边界元法在气热耦合计算及冷却结构优化中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机技术已成为衡量国家科技工业水平和综合国力的重要标志,为此各国竞相开展了航空发动机的高技术研究。随着航空工业的发展,对发动机提出了更高的要求,要求它有更高的推重比、更大的单位体积输出功率、更低的燃油消耗率及更好的可靠性能等。提高涡轮前燃气温度是提高发动机性能的有效途径,然而,涡轮进口温度的提高速度远远高于叶片材料耐温性能的发展速度,由此为保证涡轮叶片在高温环境下安全可靠地工作,必须采取有效的冷却技术和热防护措施。涡轮叶片温度场的准确预测可以有效地指导设计人员进行涡轮叶片冷却结构设计,以提高冷却效率、延长叶片工作寿命。本文的主要工作是在哈尔滨工业大学推进理论与技术研究所原有的流体计算程序基础上,搭建具有自主知识产权、适用于气冷涡轮叶栅气热耦合换热计算的数值仿真平台;并进一步深入分析湍流模型、冷却通道入口湍流特性条件以及换热系数实验准则式对气热耦合计算结果的影响。最后应用基于边界元方法(BEM)和有限差分方法(FDM)的气热耦合程序建立了气冷涡轮叶片冷却结构全耦合优化设计体系。
     本文首先对边界元法进行了深入的理论研究,详细推导了二维、三维边界元法求解势函数问题的控制方程,并建立边界元法计算固体区域热传导问题的数学模型,编写了二维、三维边界元程序。利用解析解和数值解对边界元程序进行准确性校验,计算结果表明,边界元法仅仅计算模型的表面网格单元,使得数值模拟的前处理和求解时间缩短。同时,由于其具备解析与离散相结合的特性,因此计算结果准确、计算精度较高。对三维边界元程序进行网格适应性研究,研究表明边界元方法对网格质量的依赖性很小。
     将边界元计算方法用于燃气涡轮叶栅气热耦合换热计算中,搭建起气热耦合数值仿真平台。并应用此气热耦合数值仿真平台数值模拟了NASA-MarkII涡轮叶栅具有典型流动特点的两个实验工况。分析数值模拟结果得出,三维气热耦合程序能够准确模拟不同流动特性的涡轮叶栅内部流动;叶栅内部温度场计算结果说明,在涡轮叶片表面的流体边界层内部温度梯度较大,传热过程剧烈,在流体边界层内部流体由顺压力梯度到逆压力梯度的过渡区域,由于叶栅内复杂的流动特点,采用B-L代数模型的三维气热耦合程序在预测边界层局部区域流体的传热特性时存在一定偏差。
     采用商业软件Fluent和CFX对相同的实验叶栅进行气热耦合计算,着重分析气热耦合计算的网格适应性、冷却通道入口不同湍流特性条件对耦合换热结果的影响以及不同湍流模型对具有流动分离特性的涡轮叶栅的流动、传热及热应力特性的预测能力。计算结果表明,涡轮叶栅流动特性计算结果对边界层网格依赖性很小,对网格质量要求不高;而边界层不同的网格划分对叶栅内传热特性的预测略有差异,其主要影响因素为边界层网格厚度和流向网格加密程度。对于涡轮叶片冷却通道、冷却孔等内部流动,湍流强度完全依赖于上游流动的历史,冷却通道的入口湍流特性对通道内流动发展影响较大,从而冷却通道进口湍流特性条件能否正确给定对涡轮叶栅耦合换热计算结果的准确度具有较大影响。CFX提供的考虑转捩流动特性的k- -SST- -湍流模型能够准确分辨层流及转捩状态,对边界层内复杂流动和传热过程模拟较为准确,但其不足之处为,k- -SST- -湍流模型过高地估计了转捩区域的湍动能而造成转捩区的过大估计,从而使得对流换热系数计算值过大,温度偏高。而三维气热耦合程序采用的修正B-L代数模型能够更为准确模拟不存在分离或分离较小的涡轮叶栅热环境,计算结果显示,B-L代数模型除在叶片边界层转捩区域存在一定误差外,其余位置对涡轮叶栅传热特性的预测要强于CFX提供的k- -SST- -湍流模型计算结果。同时,从涡轮叶片热应力特性分析结果得出,在涡轮叶栅气热耦合计算中温度场预测结果的准确与否对涡轮叶片热应力结果预测、以至涡轮叶片寿命预估和冷却结构设计工作至关重要。
     将换热系数实验准则式引入气冷涡轮叶栅气热耦合计算中,在计算过程中考虑了基于气冷涡轮叶片冷却通道不同几何模型和实际工况的修正因子,详细对比分析涡轮叶片内冷通道的不同换热系数实验准则式对耦合计算结果的影响;分析气冷涡轮叶片内冷通道采用、不采用换热系数实验准则式对气热耦合计算结果的影响以及对不同湍流模型预测叶栅流动、传热过程准确程度的影响。计算结果表明,气冷涡轮叶栅气热耦合计算中,涡轮叶片冷却通道、冷却孔等位置采用修正的对流换热系数实验准则式可以得到准确的叶栅流场及叶片温度场分布。换热系数实验准则式的采用绕开了湍流模型对冷却通道流体区域的求解过程,使得湍流模型能够专一求解叶栅主流燃气区域流动和传热过程,从而能够更为准确分析不同湍流模型对叶栅主流区域流动、传热特性的计算能力。同时避免了湍流模型计算多区域流场时求解误差的叠加,并且节省计算时间。
