速度最大值随着深度的增加逐渐减小,在靠近自由表面的地方径向速度大,这表明自由表面旋涡在演化过程中,吸水口吸入的流体大部分来自旋涡上部流体,因此发生自由表面旋涡流动后,容易将表面漂浮物吸入吸水口。
     在实验研究的基础上,对自由表面旋涡流动进行理论分析,得到了科氏力作用下流动运动的控制方程。以此控制方程为基础,通过简化得到科氏力作用下平面点汇运动的规律,分析了科氏力在旋涡生成和演化过程中的作用,确定科氏力是引起旋涡流动的重要原因之一。
     以圆桶底部出流装置为模型,通过自编程序,采用有限体积法对控制方程进行离散,对离散后的方程采用SIMPLE算法进行求解,获得了不同工况下圆桶内流体运动规律。数值分析表明,在科氏力作用下圆桶内流体产生了旋涡流动。旋涡流动的切向速度和径向速度在半径方向以及深度方向的变化规律和实验测量结果定性符合,并分析了产生误差的原因。用拉格朗日观点考察了迁移加速度、粘性力以及科氏力在流动中的关系,发现在涡核中心以外,流体微团在运动过程中的加速旋转是由科氏力的作用引起的。并考察了科氏力大小以及流量对旋涡运动的影响。
     利用自编程序对三维圆筒模型进行计算,研究来流预旋和科氏力共同作用对自由表面旋涡流场的影响。逆时针方向来流预旋条件下,来流预旋和科氏力的双重作用使得圆桶内产生逆时针方向旋涡运动,而且来流旋涡越大,产生的旋转速度也越大。顺时针方向来流预旋条件下,来流预旋的一部分用于抵消科氏力产生的逆时针方向旋转作用,剩余部分产生了顺时针方向旋转运动。同时以商用软件FLUENT为工具,对方形水槽内不同方向来流预旋情况下的流动进行了数值解析,模拟得到的旋涡的方向和位置与实验结果符合。
The free surface vortex is a common hydraulic phenomenon in front of the intakes of hydraulic structures such as diversion pipeline of hydropower station, spillway, diversion tunnel, large scale pump station, and ship lock. The free surface vortex will evolve into air entrainment vortex when it develops to a certain extent, which may seriously endanger hydraulic structures or hydraulic equipments. The mechanism of the free surface vortex formation and evolution are greatly complex. It is an urgent problem in the practical engineering to research the vortex phenomenon and its evolution law, to reveal its flow mechanism and to seek the effective methods to control it. It also has an important academic value because many forward basic theories are involved in the study of the mechanism of the free surface vortex.
     In the thesis, experimental apparatus was designed and set up to study of the mechanism of the free surface vortex. The formation and evolution of the free surface vortex were observed in detail using flow visualization. The direction of rotation, position and shape of the free surface vortex in different development stage were investigated. Based on the observation results, the effect of the Coriolis force caused by the earth rotation to the formation and evolution of the free surface vortex were analyzed qualitatively. The critical submergence, which is an important factor that refelcts the free surface vortex development stage was obtained under different experimental conditions. The effects of the flow discharge, the incoming flow turbulence intensity, the incoming prerotation and the position of the outlet to the formation and evolution of the free surface vortex were analyzed.
     A particle image velocimetry(PIV) system was used to measure the whole flow field of the free surface vortex at different development stage. The evolution law and the changing law in space of the free surface vortex were obtained by analyzing the experimental data. In the evolution of the free surface vortex, with the radius increasing, the tangential velocity increases to a maximum value and then decreases. The radius corresponding to the maximum tangential velocity is defined as the vortex core radius. The maximum tangential velocity increases with the depth increasing and then decreases, and the maximum tangential velocity exists in a certain depth under the free surface. As the free surface vortex is a centripetal flow, the radial velocity increases with the radius decreasing. In the depth direction, the maximum radial velocity decreases with the depth increasing. The maximum radial velocity is in the free surface, which shows that most of the fluid sunk by the intake during the formation and evolution of the free surface vortex come from the top of it. So the free surface vortex can easily inhale floating debris on the free surface.
     Based on the experimental studies, the governing equations considering the Coriolis force caused by the earth rotation were established by theoretical analysis. By simplifying the governing equations, the flow law of the point sink flow under the Coriolis force was obtained, and the effect of the Coriolis force to the free surface vortex was analyzed. The theoretical analysis indicates that the Coriolis force caused by the earth rotation is one of the major reasons that cause the free surface vortex.
