狭长受限空间火灾烟气分层与卷吸特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狭长受限空间是指长宽比较大的建筑结构,包括交通隧道、走廊、地下通道等具体形式。由于狭长受限空间火灾的危害性,它引起越来越多火灾科学工作者的关注。统计表明,有毒有害的烟气是火灾中最主要的致死因素,而狭长受限空间的结构特点和通风条件决定,其火灾产生的烟气难以立即排出,因此,狭长受限空间中火灾烟气的输运特性是值得关注的问题。其中,火灾烟气的分层与卷吸特性是与消防安全设计密切相关的科学问题。
     本文围绕狭长受限空间火灾烟气分层与卷吸特性,采用试验、数值模拟和理论分析相结合的方法开展研究。为了开展本文的相关研究,建立了66m(长)×1.5m(宽)×1.3m(高)的隧道火灾试验台,发展了用于测量火灾烟气分层形态的试验方法和适于火灾烟气速度场测量的Particle Image Velocimetry (PIV)试验系统,并且在火灾流场相干结构的理论分析方法上做了一些探索。本文考查了纵向强迫气流对狭长受限空间火灾烟气微观流场结构的影响,通过试验揭示了影响火灾烟气层对下层空气卷吸量的物理机制,获得了烟气层维持稳定性的无量纲判据,发现了CO浓度竖向分布曲线和温升竖向分布曲线的不一致性并揭示了造成二者差别的物理因素。具体的工作包括:
     分别利用数值模拟和粒子图像测速技术(PIV)获取狭长受限空间中火灾浮力驱动的分层流流场信息,利用特征正交分解(POD)方法对其流场相干结构和能量谱进行提取,分析发现,狭长受限空间中的纵向气流使流场中大尺度流场结构的能量向小尺度结构转移,并使得剪切层附近竖向流动的能量增加。
     为揭示影响狭长受限空间火灾烟气层对下层空气卷吸的物理机制,在隧道火灾试验台中开展试验,并与全尺寸隧道火灾试验进行对比,结果发现,火灾烟气层对下层冷空气的卷吸,除受到分层流经典卷吸模型中提到的Richardson数的影响外,还受到Reynolds数的影响。当Re<104时,火灾烟气分层流没有达到足够的湍流强度,火灾烟气对下层空气的卷吸可以忽略;当Re数达到Re~105时,火灾烟气层对下层空气产生的卷吸加强,其卷吸系数接近Ellison和Turner模型的预测值。
     通过试验获得狭长受限空间火灾烟气层维持稳定性的无量纲判据。结果表明,当Ri>0.9或Fr<1.2时,浮力起主导作用,烟气分层能维持稳定;当0.3<Ri<0.9或1.2<Fr<2.4时,惯性力的作用开始变得明显,分层界面上不稳定的涡旋数量增多,导致部分烟颗粒向下部空间扩散;当Ri<0.3或Fr>2.4时,惯性力起主导作用,烟颗粒与冷空气大量掺混,烟气层的稳定性被破坏。通过数值模拟发现,在弧形隧道中,当近测壁火和纵向通风联合作用时,烟气出现螺旋状的分层形态,其“螺旋”长度与火源功率和纵向风速有关,火源功率越大,“螺旋”长度越小;纵向风速越大,“螺旋”长度越大。
     通过试验发现了CO浓度竖向分布曲线和温升竖向分布曲线的不一致性。通过对无量纲输运方程及其边界条件的分析,揭示了造成二者差别的物理因素。结果发现,当采用自然通风时,CO浓度随高度降低而衰减的趋势明显弱于温升:当纵向通风强度较大时,二者的竖向分布曲线趋于一致。理论分析和试验结果均表明,壁面传热的强度是影响CO浓度竖向分布与温度竖向分布相似性的主要物理因素,壁面传热的强度越小,二者的相似性越好。
A fire occurs in a confined space with relatively large ratio of length to width can be defined as a channel fire, which includes tunnel fire, corridor fire, underground passage fire and so on. Since channel fire brings about tremendous fire safety problems, it attracts increasing attentions from both fire safety engineers and fire researchers. Statistics have shown that the toxic fire smoke is the most hazardous factor in a fire. Due to the characteristic of structure and that of ventilation condition, it is difficult to exhaust fire smoke out of a channel immediately. Therefore, the characteristics of smoke transport in a channel should be concerned. Entrainment and stratification of fire smoke are closely related to fire safety design, the physics of which should be understood first.