     将三维气热耦合程序作为气冷涡轮叶栅数值模拟的主程序,建立了气冷涡轮叶片冷却结构全耦合优化设计体系。对NASA-MarkII涡轮叶栅10个径向冷却通道进行优化,在优化过程中将冷却通道孔径、冷却通道空间位置和流经冷却通道的冷气流量作为设计变量进行参数控制,并且对冷却通道孔径和位置进行必要的约束。优化目标函数包括涡轮叶片温度最大值、温度平均值以及冷却孔冷气流量。优化中通过加权求和的方法将多目标函数转化为单目标函数,寻求涡轮叶片冷却结构的最优解。得益于气热耦合程序中求解固体区域热传导问题的边界元程序模块,使得涡轮叶片冷却结构全耦合优化计算时间缩短,工作量减少。在优化过程中,边界元方法省去了固体区域网格重复生成、重复计算的过程,避免了固体区域网格与流体区域网格的插值误差,从而提高优化效率和问题求解的计算精度。优化结果表明,冷却通道位置以及冷却通道孔径的优化,使得叶片区域温度最大值降低;优化后冷气流量的减少,使得叶片区域平均温度略有提高,但提高幅度很小。另外,优化后冷却通道流体与涡轮叶片的换热受入口段的影响有所降低,从而使得涡轮叶片径向温度梯度减小。
Aircraft engine technology has become an important indicator for measuringthe science and technology level and comprehensive national strength. So manystates begin to carry out the aircraft engine’s high-tech research. With thedevelopment of aviation industry, the engine is made a higher demand. It needs tohave a higher thrust-weight ratio, a greater output power per unit volume, a lowerfuel consumption and a better reliability. Increasing turbine inlet gas temperature isan effective way to improve engine performance. However, turbine inlettemperature increased much faster than the blade material heat resistance rate ofdevelopment. So the efficient cooling technology and thermal protection measuresmust be adopted for ensuring turbine safety and reliability work. The accurateprediction of the turbines thermal environment can effectively guide the researcherto design turbine blade cooling structure, to improve cooling efficiency and extendthe working life of turbine. The purpose this study is to set up a numericalsimulation platform of air-cooled turbine conjugate heat transfer calculation withindependent intellectual property rights. The numerical simulation platform is basedon the fluid solver of Propulsion Theory and Technology Institute of HarbinInstitute of Technology. In addition, this paper researches detailedly the effect ofturbulence models, turbulence characteristics conditions of cooling channelentrance and heat transfer coefficient experimental criteria on the conjugate heattransfer results. Using the Boundary Element Method (BEM)/Finite DifferenceMethod (FDM) conjugate heat transfer solver, this paper sets up the full conjugateoptimization design system for air-cooled turbine vane cooling structure.