     A barrel with an outlet on the bottom was used as a physical model. Program was compiled to simulate the flow field in the barrel. The flow field in the barrel under different conditions were obtained by using FVM(Finite Volume Method) to discrete the governing equations and SIMPLE(Semi-Implicit Method for Pressure Linked Equation) to solve the discrete equations. The numerical simulation shows that vortex generated in the barrel under the effect of the Coriolis force. The changing law of the tangential velocity and the radial velocity in radius and depth are qualitatively consistent to that of the experiments. The errors between numerical calculation and experiment were analyzed. In the viewpoint of Lagrange, the relation of the remove acceleration, the viscosity force and the Coriolis force were analyzed. It shows that the particle acceleration was caused by the Coriolis force out of the vortex core during the vortex evolution. The effects of the magnitude of the Coriolis force and the flux to the vortex were also studied.
     Based on the program, the effect of the prerotation in the incoming flow together with the Coriolis force to the free surface vortex was studied. The calculations indicate that when the prerotation in the incoming flow is counterclockwise, the vortex generated by the prerotation and the Coriolis force is counterclockwise, and the rotation speed increase with the prertotation increasing. When the prerotation in the incoming flow is clockwise, parts of the prerotation was used to counteract the effect of the Coriolis force, and the remains was used to produce the clockwise vortex. The flow fields in the flume under different incoming flow conditions were numerically simulated using commercial software Fluent. The shape and position of the vortex obtained by numerical simulation agree well with that of the experiments.
引文
1.童秉纲,张炳暄,崔尔杰.非定常流与涡运动[M].北京,国防工业出版社,1993
    2. Knauss, J. Swirl Flow Problems at Intakes[M]. IAHR hydraulic Structures design manual, 1987
    3. American National Standard for Pump Intake Design, ANSI/HI 9.8-1998, Hydraulic Institute, New Jersey, l2, 1998
    4. George E Hecker. Model-Prototype Comparison of Free Surface Vertices [J]. Journal of the Hydraulics Division, 1981, 107(10): 1243-1259
    5. W. S. Lewellen. A Solution for Three-Dimensional Vortex Flows with Strong Circulation[J]. J. Fluid Mech. 1962,14:420-433
    6. Anwar H. O. Flow in a Free Vortex[J]. Water Power, 1965, 4: 153-161
    7. Anwar H.O., Weller. JA., Amphlett MB. Similarity of Free-Vortex at Horizontal intakes[J]. J. Hydr. Res., ASME, 1978, 16(2) :95-105
    8. Granger R. Steady Three-Dimensional Vortex Flow[J]. J. Fluid Mech. 1966 , 25: .557-576
    9. Rosenhead,L. The spread of vorticity in the wake behind a cylinder [C]. Proc., Royal Society of London, England, Series A, 127,590-612
    10. Mih,W.C. Discussion of‘Analysis of fine particle concentrations in a combined vortex.’[J]. Journal of hydraulic Research, 1990, 28(3): 392-395
    11. Chen Yunliang, et al.Hydraulic Characteristics Of Vertical Vortex At hydraulic Intakes [J].Journal of Hydrodynamics, Ser. B, 2007, 19(2): 143-149
    12. Akalank K Jain, Kittur G. Ranga Raju and Ramachandra J. Garde. Air Entrainment in Radial Flow towards Intakes[J]. Journal of the Hydraulics Division, 1978,104(9): 1323-1329