     Experiments, numerical simulation and theoretical analysis were carried out to investigate the characteristics of entrainment and stratification in a channel fire. To carry out experimental study, a reduced-scale tunnel with dimensions of 66m (Length)×1.5m (Width)×1.3m (Height) were designed and constructed. Experimental techniques for stratification pattern measurement were developed. Experimental system for Particle Image Velocimetry (PIV) of fire-induced flows was also developed. Some new analytical techniques for fire-induced flow structure were proposed. This thesis focused on four issues:Effects of longitudinal air flow on the structure of smoke flow; Entrainment physics of smoke layer; the dimensionless criteria for stability of smoke layer; the differences between the vertical profiles of temperature rise and those of CO concentration. The main contents include:
     Vortex fields or velocity fields of the fire-induced flows were obtained from numerical simulation and PIV measurements. Proper Orthogonal Decomposition (POD) was used to extract coherent structures from the fire-induced flows. Energy spectrums of these structures were also obtained. Results indicate that, with the increase in longitudinal ventilation velocity, the energies of the large-size structures decrease but those of the small-size structures increase. Further, the ratios of energy of vertical flow pattern to that of horizontal flow pattern increase with the increase in longitudinal ventilation velocity.
     Experiments were conducted to investigate the physics that control air entrainment into smoke layer. Results indicate that, besides Richardson number, Reynolds number is also an important dimensionless parameter that affects the amount of air entrainment into smoke layer. Smoke flows of reduced-scale experiments have the orders of Reynolds numbers lower than 105, which are demonstrated to be lower than the critical Reynolds number that is necessary to sustain fully inertial turbulent fluctuations, and thus hardly entrain the fresh air. Whereas smoke flows of full-scale experiments have Reynolds numbers on the order of 105, which can sustain fully inertial turbulent fluctuations and the entrainment coefficients were close to the laws of Ellison and Turner.
     Dimensionless criteria for sustainability of stability of fire-induced smoke layer were obtained. The stratification pattern was found to fall into three regimes. Buoyancy force and inertia force, as the two dominant factors that affect the buoyant flow stratification, were correlated through the Froude number and the Richardson number. At RegionⅠ(Ri>0.9 or Fr<1.2), the buoyant flow stratification was stable, where a distinct interface existed between the upper smoke layer and the lower air layer. At RegionⅡ(0.3<2.4), the buoyant flow stratification becomes unstable, with a strong mixing between the buoyant flow and the air flow and then a thickened smoke layer.
     Differences between vertical profiles of CO volume concentration and those of temperature rise were found. By analyzing dimensionless transport equations and boundary conditions, the factors that are attributed to these differences can be revealed. Results indicated that, under the conditions with natural ventilation or relatively weak longitudinal ventilation, CO volume concentration decays much more slowly than temperature rise in the vertical direction, whereas, under the conditions with strong longitudinal ventilation, the vertical profiles of CO volume concentration and those of temperature rise show similarity. The intensity of heat transfer from smoke flow to wall boundaries is demonstrated to be closely related to the correlation between vertical profiles of CO volume concentration and those of temperature rise. A small amount of heat loss from smoke flow to wall boundaries lead to a higher similarity between vertical profiles of CO volume concentration and those of temperature rise.
引文
[1]张伟,姜韦华,张卫国.城市地下交通隧道火灾的防护,地下空间,2002,22(3):268-270.
    [2]钟喆.阿尔卑斯山的地下惨剧—法国与意大利的勃朗峰公路隧道发生特大火灾,上海消防.1999,5:34-35.
    [3]戴国平.英法海峡隧道火灾事故剖析及其启示,铁道建筑.2001,3:6-9.
    [4]W. H. Hong, The progress and controlling situation of Daegu Subway fire disaster.6th Asia-Oceania Symposium on Fire Science and Technology,17-20, March,2004, Daegu, Korea, pp.28-46.
    [5]黄钊.地下商业街的火灾防护.2002,18(6):111-119.
    [6]王遥.地下空间火灾-城市的心腹之患.现代职业安全.2009,12:112-113.
    [7]胡隆华.隧道火灾烟气蔓延的热物理特性研究.合肥:中国科学技术大学博士学位论文,2006.
    [8]孔祥金.全国公路隧道最新统计资料.公路隧道,2004,(4):41.
    [9]孔祥金.秦岭终南山隧道通车.公路隧道,2007,(3):5.
    [10]国外长大公路隧道列表.中国公路,2004,(11):29.
    [11]孔祥金.我国隧道、地下工程、城市轨道交通发展近况.公路隧道,2005,(2):41
    [12]张惠兰.城市地下通道半封闭结构的设计.铁道勘测与设计,2006,(2):97-101.
    [13]何滨,张国贤.郑州市地下空间开发利用浅析.山西建筑,2010,01:49.
    [14]沈晓舟.浅析中等城市地下空间开发的利用.山西建筑,2010,36(5):45-46.