     Firstly, the BEM theory was study deep and then the controlling equations of2D and 3D BEM solving the potential function were deduced detailedly. The paperset up the BEM mathematical model for the solution of the solid regional heatconduction problem and compiled the 2D and 3D boundary element programs. Theprogram verification work was finished with the analytical and numerical solutions.The results showed that the BEM is that no volumetric grid is required inside thesolid, so it saves the numerical simulation pre-processing time and computation time. At the same time, the analytical and discrete combination characteristics makethe BEM get the accurate results and higher accuracy. The research results of BEMadaptation of the grid showed that the BEM has little dependence on the gridquality.
     The BEM was applied to the conjugate heat transfer analysis of gas turbinevane and a numerical simulation platform of air-cooled turbine conjugate heattransfer calculation was set up. The conjugate heat transfer numerical simulationplatform was employed to simulate the two different typical flow characteristicsexperimental conditions of NASA-MarkII turbine guide vane. The calculationresults showed that three-dimensional conjugate heat transfer solver can simulateaccurately different flow characteristics of turbine vane. The temperaturedistribution results showed that within flow boundary layer of turbine blade surfacethe temperature gradient is great and heat transfer course is severe. The complicatedflow characteristics make the 3D conjugate heat transfer solver which adopted theB-L algebraic model has a little error for the calculation of turbine vane heattransfer characteristics.
     Secondly, computational fluid dynamics software Fluent and CFX wereemployed to simulate the same experimental turbine vane with the conjugate heattransfer method. The paper finished the grid adaptation research of conjugate heattransfer calculation and cooling channel inlet turbulence characteristics conditionsresearch. In addition, the paper researched the effect of turbulence models on theflow, heat transfer and thermal stress characteristics for the turbine vane with theflow separation characteristics. The results showed that the flow characteristicsresult has little dependence on the flow boundary layer grid and has lower demandfor the grid quality. However, the grid quality has some effect on heat transfercharacteristics results. The main factors are the flow boundary layer thickness andthe grid refinement along flow direction. For internal flow of turbine blade coolingchannels or cooling holes, the turbulence intensity at the inlets is totally dependenton the upstream history of the flow. So the inlet turbulence characteristics have agreat effect on the flow development and conjugate heat transfer results of air-cooled turbine vane. CFX provides the K- -SST- - turbulence model whichconsiders the transition flow characteristics. The results showed that K- -SST- - turbulence models can exactly simulate the laminar flow and transition flow status and can predict accurately flow and heat transfer characteristics of turbinevane. But k- -SST- - turbulence model overestimates the turbulence kineticenergy of blade local region and makes the heat transfer coefficient higher. It causesthat local region temperature is higher. The 3D conjugate heat transfer solveradopted the B-L algebraic model. The calculation results of B-L algebra turbulencemodel showed that B-L model can simulate accurately turbine vane thermalenvironment without flow separation or with small flow separation. The results ofB-L model are more accurate than K- -SST- - turbulence model besides it hasa little temperature error in the suction side transition region. Simultaneously,turbine blade thermal stress results showed that the temperature distribution resulthas a great effect on the prediction of turbine blade thermal stress and life cycle,which can guide effectively the researcher to design the cooling structure of turbineblade.
     In addition, heat transfer coefficient experimental criteria were applied to theconjugate heat transfer calculation of air-cooled turbine vane. Heat transfercoefficient experimental criteria consider the correction coefficient which based onthe different geometry and work conditions of air-cooled turbine vane inner-coolingchannels. The paper analyzed the effect of different heat transfer coefficientexperimental criteria on conjugate heat transfer calculation results. At the same time,the paper also analyzed the prediction ability of the different turbulence models forturbine flow and heat transfer course when the air-cooled turbine vane inner-cooling channels adopted and not adopted the heat transfer coefficient experimentalcriteria. The results showed that the conjugate heat transfer calculation of turbineblade cooling channels or cooling holes which adopted the heat transfer coefficientexperimental criteria can get the accurate turbine flow field and temperature fielddistribution. This method avoids the solution process of turbine vane coolingchannels and makes the different turbulence models simulate single the turbinecascade main flow region. Thus this method avoids the accumulative error of multi-zone flow field calculation and saves the calculation time.