    13. Akalank K Jain, Kittur G. Ranga Raju and Ramachandra J. Garde. Vortex Formation at Vertical Pipe Intakes[J]. Journal of the Hydraulics Division, 1978, 104(10): 1429-1445
    14. Odgaard,A.J. Free-surface air core vortex [J]. Journal of hydraulic Engineering, ASCE, 1986,112(7): 610-620
    15. Odgaard,A.J. Discussion of“Free-surface air core vortex.”[J]. Journal of hydraulic Engineering, ASCE, 1988,114(4): 449-452
    16. Gordon,J.L. Vortices at Vertical Intakes[J]. Water Power,1970, 4:137-138
    17. Reddy, Y.R., J.A. Pickford. Vortices at Intakes in Conventional Sumps[J]. Water Power, 1972, 3: 108-109
    18. Nevzat Yildirim, Fikret Kocaba. Critical Submergence for Intakes in Open Channel Flow. Journal ofHydraulic Engineering. 1995, 121(12): 900-905
    19.周君亮.低扬程泵站建设中装置选用问题(下)[J]. JIANGSU WATER RESOURCES, 2002, 7: 11-15
    20. Daggett, L. L. & Keulegan, G. H. Similitude Conditions in Free-Surface Vortex Formations[J]. Journal of the Hydraulics Division, ASCE, 1974, 100(11): 1565-1581
    21. Quick, M.C. Scale Relationships between Geometrically Similar Free Spiral Vortices[J]. Civil Engineering and Public Works Reviews, 1962, 10: 1319-1320
    22. Denny, D. F. An Experimental Study of Air-Entraining Vortices at Pump Sumps[C]. Proceedings of the Institution of Mechanical Engineers, London, England, 1956, 170(2): 106-116
    23. Hattersley, R.T. Hydraulic Design of Pump Intakes[J]. Journal of the Hydraulics Division, ASCE, 1965, 91(2): 223-248
    24. Inversen, H.W. Studies of Submergence Requirement of High Specific Speed Pumps. Transactions[J], ASME, 1953, 75: 635-641
    25.谭颖.抽水蓄能电站取水口水力学的基本问题-进流旋涡与出流流速分布[J].抽水蓄能电站设计研究,1988,(1): 64-103
    26. Padmanabhan M and Hecher, G. E.. Scale Effects in Pump Sump Models. J. Hydr. Eng., ASME, 110(11): 1540-1556
    27. Padmanabhan M. Air ingestion due to free-surface vortices. J. Hydr. Eng., ASME, 1984,110(12): 1855-1859
    28. John S. Gulliver and Aian J. Rindels. Weak Vortices at Vertical Intakes[J]. Journal of Hydraulic Engineering, 1987, 113(9): 1101-1116
    29. G. Echavez, E. McCann. An Experimental Study on the Free Surface Vertical Vortex[J]. Experiments in Fluids, 2002, 33(7): 414-421
    30. Rasmussen, J. Juul, Andersen, A., Bohr, T., Stenum, B., Lautrup, B.. Anatomy of a Bathtub Vortex[J]. Physical Review Letters, 2003, 91(10): 104502/1-104502/4
    31.周光炯.流体力学(上、下册).北京,高等教育出版社,1993
    32.赵永志,顾兆林等.自由水涡结构及运动特征的数值研究[J].西安交通大学学报,2003, 37(1): 85-88
    33.陈云良.进水口前立轴旋涡旋涡水力特性的研究[D].四川大学博士学位论文,成都,2006.3
    34.周晓春.复杂边界条件下的三维紊流数值模拟研究[D].四川大学博士学位论文,成都,2003.4
    35. Peder A. Tyvand, Kjetil B. Haugen. An impulsive bathtub vortex. Physics of Fluids. 2005, 17: 0621051-8
    36. Thompson J F, Thames F C, Mastin C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. J Comput Phys, 1974; 15: 299~319
    37. Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer, 1972, 15: 1787~1806
    38. Patankar S V. Numerical heat transfer and fluid flow. New York: Mc-Graw-Hill, 1980: 131~134
    39.蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社,1993
    40.王献孚,熊鳌魁.高等流体力学[M].武汉:华中科技大学出版社,2003:266-268
    41.是勋刚.湍流[M].天津:天津大学出版社,1994,84-101
    42. Rodi, W. and G. Scheuerer, Calculation of Heat Transfer to Convection-cooled Gas Turbine Blades, ASME Journal of Engineering for Gas Turbine and Power, 1985,107: 620~627