    [15]朱红梅,谭雪兰.试论长沙市地下商业街合理开发利用.亚热带资源与环境学报.2009,4(3):37-42.
    [16]许兰兰,檀丽丽.浅谈城市地下空间的利用.山西建筑,2006,32(16):30-31.
    [17]郑士贵.城市地下空间的开发利用.中国人民防空,2002,6:29-30.
    [18]许维敏.浅谈城市地下通道与商业及地铁的结合.交通与运输(学术版).2009,25(H12):76-79.
    [19]《建筑设计防火规范》GB50016—2006.
    [20]黄白蓉.长内走道排烟优化控制方式的适用条件研究.消防科学与技术.2009,28(8):577-579.
    [21]黄白蓉.长内走道排烟优化方式可行性研究.消防科学与技术.2009,28(1):40-42.
    [22]M. J. Karter, Fire loss in the United States in 1994, NFPA Journal,1995.93-100.
    [23]W. M. Pitts, The Global Equivalence Ratio Concept and the Formation Mechanisms of Carbon Monoxide in Enclosure Fires, Progress in Energy and Combustion Science,1995, 21:197-205.
    [24]T. Morikawa and E. Yanai, Toxic Gases and Smoke Evolution from Foam Plastic Building Materials Burning in Fire Environments, Journal of Fire Science,1989,7:131-141.
    [25]R. G, Gann, V. Babrauskas, R. D. Peacock, et al. Fire Conditions for Smoke Toxicity Measurement, Fire and Materials,1994,18(3):193-199.
    [26]V. Babrauskas, R. G. Gann, B.C. Levin, et al. A Methodology for obtaining and using toxic potency data for fire hazard analysis. Fire Safety Journal,1998,31:345-358.
    [27]U.S. Department of Transportation Federal Highway Administration Federal Transit Administration. Highway and Rail Transit Tunnel Maintenance and Rehabilitation Manual. 2004
    [28]Memorial Tunnel Fire Ventilation Test Program-Test Report. Massachusetts Highway Department and Federal Highway Administration,1995.
    [29]Sung-Wook Yoon, Dong-Ho Rie, Ha-Young Kim. Smoke control of a fire in a tunnel with vertical shaft. Journal of Loss Prevention in the Process Industries,2009,22(6):954-957.
    [30]Chan-Hoon Yoon, Min-Suk Kim, Jin Kim. The evaluation of natural ventilation pressure in Korean long road tunnels with vertical shafts. Tunnelling and Underground Space Technology,21(3-4):472.
    [31]Tong Yan, Shi MingHeng, Gong YanFeng, He JiaPeng. Full-scale experimental study on smoke flow in natural ventilation road tunnel fires with shafts. Tunnelling and Underground Space Technology,2009,24(6):627-633.
    [32]刘明亮.高层民用建筑防排烟工程设计有关问题探讨,中国科技博览,2009,32:1.
    [33]Monica Galdo Vega, Katia Maria Arguelles Diaz, et al. Numerical 3D simulation of a longitudinal ventilation system:Memorial Tunnel case. Tunnelling and Underground Space Technology,2008,23(5):539-551.
    [34]邓长平.长大高速公路隧道通风与运行安全分析,山西建筑,2010(2):313-314.
    [35]Sung Ryong Lee, Hong Sun Ryou. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio. Building and Environment,2006,41(6): 719-725.
    [36]R. O. Carvel, A. N. Beard, P. W. Jowitt. The influence of longitudinal ventilation systems on fires in tunnels. Tunnelling and Underground Space Technology,2001,16(1):3-21.
    [37]E. Palazzi, F. Curro, B. Fabiano. A Study on Road Tunnel Fires Using Hazmat, with Emphasis on Critical Ventilation Velocity. Process Safety and Environmental Protection, 2005,83(5):443-451.
    [38]M.A. Delichatsios, The flow of fire gases under a beamed ceiling. Combustion and Flame,
    1981,43:1-10.
    [39]J.P.Kunsch, Critical velocity and range of a fire-gas plume in a ventilated tunnel. Atmos. Environ.33(1999) 13-24.
    [40]D. Drysdale. An Introduction to Fire Dynamics, John Wiley & Sons,1987.
    [41]霍然、胡源、李元洲.建筑火灾安全工程导论.合肥:中国科学技术大学出版社,1999
    [42]T. H. Ellison and J. S. Turner. Turbulent entrainment in stratified flows, Journal of Fluid Mechanics.1959,6:423-448.
    [43]E. J. Strang, H. J. S. Fernando. Entrainment and mixing in stratified shear flows. J. Fluid Mech.2001,428:349-386.