     Finally, using conjugate heat transfer solver, this paper set up the fullconjugate optimization design system for air-cooled turbine vane cooling structure.The analysis involved the optimization of location, size and coolant mass flow often internal cooling passages of NASA-MarkII air-cooled turbine vane. The optimization objectives included the maximum temperature, the averagetemperature and coolant mass flow. In order to meet the optimal solution, multi-objective function was transformed into a single objective function through a formof weighted sum of particular criteria. Owe to the BEM which was employed tosolve the solid region heat transfer problem, the full conjugate optimizationcalculation time was saved. In the optimization process the BEM avoided therepeated generation and calculation work of solid region grid. At the same time, itavoided the Interpolation error between solid region grid and fluid region grid andimproved the optimize efficiency and solution accuracy. The optimization resultsshowed that the full conjugate optimization calculation decreased the maximumtemperature and saved the coolant mass flow. The average temperature increased,but the amplitude was very small. In addition, optimization calculation decreasedthe effect of entrance on cooling channels heat transfer and reduced radialtemperature gradient of turbine blade.
引文
1刘大响.对加快发展我国航空动力的思考.航空动力学报. 2001, 16(1): 1~7
    2蒋洪德.美国航空发动机和计算流体力学发展情况介绍.气动热力学发展战略研讨会专题报告汇编. 1989, (3):29~36
    3方昌德.航空发动机的发展前景.航空发动机. 2004, 30(1):1~5
    4 IHPTET十年进展,航空工业总公司内部资料, 1998
    5吴大观.航空发动机研制工作论文集.航空工业出版社, 1999
    6 J. C. Han, S. Duffa. S. V. Ekkad. Gas Turbine Heat Transfer and CoolingTechnology. Taylor&Francis, New York, 2000
    7方昌德.美国AIAA呼吁政府支持综合高性能涡轮发动机技术.中国航空工业发展研究中心航空技术所
    8 J. D. Heidmann, A. J. Kassab, E. A. Divo, F. Rodriguez, E. Steinthorsson.Conjugate Heat Transfer Effects on a Realistic Film-cooled Turbine Vane.ASME Paper GT2003-38553, 2003
    9葛绍岩等.气膜冷却.科学出版社, 1985.
    10 W. Koop. Integrated High Performance Turbine Engine Technology(IHPTET)Program. ISABE 97-7175, 1997
    11曹玉璋等.航空发动机传热学.北京航空航天大学出版社, 2005
    12 D. K. Hennecke. Turbine Cooling in Aeroengines. Von Karman Inst. LS, 1982
    13韩介秦等.燃气轮机传热和冷却技术.西安交通大学出版社, 2005
    14 E. Steinthorsson, A. A. Ameri, D. L. Rigby. TRAF3D.MB-A Multi-Block FlowSolver for Turbomachinery Flows. AIAA Paper No.97-996, 1997
    15 D. Bohn, K. Kusterer, T. Sugimoto, R. Tanaka. Conjugate Analysis of a TestConfiguration for a Film-cooled Blade under Off-design Conditions. ISABE-2003-1176, 2003
    16 K. Kusterer, D. Bohn, T. Sugimoto, R. Tanaka. Conjugate Heat TransferAnalysis of a Test Configuration for a Film-cooled Blade. IGTC 2003 TokyoTS-083, 2003
    17 K. Kusterer, D.Bohn, T. Sugimoto, R. Tanaka. Conjugate Calculations for aFilm Cooled Blade under Different Operating Conditions. ASME Paper.GT2004-53719, 2004