    43. D.C.Wilcox.Reassessment of the Scale-Determining Equation for Advanced Turbulence Models.AIAA Journal, 1988, 26(11):1299-1310
    44. A.J.Chorin, Numerical Solution of Navier-Stokes Equations, Math. Comput., 1987, 22: 745~762
    45. Issa R I.Solution of the implicitly discretised fluid flow equations by operator-splitting.J Comput Phys. 1985; 62(1): 40~65
    46.陶文铨.数值传热学[M].西安,西安交通大学出版社,2001
    47.吴介之,马晖扬,周明德.涡动力学引论[M].北京:高等教育出版社,1993
    48.张涵信.分离流与旋涡运动的结构分析[M].北京:国防工业出版社,2005
    49.李人宪.有限体积法基础[M].北京:国防工业出版社,2005
    50.戴昌晖.流体流动测量[M].北京:航空工业出版社,1992
    51.刘应中,缪国平.高等流体力学[M].上海:上海交通大学出版社,2000
    52.梁在潮.工程湍流[M].武汉:华中理工大学出版社,1999
    53. Iafrati A., Di Mascio A., Campana E.F.: A level-set technique applied to unsteady free surface flows. Int. J. Numer. Meth. Fluids, 2001, 35:281–297
    54. Okamura, Tomoyoshi. CFD simulation of flow in model pump sumps for detection of vortices[C]. 8th Asian International Fluid Machinery Conference, Yichang China, 2005
    55. Amphlett, M.B. Discussion of Vortex formation at vertical pipe intakes[J]. J. hydr. Div.,ASCE, 1979,105(10): 1328-1330
    56. Anwar, H.O.. Formation of a weak vortex[J]. J. Hydr. Res., 4(1): 1-16
    57. Blaisdell, F.W.. Discussion of Vortex formation at vertical pipe intakes[J]. J. hydr. Div.,ASCE, 1979,105(10): 1333-1336
    58. Hebaus, G.G.. Discussion of Vortex formation at vertical pipe intakes[J]. J. hydr. Div.,ASCE, 1979,105(10): 1330-1333
    59. John E. Hite Jr, Walter C. Mih. Velocity of Air-Core Vortices at Hydraulic Intakes [J]. Journal of Hydraulic Engineering, 1994, 120(3): 284-297
    60. G. Echavez, E. McCann. An Experimental Study on the Free Surface Vertical Vortex[J]. Experiments in Fluids, 2002, 33(7): 414-421
    61. Gulliver,J.S., Rindels, A.J., Lindblom, K.C. Designing intakes to avoid free-surface vortices[J]. Int. Water Power and Dam Constr., 1986, 38(9): 24-32
    62. Pennino, B.J., Hecker, G.E.. A synthesis of model data for pumped storage intakes[C]. Proc. ASME Fluids Conf., New York, 1980: 103-112
    63. Sweeney, C.E., Elder, R.A., Duncan, H. Pump sump design experience: summery[J]. J. Hydr. Div., ASCE, 1982, 108(3):361-378
    64. Tullis, J.P., Galloway, K.D., Campbell, N.J., Lindsey, S.D.. Criteria for vortex modeling[C]. Advancements in aerodynamics, fluid mechanics, and hydraulics, ASCE, N.Y., 1986:783-790
    65.林宗燊,杨正骏等.进水口前立轴漩涡区水流流速特性[J].水力发电学报,1987,17(2): 11-20
    66. Faler, J.H., Leibovich, S.. Disrupted states of vortex flow and vortex breakdown[J]. Physics of Fluids, 1977, 20(9): 1385-1400
    67. Gulliver, J.S.. Discussion of free surface air corn vortex[J]. J. Hydr. Div., ASCE, 1988, 114(4):447-449
    68. Julien, P.Y. Concentration of very fine silts in a steady vortex[J]. J. Hydr. Res., 1986, 24(4):255-264
    69. Mih, W.C. Discussion of Analysis of fine particle concertaions in a combined vortex. J. Hydr. Res., 1990, 28(3):392-395
    70. Vatistas, G.H., Lin, S., Kwok, C.K.. Theoretical and experimental studies on vortex chamber flow[J]. AIAA J., 1986, 24(4):635-642
    71. Vatistas, G.H., Lin, S., Li, P.M.. A similar profile for the tangential velocity in vortex chambers[J]. Experiments in Fluids, 1988, 62(2):135-137
    72. Zielinski, P.B., Villemonte, J. R. Effect of viscosity on vortex-orifice flow[J]. J. Hydr. Div., ASCE, 1968, 94(3): 745-753