    [44]S. T. Paizis, W. H. Schwarz. Entrainment rates in turbulent shear flows. Journal of Fluid Mechanics,1975,68(2):297-308.
    [45]R. I. Nokes. On the entrainment rate across a density interface. Journal of Fluid Mechanics, 1988,188:185-204.
    [46]L. H. Kantha, et al. On turbulent entrainment at a stable density interface. Journal of Fluid Mechanics,1977,79(4):753-768.
    [47]H.J.S. Fernando. Turbulent mixing in stratified fluids. Journal of Fluid Mechanics.1991,23: 455-493.
    [48]W.R. Chan, E.E. Zukowski, T. Kubota, Experimental and Numerical Studies on Two-Dimensional Gravity Currents in a Horizontal Channel, NIST-GCR-93-630.
    [49]Cetegen, M.B., Ahmed, T.A., Experiments on the periodic instability of buoyant plume and pool fires. Combustion and Flame 1993,93:157-184.
    [50]Olivier Vauquelin. Experimental simulations of fire-induced smoke control in tunnels using an "air-helium reduced scale model":Principle, limitations, results and future, Tunnelling and Underground Space Technology,2008,23:171-178.
    [51]O. Vauquelin, D. Telle. Definition and experimental evaluation of the smoke "confinement velocity" in tunnel fires. Fire Safety Journal,2005,40(4):320-330.
    [52]O. Vauquelin, O. Megret. Smoke extraction experiments in case of fire in a tunnel. Fire Safety Journal,2002,37(5):525-533.
    [53]Eui Ju Lee, et al. Jet entrainment effect on fire-induced flow in isothermal model applied to reduced-scale tunnel. Fire Safety Journal 2009,44:435-438.
    [54]Horst, T. W.& Doran, J. C.1986 Nocturnal drainage flow on simple slopes. Boundary-Layer Met.34:263-286.
    [55]M. Princevac, H. J. S. Fernando, C. D. Whiteman. Turbulent entrainment into natural gravity-driven flows. Journal of Fluid Mechanics. (2005),533:259-268.
    [56]J. S. Newman, Experimental evaluation of fire-induced stratification. Combustion and Flame, 1984,57:33-39.
    [57]EUREKA-Project EU 499:Firetun,1995 EUREKA-Project EU 499:Firetun,1995. Fires in Transport Tunnels:Report on Full-Scale Tests.
    [58]Memorial Tunnel Fire Ventilation Tests Program,1995. Massachussetts Highway Department and Federal Highway Administration, USA.
    [59]Tony Lemaire and Yvonne Kenyon, Large Scale Fire Tests in the Second Benelux Tunnel. Fire Technology,2006,42:329-350.
    [60]Kunikane Yuko, et al. Heat Release Rate of Gasoline Pool Fire in Large Cross Sectional Tunnel, Transactions of the Japan Society of Mechanical Engineers. B,2003,69(685): 2044-2051.
    [61]Anders Lonnermark, and Haukur Ingason. Gas temperatures in heavy goods vehicle fires in tunnels, Fire Safety Journal 2005,40:506-527.
    [62]Hinkley PL. The flow of hot gases along an enclosed shopping mall-a tentative theory. Fire Research Note No.807, Fire research station,1970.
    [63]张青岚, 兰彬, 张文良,等,地下商业街火灾烟气流速的试验研究.消防科学与技术,2001,1:13-16.
    [64]Ingason, H. Effects of Ventilation on Heat Release Rate of Pool Fires in a Model Tunnel. BRANDFORSK Project 738-951.Report:SP-RAPP-1995:55; ISBN-91-7848-582-7,1995.
    [65]Oka Yasushi, Atkinson Graham T. Control of smoke flow in tunnel fires. Fire Safety Journal, 1995,25(4):305-322.
    [66]G. T. Atkinson, Y. Wu. Smoke control in sloping tunnels. Fire Safety Journal,1996,27(4): 335-341.
    [67]纪杰.地铁站火灾烟气流动及通风控制模式研究.合肥:中国科学技术大学博士学位论文,2008.
    [68]Brian Y. Lattimer, Uri Vandsburger, Richard J. Roby. The transport of carbon monoxide from a burning compartment located on the side of a hallway. Twenty-Sixth Symposium (International) on Combustion,1996,26(1):1541-1547.
    [69]Christopher John Wieczorek. Carbon monoxide generation and transport from compartment fires. PhD Thesis. Blackburg:Virginia Polytechnic Institute and State University, June 2003.
    [70]Lizhong Yang, Wenxing Feng, Junqi Ye. Experimental research on the spatial distribution of toxic gases in the transport of fire smoke. Journal of Fire Sciences.2008,26(1):45-62.