    18 K. Kusterer, T. Hagedorn, D. Bohn, T. Sugimoto, R. Tanaka. Improvement of aFilm-cooled Blade by Application of the Conjugate Calculation Technique.ASME Paper. GT2005-68555, 2005
    19陶文铨.数值传热学.第2版.西安交通大学出版社, 2001
    20张丽芬.采用热-流耦合方法对内冷式涡轮叶片换热的计算研究.西北工业大学硕士论文. 2006
    21 E. Divo, E. Steinthorsson, A. J. Kassab, R. Bialecki. An Iterative BEM/FVMProtocol for Steady-state Multi-dimensional Conjugate Heat Transfer inCompressible Flows. Engineering Analysis with Boundary Elements. 2002, 26:447~454
    22董素艳.有进口热斑时涡轮级内流场和温度场的非定常数值模拟.西北工业大学博士论文. 2001
    23 Kays, Crawford. Convective Heat and Mass Transfer. 2nd ed. McGraw-Hill.New York, 1980: 217
    24 M. He, A. J. Kassab, P. J. Bishop, A. Minardi. An Iterative FDM/BEM Methodfor the Conjugate Heat Transfer Problem—Parallel Plate Channel with ConstantOutside Temperature. Engineering Analysis with Boundary Elements. 1995, 15:43~50
    25 S. Mori, T. Shinke, M. Sakakibara, A. Tanimoto. Steady Heat Transfer toLaminar Flow between Parallel Plates with Conduction in Wall. Heat TransferJapanese Research. 1976, 5(4): 17~25
    26 E. J. Davis, W. N. Gill. The Effects of Axial Conduction in the Wall on HeatTransfer with Laminar Flow. International Journal of Heat and Mass Transfer.1970, 13(3): 459~470
    27 O. C. Zienkiewicz, D. W. Kelly, P. Bettes. The Coupling of Finite Element andBoundary Solution Procedures. Int J Numer Meth Engng 1977, 11: 355~375
    28 S. V. Patankar. A Numerical Method for Conduction in Composite Materials:Flow in Irregular Geometries and Conjugate Heat Transfer. Proceedings SixthInternational Heat Transfer Conference. 1978, 3: 297~302
    29 G. B. Barozzi, G. Pagliarini. A Method to Solve Conjugate Heat TransferProblems: The Case of Fully Developed Laminar Flow in a Pipe. Journal ofHeat Transfer. 1985, 107(1): 77~83
    30 M. Sakakibara, S. Mori, A. Tanimoto. Conjugate Heat Transfer with LaminarFlow in an Annulus. The Canadian Journal of Chemical Engineering. 1987,65(4): 541~549
    31 Nonymous. State-of-the-art in BEM/FEM Coupling. Bound Elem AbstrNewslett. 1993, 4(3): 94~103
    32 S. Ganguly, J. B. Layton, C. Balakrishna. Symmetric Coupling of MultizoneCurved Galerkin Boundary Elements with Finite Elements in Elasticity. Int JNumer Meth Engng. 2000, 48: 633~654
    33 D. Bohn, B. Bonhoff, H. Schonenborn, H. Wilhelmi. Validation of a NumericalModel for the Coupled Simulation of Fluid Flow and Diabatic Walls withApplication to Film-Cooled Gas Turbine Blades. VDI-Berichte Nr. 1186, 1995
    34 D. Bohn, B. Bonhoff, H. Schonenborn, H. Wilhelmi. Prediction of the Film-Cooling Effectiveness of Gas Turbine Blades Using a Numerical Model for theCoupled Simulation of Fluid Flow and Diabatic Walls. AIAA Paper 95-7105,1995
    35 D. Bohn, B. Bonhoff, H. Schonenborn. Combined Aerodynamic and ThermalAnalysis of a Turbine Nozzle Guide Vane. IGTC-paper-108, 1995