    73.李永,李小明,吴玉林等.水泵吸水池的改进和PIV试验验证[J].水力发电学报, 2002, 76(1): 76-81
    74.刘竹溪,冯广志主编.中国泵站工程[M].水利电力出版社, 1993
    75.李永,李小明,吴玉林等.封闭式水泵吸水池内部流动的PIV量测[J].农业工程学报, 2001, 17(3): 45-48
    76.黄林泉,丘传忻等译.泵站工程设计规范[J].北京:水利电力出版社, 1990
    77. Veera P. Rajendran, G.S. Constantinescu, V.C. Patel. Experiment on Flow in Model Water-Pump Intake Sump to Validate a Numerical Model[C]. ASME Fluids Engineering Division Summer Meeting, 1998,Washington, DC
    78. Matahel Ansar, Tatsuaki Natato, George Constantinescu. Numerical simulations of inviscid three-dimensional flows at single- and dual-pump intakes[J]. J. Hydr. Res., 2002, 40(4): 461-470
    79. Constantinescu, G., and Patel, V.C.. A Numerical Model for Simulation of Pump-intake Flow and Vortices[J]. J. of Hyd. Eng., 1998, 124(2): 123-134
    80. Rajendran, V.P., Constantinescu, G.S, Patel, V.C.. Experimental Validation of Numerical Model of Flow in Pump Intake Bay[J]. J. of Hyd. Eng., 1999, 125(11): 1119-1125
    81. Constantinescu. G.S., Patel, V.C.. Role of Turbulence Model in Prediction of Pump Bay Vortices[J]. J. of Hyd. Eng., 2000, 126(5), 387-391
    82. Rajendran, V.P., Patel, V.C. Measurement of Vortices in Model Pump–Intake Bay by PIV[J]. J. of Hyd. Eng., 2000, 126(5), 322-335
    83. S.V.帕坦卡.传热与流体流动的数值计算[M].北京:科学出版社,1984
    84.王福军.计算流体动力学分析—CDF软件原理与应用[M].北京:清华大学出版社,2004
    85.何耘.水泵进水池旋涡研究的主要进展[J].水力发电学报,23(5): 92-96
    86. Tulis J P. Modeling in design of pumping pits[J]. J.Hydr.Div., ASCE, 1979, 105(9): 1053~1063
    87.吴望一.流体力学[M].北京:北京大学出版社,1982
    88. Li,S.H., Lai,Y.G. Validation of a three-dimensional numerical model for water-pump intakes[J]. Journal of hydraulic Research, 2004, 42(3): 282-292
    89. Lai,Y.G.,Weber,L.J., Patel,V.C. A non-hydrostatic three-dimensional numerical model for hydraulic flow simulation-Part I: Formulation and Verification[J]. Journal of hydraulic Engineering, ASCE, 2003,129(3): 196-205.
    90. Lai,Y.G.,Weber,L.J., Patel,V.C. A non-hydrostatic three-dimensional numerical model for hydraulic flow simulation-PartⅡ: Validation and Application[J] .Journal of hydraulic Engineering,ASCE, 2003, 129(3): 206-214
    91. Levi E.. Vortices in hydraulics[J]. J. Hydr. Eng., ASCE, 1991, 117(4): 399-413
    92. Ansar, M., Nakato, T.. Experimental study of 3D pump-intake flows with and without cross flow[J]. J. Hydr. Eng., ASCE, 2001, 127(10): 825-834
    93. Yildirim, N., Kocabas, F.. Prediction of critical submergence for an intake pipe[J]. J. Hydr. Res., ASCE, 2002, 40(4): 507-518
    94. Ma, J. M., Liang, Y. B., Huang, J. T.. Minimum submergence before double-entrance pressure intakes[J]. J. Hydr. Eng., ASCE, 2000, 126(8): 628-631
    95. Yildirim, N., Kocabas, F.. Critical submergence for intakes in open channel flow[J]. J. Hydr. Eng., ASCE, 1995, 121(12): 900-905
    96. Yildirim, N., Kocabas, F.. Flow-boundary effects on critical submergence of an intake pipe[J]. J. Hydr. Eng., ASCE, 2000, 126(4): 288-297
    97. Grant, L. Smith, G.H.. Modern developments in Particle image velocimetry[J]. Optics and Lasers in Engineering, 1988, 9(3): 245-264
    98. Chang, K. S., Lee, D. J.. An experimental investigation of the air entrainment in the shutdown cooling system during mid-loop operation[J]. Ann. Nucl Energy, 1995, 22(9): 611-619