    [71]冯文兴,杨立中,方廷勇等.狭长通道内火灾烟气毒性成分空间分布的试验.中国科学技术大学学报,2006,36(1):61-64.
    [72]冯文兴,杨立中,叶俊麒.火灾中烟气毒性成分向远距离房间传播的试验研究.中国科学技术大学学报,2008,38(12):1451-1454.
    [73]蒋亚强.不同排烟条件下通道内火灾烟气的输运特性研究.合肥:中国科学技术大学硕士学位论文,2009.
    [74]C.C. Hwang, J.C. Edwards. The critical ventilation velocity in tunnel fires-a computer simulation. Fire Safety Journal,2005,40(3):213-244.
    [75]Sung Ryong Lee, Hong Sun Ryou. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio. Building and Environment,2006,41(6): 719-725.
    [76]Y. Wu, M. Z. A. Bakar. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity. Fire Safety Journal,2000,35(4):363-390.
    [77]Karim Van Maele, Bart Merci. Application of RANS and LES field simulations to predict the critical ventilation velocity in longitudinally ventilated horizontal tunnels. Fire Safety Journal, 2008,43(8):598-609.
    [78]L.H. Hu, R. Huo, W. Peng, W.K. Chow, R.X. Yang. On the maximum smoke temperature under the ceiling in tunnel fires. Tunnelling and Underground Space Technology,2006,21(6): 650-655.
    [79]Woodburn P.J.,Britter R.E. CFD simulations of a tunnel fire-Part Ⅰ. Fire Safety Journal, 1996,26(1):35-62
    [80]Woodburn P.J.,Britter R.E. CFD simulations of a tunnel fire-Part Ⅱ. Fire Safety Journal, 1996,26(I):63-90
    [81]S. Bari, J. Naser, Simulation of smoke from a burning vehicle and pollution levels caused by traffic jam in a road tunnel. Tunnelling and Underground Space Technology,2005,20(3): 281-290.
    [82]H.Y. Wang, Prediction of soot and carbon monoxide production in a ventilated tunnel fire by using a computer simulation. Fire Safety Journal,2009,44(3):394-406.
    [83]Hu L.H., Fong N.K., Yang L.Z., et al. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel:Fire Dynamics Simulator comparisons with measured data [J]. Journal of Hazardous Materials,2007,140(1-2):293-298
    [84]W.K. Chow, L. Yi, C.L. Shi, Y.Z. Li, R. Huo. Mass flow rates across layer interface in a two-layer zone model in an atrium with mechanical exhaust system, Building and Environment 2006,41:1198-1202.
    [1]J. G. Quintiere. Scaling Applications in Fire Research. Fire Safety Journal,1989,15:3-29.
    [2]G. Heskestad.Physical Modeling of Fire, Journal of Fire and Flammability 1975.6.253-273.
    [3]刘方.中庭火灾烟气流动与烟气控制研究.重庆:重庆大学博士学位论文,2002.
    [4]James A. Milke. Smoke Management in Covered Malls and Atria. SFPE Handbook of Fire Protection Engineering (3rd). Quincy:National Fire Protection Association,2002.
    [5]那艳玲,地铁车站通风与火灾的CFD仿真模拟与试验研究.天津:天津大学博士学位论文,2003.
    [6]O. Vauquelin. Experimental simulations of fire-induced smoke control in tunnels using an "air-helium reduced scale model":Principle, limitations, results and future. Tunnelling and Underground Space Technology,2008,23:171-178.
    [7]Jae Seong Roha, Seung Shin Yanga, Hong Sun Ryou, et al. An experimental study on the effect of ventilation velocity on burning rate in tunnel fires-heptane pool fire case. Building and Environment,2008,43 (7):1225-1231.
    [8]袁建平,方正,黄海峰,唐智.水平隧道火灾通风纵向临界风速模型.土木建筑与环境工程.2009,31(6):66-70.
    [9]特长公路隧道纵向排烟模式与独立排烟道集中排烟模式模型试验研究,中南大学研究报告,2009.
    [10]钟委.地铁站火灾烟气流动特性及控制方法研究.合肥:中国科学技术大学博士学位论文,2007.
    [11]蒋亚强.不同排烟条件下通道内火灾烟气的输运特性研究.合肥:中国科学技术大学学位论文,2009.
    [12]杨国荣,叶大法,胡仰耆等.变风量末端装置风速传感器的基本原理及其应用.暖通空调,2006,36(7):59-64.
    [13]廖光煊,王喜世,秦俊.热灾害试验诊断方法.中国科学技术大学出版社,2003.
    [1]易家训,分层流,北京:科学出版社:1983.