    36 D. Bohn, V. Becker, K. Kusterer, Y. Otsuki, T. Sugimoto, R. Tanaka. 3-DInternal Flow and Conjugate Calculations of a Convective Cooled TurbineBlade with Serpentine-Shaped and Ribbed Channels. ASME Paper 99-GT-220,1999
    37 T. Takahashi, K. Watanabe, T. Takahashi. Thermal Conjugate Analysis of a FirstStage Blade in a Gas Turbine. ASME Paper 2000-GT-251, 2000
    38 Z. X. Han, B. H. Dennis, G. S. Dulikravich. Simultaneous Prediction ofExternal Flow-Field and Temperature in Internally Cooled 3-D Turbine BladeMaterial. ASME Paper 2000-GT-253, 2000
    39 D. L. Rigby, J. Lepicovsky. Conjugate Heat Transfer Analysis of InternallyCooled Configurations. ASME Paper 2001-GT-405, 2001
    40 A. Montenay, L. Pate, J. M. Duboue. Conjugate Heat Transfer Analysis of anEngine Internal Cavity. ASME Paper 2000-GT-282, 2000
    41 J. A. Verdicchio, J. W. Chew, N. J. Hills. Coupled Fluid/Solid Heat TransferComputation for Turbine Discs. ASME Paper 2001-GT-0205, 2001
    42 Y. Okita, S. Yamawaki. Conjugate Heat Transfer Analysis of Turbine Rotor-Stator System. ASME Paper GT-2002-30615, 2002
    43 J. K. Luff, J. J. McGuirk. Numerical Prediction of Combustor Heatshield Flowand Heat Transfer with Sub-Grid-Scale Modelling of Pedestals. ASME Paper2001-GT-0144, 2001
    44 U. Krüger, K. Kusterer, G. Lang, H. R?sch, D. Bohn, E. Martens. Analysis ofthe Influence of Cooling Steam Conditions on the Cooling Efficiency of theSteam-Cooled Vane Using the Conjugate Calculation Technique. ASME paper2001-GT-0166, 2001
    45冯国泰,黄家骅,李海滨等.涡轮发动机三维多流场耦合数值仿真的数学模型.上海理工大学学报. 2001, 23(3): 189~192
    46李海滨,冯国泰.叶轮机械中的多场耦合分析技术.航空发动机. 2002, 2:51~56
    47周驰,冯国泰,王松涛等.涡轮叶栅气热耦合数值模拟.工程热物理学报.2003, 24(2): 224~227
    48李海滨,冯国泰,王松涛等.涡轮三维叶栅气热耦合数值模拟.工程热物理学报. 2003, 24(5): 770~772
    49姜澎,黄洪雁,冯国泰.空气冷却涡轮叶片气热耦合数值计算.哈尔滨工业大学学报. 2006, 38(12): 2036~2038
    50黄洪雁,陈凯,董平,冯国泰,王仲奇.气热耦合多孔气膜冷却流动的数值研究.工程热物理学报. 2007, 28(z1): 81~84
    51董平,黄洪雁,冯国泰.高压燃气涡轮径向内冷叶片气热耦合的数值分析.航空动力学报, 2008, 23(2): 201~207
    52苏生,胡捷,刘建军等.复杂空冷叶片换热特性研究.燃气涡轮试验与研究.2008, 21(3): 26~31
    53沈煜欣,刘建军.热传导对微型涡轮动叶性能影响的数值模拟.工程热物理学报. 2008, 29(11): 1831~1834
    54董平.航空发动机气冷涡轮叶片的气热耦合数值模拟研究.哈尔滨工业大学博士论文. 2009
    55 H. Li, A. J. Kassab. Numerical Prediction of Fluid Flow and Heat Transfer inTurbine Blades with Internal Cooling. AIAA/ASME Paper 94-2933, 1994
    56 H. Li, A. J. Kassab. A Coupled FVM/BEM Solution to Conjugate Heat Transferin Turbine Blades. AIAA Paper 94-1981, 1994
    57 R. Ye, A. J. Kassab, H. J. Li. FVM/BEM Approach for the Solution ofNonlinear Conjugate Heat Transfer Problems. Proceedings of the BEM 20,Orlando, Florida, August 19-21, 1998: 679~689
    58 M. He, A. J. Kassab, P. J. Bishop, A. Minardi. A Coupled FDM/BEM IterativeSolution for the Conjugate Heat Transfer Problem in Reply to: Thick-walledChannels: Constant Temperature Imposed at the Outer Channel Wall. EngngAnal. 1995, 15(1): 43~50
    59 M. He, P. J. Bishop, A. J. Kassab, A. Minardi. A Coupled FDM/BEM Solutionfor the Conjugate Heat Transfer Problem. Numer Heat Transfer, Part B: Fundam.1995, 28(2): 139~159