    99.谷超豪等.数学物理方程[M].北京:高等教育出版社,2002
    100. Willert, C.. The fully digital evaluation of photographic PIV recordings[J]. Applied science research, 1996, 56(2): 79-102
    101. Quick, M. C.. Efficiency of air-entraining vortex formation at water intakes[J]. J. Hydr. Div., ASCE, 1970, 96(7): 1403-1416
    102. Yildirim, N., Jain, S. C.. Surface tension effect on profile of a free vortex. J. Hydr. Div., ASCE, 1981, 107(1): 132-136
    103. Hughes, R. L.. Discussion of Similitude conditions in free-surface vortex formation by Daggett, L. L. and Keulegan, G. H.[J]. J. Hydr. Div., ASCE, 1975, 101(9): 1287-1288
    104. Weller, J. A. Discussion of Similitude conditions in free-surface vortex formation by Daggett, L. L. and Keulegan, G. H.[J]. J. Hydr. Div., ASCE, 101(11): 1449-1451
    105. Gulliver, J. S., Rindels, A. J.. Vortices at Vertical Intakes[C]. Proceedings of the ASCE hydraulics division specialty conference, Lake Buena Vista, Fla., 1985: 973-978
    106. Chen, H. C., Patel, V. C.. Near wall turbulence models for complex flows including separation[J]. AIAA J., 1988, 26(6): 641-648
    107. Chen, H. C., Patel, V. C., Ju, S.. Solution of Reynolds-averaged Navier-Stokes equations for three-dimensional incompreesible flows[J]. J. Comutational Phys., 1990, 88(2): 305-336
    108. Patel, V. C., Rodi, W., Scheuerer, G. Turbulence models for near-wall and low Reynlds number flows: A review[J]. AIAA J., 23(9): 1308-13190
    109. Adrian, R. J., Image shifting technique to resolve directional ambiguity in double pulsed velocimetry[J]. Applied Optics, 25: 3855-3858
    110. Boubnow B. M., Golitsyn G. S.. Experimental study of convective structures in rotating fluids[J]. J Fluid Mech, 1986, 167: 503-531
    111. Hirt, C. W., Nichols, B. D.. Volume of fluid(VOF) methods for the dynamics of free boundaries[J]. J Compute Phys., 1981, 39: 201-221.
    112. Gustave, A., Mutasem, E. F.. Effects of approach flow conditions on pump sump design[J]. J. Hydr. Eng., ASCE, 1996, 122(9): 489-494
    113.范洁川.近代流动显示技术[M].北京:国防工业出版社,2002
    114.杨祖清.流动显示技术[M].北京:国防工业出版社,2002
    115.童秉纲,尹协远,朱克勤.涡运动理论[M].合肥:中国科学技术大学出版社,1994
    116.李海峰,陈红勋,马峥,郭加宏.吸气旋涡的研究与展望.第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集(上册),北京,2005:660-671
    117.陈延标,夏良正.数字图像处理[M].北京:人民邮电出版社,1990
    118. Keane R D,Adrian R J,Theory of cross correlation analysis of PIV image[J]. Applied Science Research,1992,49:191-215
    119.田村秀行.计算机图像处理技术[M].北京:北京师范人学出饭社.1988
    120. Westeiweel J. Fundamentals of digital particle image velocimetry[J]. Measurement Science and Technolony,1997, 8(12):1379一1392
    121.王希麟等.两相流场粒子成像测速技术(PIT-PIV)初探[J],力学学报,1998,30(1):121-125
    122.许联锋,陈刚,李建中,邵建斌.气液两相流中气泡运动速度场的PIV分析与研究[J],实验力学,2002,17(4):65-70
    123.张东东,许宏庆,何枫.气固两相射流瞬时速度场和浓度场的PIV研究[J],清华大学学报,2003,43(11):1491-1494
    124.申功忻.全场测量技术的概念、进程与展望[J],北京航空航天大学学报,1997,23(3):332-340
    125.杨延明,汪剑明. PIV中提取速度信息的一种新方法[J].流体力学实验与测量,2000, 14(3):73-78
    126.张燕.横流冲击射流涡旋结构的实验和数值研究[D].上海大学博士学位论文,上海,2005
    127. Harlow F.H., Welch J.E.. Nmerical study of large-amplitude free surface motions. Physics of fluids. 1996, 9:842-851
    128. David J Benson. Voume of fluid interface reconstruction methods for multi-material problems. Appl . Mech Rev.. 2002, 55:151-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700