    [2]E.J. Strang, H.J.S. Fernando. Entrainment and mixing in stratified shear flows. J. Fluid Mech. 2001,428:349-386.
    [3]S.B. Pope, Turbulent Flows. Cambridge University Press:2000.
    [4]J.B. Joshi, V.S. Vitankar, A.A.Kulkarni, et al. Coherent flow structures in bubble column reactors. Chemical Engineering Science,57:3157-3183.
    [5]R.A. Antonia, Conditional sampling in turbulence measurement. Annual Reviews of Fluid Mechanics 1981,13:131-156.
    [6]F. Hussain, Coherent structures-reality and myth. Physics of Fluids 1983,26:2816-2850.
    [7]J. L. Lumley, The structure of inhomogeneous turbulence. In:Yaglom A M, Tatarski V I, eds. Atmospheric Turbulence and Wave Propagation. Moscow:Nauka,1967.166-178.
    [8]L. Sirovich,1987. Turbulence and the dynamics of coherent structures. Part I:Coherent structures. Quart. Appl. Math. XLV,561-571.
    [9]N. Aubry, P. Holmes, J. L. Lumley, et al. The dynamics of coherent structures in the wall
    region of a turbulent boundary layer. J Fluid Mech,1988,192:115-173.
    [10]X. Ma, G. Karniadakis A low-dimensional model for simulating three-dimensional cylinder flow. J Fluid Mech,2002,458:181-190.
    [11]J. Moehlis, T. R. Smith, P. Holmes, et al. Models for turbulent plane Couette flow using the proper orthogonal decomposition. Phys Fluids,2002,14(7):2493-2507.
    [12]D. Hilberg, W. Lazik and H. E. Fiedler.The application of classical POD and snapshot POD in a turbulent shear layer with periodic structures. Flow, Turbulence and Combustion,53: 283-290.
    [13]A. Liberzon, R. Gurka, I. Tiselj, G. Hetsroni. Spatial characterization of the numerically simulated vorticity fields of a flow in a flume. Theoretical and Computational Fluid Dynamics,2005,19(2):115-125.
    [14]R. Gurka, A. Liberzon, G. Hetsroni. POD of vorticity fields:A method for spatial characterization of coherent structures. International Journal of Heat and Fluid Flow,2006, 27(3):416-423.
    [15]J. Kostas, J. Soria, M.S. Chong. A comparison between snapshot POD analysis of PIV velocity and vorticity data.Experiments in Fluids,2005,38(2):146-160.
    [16]A. Husain, M. F. Maig, H. Varshney, Investigation of coherent structures in rotating Rayleigh-Benard convection. Physics of Fluids,2006,18:1-4.
    [17]M. V. Tabib, J. B. Joshi. Analysis of dominant flow structures and their flow dynamics in chemical process equipment using snapshot proper orthogonal decomposition technique.Chemical Engineering Science,2008,63(14):3695-3715.
    [18]K. McGrattan, S. Hostikka, J. Floyd, H. Baum, R. Rehm. Fire Dynamics Simulator (Version 5)-Technical Reference Guide. National Institute of Standards and Technology,1018-5,2008.
    [19]M. Raffel, C. E.Willert, S. T. Wereley, J. Kompenhans, Particle Image Velocimetry-A Practical Guide.2nd Edition, Springer.2007.
    [20]L. Gui, W. Merzkirch, A comparative study of t he MQD method and several correlation2based PIV evaluation algorithms. Experiments in Fluids,2000,28:36-44.
    [21]http://www.openpiv.net/
    [22]G. Berkooz, P. Holmes, J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech.,1993,25:539-576.
    [1]T. H. Ellison and J. S. Turner. Turbulent entrainment in stratified flows, Journal of Fluid Mechanics,6(1959)423-448
    [2]M. Princevac, H. J. S. Fernando, C. D. Whiteman. Turbulent entrainment into natural gravity-driven flows. J. Fluid Mech. (2005), vol.533, pp.259-268.
    [3]P. E. Dimotakis and G. L. Brown, The mixing layer at high Reynolds number:large-structure dynamics and entrainment. Journal of Fluid Mechanics (1976),78:3:535-560.
    [4]J. H. Konrad, An experimental investigation of mixing in two dimensonal turbulent shear flows with applications to diffusion limited chemical reactions. PhD thesis, California Institute of Technology. Project SQUID Report CIT-8PV.1976.
    [5]E.E. Zukoski, T.Kubota, and B. Cetegen, Entrainment in Fire Plumes, Fire Safety Journal, 3:107-121,1980.
    [6]B. J. McCaffrey, Purely Buoyant Diffusion Flames:Some Experimental Results, NBSIR 79-1910,National Bureau of Standards,1979.
    [7]P. H. Thomas, P. L. Hinkley, C. R. Theobald, D. L. Simms, Investigations into the Flow of Hot Gases in Roof Venting, Fire Research Technical Paper No.7, HMSO, London,1963.
    [8]G. Heskestad, Fire Plumes, SFPE Handbook of Fire Protection Engineering,2nd ed.,National Fire Protection Association, Quincy, MA,1995.
    [9]Y. DeSaubies,& W. K. Smith, Statistics of Richardson number and instability in oceanic internal waves. J. Phys. Oceanogr.1982,12:1245-1259.
    [10]P. G. Baines, Two-dimensional plumes in stratified environments. J. Fluid Mech.2002,471, 315-337.
    [11]E. J. Strang, H. J. S. Fernando. Entrainment and mixing in stratified shear flows. J. Fluid Mech.2001,428:349-386.
    [12]P. K. Kundu, R. C. Beardsley, Evidence of a critical Richardson number in moored measurements during the upwelling season o_ Northern California. J. Geophys. Res.1991, 37:643-655.
    [13]D. T. Gottuk, R. J. Roby, C. L. Beyler. The role of temperature on carbon monoxide production in compartment fires. Fire Safety J.,1995,24(4):315-331
    [14]L.H. Hu, F. Tang, D. Yang, S. Liu, R. Huo, Longitudinal distributions of CO concentration and difference with temperature field in a tunnel fire smoke flow. International Journal of Heat and Mass Transfer,2010,53,13-14:2844-2855.
    [15]Y. He, A. Fernando, M. Luo, Determination of interface height from measured parameter profile in enclosure fire experiment, Fire Safety J.31 (1) (1998) 19-38.
    [16]L.Y. Cooper, M. Harkleroad, J. Quintiere, et al., An experimental study of upper hot layer stratification in full-scale multi-room fire scenarios, J. Heat Transfer.104 (1982) 741-749.
    [1]M. G. Vega, K.M.A. Diaz, et al. Numerical 3D simulation of a longitudinal ventilation system: Memorial Tunnel case. Tunnelling and Underground Space Technology,2008,23(5):539-551.
    [2]P. F. Hartman, J. W. Huijben. Tunnel ventilation and safety in escape routes. Tunnelling and Underground Space Technology,2006,21(3-4):293-294.
    [3]S. R. Lee, H. S. Ryou, et al. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio. Building and Environment,2006,41(6):719-725.
    [4]J. S. Roh, H. S. Ryou, et al. Critical velocity and burning rate in pool fire during longitudinal ventilation [J]. Tunnelling and Underground Space Technology,2007,22(3):262-271.
    [5]胡隆华,霍然,王浩波,杨瑞新.公路隧道内火灾烟气温度及层化高度分布特征试验.中国公路学报,2006,19(6):79-82.
    [6]J. P. Kunsch. Critical velocity and range of a fire-gas plume in a ventilated tunnel. Atmospheric Environment,1998,33(1):13-24.
    [7]J. S. Newman. Experimental evaluation of fire-induced stratification. Combustion and Flame, 1984,57:33-39.
    [8]E. J. Strang, H.J.S. Fernando. Entrainment and mixing in stratified shear flows. J. Fluid Mech. 2001,428:349-386.
    [9]H. J. S. Fernando. Turbulent mixing in stratified fluids. J. Fluid Mech.1991,23:455-493.
    [10]M. A. Delichatsios. The flow of fire gases under a beamed ceiling. Combust and Flame,1981:43:1-10.
    [11]L.H. Hu, R. Huo, R.X. Yang, W.H. He, H.B. Wang, Y.Z. Li, Full scale experiments on studying smoke spread in a road tunnel, in:Fire Safety Science-Proceedings of the 8th International Symposium, Beijing, China,2005.
    [12]卢尔兵.浅谈公路隧道的勘察设计和施工方法.煤炭工程,2009,(08):28-30.
    [13]李勇军.武汉长江隧道工程施工技术.隧道建设,2008,(03):318-323.
    [14]樊存华,靳世鹤.南京长江隧道盾构施工技术难点分析.铁道建筑技术,2006,(04):37-39.
    [15]M. Poreh, N.R. Marshall, A. Regev. Entrainment by adhered two-dimensional plumes. Fire Safety Journal,2008,43(5):344-350.
    [16]A. Regev, S. Hassid, M. Poreh. Density jumps in smoke flow along horizontal ceilings. Fire Safety Journal,2004,39(6):465-479.
    [17]A.S. Awad, R.K. Calay, O.O. Badran, A.E. Holdo, An experimental study of stratified flow in enclosures, Appl. Therm. Eng.28 (17-18) (2008)2150-2158.
    [18]Y. He, A. Fernando, M. Luo, Determination of interface height from measured parameter profile in enclosure fire experiment, Fire Safety J.31 (1) (1998) 19-38.
    [19]FLUENT 6.1 User's Guide.
    [20]Ljuboja, M., Rodi, W.,1980. Calculation of turbulent wall jets with an algebraic Reynolds stress models. ASME J. Fluids Eng.,102,350-356.
    [21]Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z, Zhu, J.,1995. A new k-epsilon eddy viscosity model for high reynolds number turbulent flows. Computers and Fluids 24(3) 227-238.
    [22]Launder, B.E, Spalding, D.B,1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering,3:269-289.
    [23]Biollay, H., Chasse, P.,1996. Validating and optimizing 2D and 3D computer simulation for the Offenegg fire tests. In:Tunnel Engineering Handbook. Chapman & Hall, New York, pp. 357-382.
    [24]Jurij, M.,2003. Fire simulation in road tunnels. Tunnelling and Underground Space Technology,18,525-530.
    [25]SFPE Handbook of Fire Protection Engineering Third Edition, chapter 1 Section 2. National Fire Protection Association, Quincy,2002.
    [26]Koylu, U.O., Faeth, GM.,1991. Carbon Monoxide and Soot Emission from Liquid-Fueled Buoyant Turbulent Diffusion Flames. Combustion and Flame,87,61-76.
    [27]Huggett., C.,1980. Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements. Fire and Material,4,61-62.
    [1]Y. Alarie, Toxicity of Fire Smoke, Critical Reviews in Toxicology 2002; 32:259-289.
    [2]C. L. Beyler, Major Species Production by Diffusion Flames in a Two-layer Compartment Fire Environment. Fire Safety Journal,1986,10:47-56
    [3]C. L. Beyler, Major Species Production by Solid Fuels in a Two Layer Compartment Fire Environment. Fire Safety Science-Proceedings of the First International Symposium. Washington, DC:Hemisphere Publishing Corp,1986:430-431.
    [4]W. M. Pitts, Global equivalence ratio concept and the formation mechanisms of carbon monoxide in enclosure fires. Progress in Energy and Combustion Science,1995,21(3):197
    [5]B. Y. Lattimer, D. S. Ewens, U. Vandsburger, et al. Transport and oxidation of compartment fire exhaust gases in an adjacent corridor. Journal of Fire Protection Engineering,1994, 6(4):163-181
    [6]B. Y. Lattimer, U. Vandsburger, R. J. Roby. The transport of carbon monoxide from a burning compartment located on the side of a hallway. Twenty-Sixth Symposium (International) on Combustion,1996,26(1):1541-1547
    [7]方廷勇,自然通风状况下的烟气在典型建筑结构中的迁移及危害性评价的研究,博士学位论文,中国科学技术大学,合肥2006.
    [8]L.H. Hu, N.K. Fong, L.Z. Yang, et al. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel:Fire Dynamics Simulator comparisons with measured data. Journal of Hazardous Materials,2007,140 (1-2):293-298.
    [9]L.H. Hu, F. Tang, D. Yang, S. Liu, R. Huo, Longitudinal distributions of CO concentration and difference with temperature field in a tunnel fire smoke flow. International Journal of Heat and Mass Transfer,2010,53,13-14:2844-2855.
    [10]J. S. Newman, Experimental evaluation of fire-induced stratification. Combustion and Flame, 1984,57:33-39.
    [11]M. A. Delichatsios, The flow of fire gases under a beamed ceiling. Combustion and Flame, 1981;43:1-10.
    [12]R. L. Alpert, Ceiling jet flows. In:SFPE handbook of fire protection engineering.3rd ed. National Fire Protection Association,2002.
    [13]E. Evers and A. Waterhouse, A Complete Model for Analyzing Smoke Movement in Buildings, Building Research Establishment, BRE CP 69/78.
    [14]L.H. Hu, R. Huo, W.K. Chow, H.B. Wang, R.X. Yang, Decay of buoyant smoke layer temperature along the longitudinal direction in tunnel fires, J. Appl. Fire Sci., Vol.13 (1): 49-73,2004-2005.
    [15]F. P Incropera, D. P. DeWitt, TL Bergman, AS Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons, Inc.,2001.
    [16]N. B. Vargaftik, Tables of the Thermophysical Properties of Liquids and Gases,2nd ed., Hemisphere Publishing, New York,1975.
    [17]J. O. Hirschfelder, C. F. Curtiss, R. Byron. The Molecular Theory of Gases and Liquids, Wiley, New York,1964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700