    60 D. Kontinos. Coupled Thermal Analysis Method with Application to MetallicThermal Protection Panels. AIAA J Thermophys Heat Transfer. 1997, 11(2):173~181
    61 C. P. Rahaim, A. J. Kassab, R. J. Cavalleri. A Coupled Dual ReciprocityBoundary Element/Finite Volume Method for Transient Conjugate HeatTransfer. AIAA J Thermophys Heat Transfer. 2000, 27~38
    62 A. J. Kassab, E. Divo, J. D. Heidmann, E. Steinthorsson, F. Rodriguez.BEM/FVM Conjugate Heat Transfer Analysis of a Three-Dimensional FilmCooled Turbine Blade. International Journal for Numerical Methods in HeatTransfer and Fluid Flow. (in press)
    63 D. E. Bohn, C. Tummers. Numerical 3-D Conjugate Flow and Heat TransferInvestigation of a Transonic Convection-Cooled Thermal Barrier CoatedTurbine Guide Vane with Reduced Cooling Fluid Mass Flow. ASME PaperGT2003-38431, 2003
    64 L. D. Hylton, M. S. Mihelc, E. R. Turner, D. A. Nealy, R. E. York. Analyticaland Experimental Evaluation of the Heat Transfer Distribution Over theSurfaces of Turbine Vanes. NASA Technical Report. ASA-CR-1680, 1983
    65 F. Montomoli, P. Adami, S. Della Gatta, F. Martelli. Conjugate Heat TransferModeling in Film Cooled Blades. ASME Paper GT2004-53177, 2004
    66 F. J. Cunha, M. T. Dahmer, M. K. Chyu. Thermal-Mechanical Life PredictionSystem for Anisotropic Turbine Components. ASME Paper 2005-GT-68107,2005
    67 T. Ogata, M. Yamamoto. Biaxial Thermo Mechanical Fatigue Life Property of aNi Base DS Super Alloy. ASME paper GT2006-90758, 2006
    68 Z. S. Fernando, N. Diganta, B. Candelario, et al. Heat Transfer and ThermalMechanical Stress Distributions in Gas Turbine Blades. ASME paper GT2009-59194, 2009
    69邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展. 1997, 27(1): 19~37
    70黄典贵.透平叶片与流场系统的稳定性分析非定常欧拉解法.中国电机工程学报. 1999, 19(5): 24~27
    71黄典贵.振动叶栅中振荡欧拉流场求解的一种简化方法.振动工程学报.1999. 12(4): 457~480
    72黄唐,毛国良,姜贵庆等.二维流场、热、结构一体化数值模拟.空气动力学学报. 2000, 18(1):115~119
    73朱加铭,欧贵宝,何蕴增.有限元与边界元法.哈尔滨工程大学出版社,2002
    74申光宪,肖宏,陈一鸣.边界元法.机械工业出版社, 1998
    75杨德全,赵忠生.边界元理论及应用.北京理工大学出版社, 2002
    76马书尧.工程中的边界元方法概论.机械设计, 1984
    77姚寿广.边界元数值方法及其工程应用.国防工业出版社, 1995
    78嵇醒,臧跃龙,程玉民.边界元法进展及通用程序.同济大学出版社, 1997
    79周春红,杨德全.传热器件的边界元分析.内蒙古民族大学学报(自然科学版). 2004, 19(3): 268~271
    80丁静.边界元法在非稳态导热问题中的应用.航空动力学报. 1989, 4(2):110~114
    81丁静.边界元法在非稳态热传导中的应用.西北建筑工程学院学报. 1987,(2): 59~64
    82姚寿广.燃气轮机叶轮非线性瞬态温度场的边界元分析.航空动力学报.1996, 11(2): 185~188
    83翁史烈,吴铭岚,左柏芳.透平叶片瞬态温度场的边界元计算.上海交通大学学报. 1988, 22(6): 4~11
    84 L. Prandtl.über Die Ausgebildete Turbulenz. ZAMM. 1925, 5: 136~139
    85是勋刚.湍流.天津大学出版社, 1994
    86 T. Cebeci, A. M. O. Smith. Analysis of Turbulent Boundary Layers. Ser. InAppl.Math.&Mech.Vol.XV, Academic Press, 1974
    87 B. S. Baldwin, H. Lomax. Thin-Layer Approximation and Algebraic Model forSeparated Turbulent Flows. AIAA, Huntsville, AL
    88 R. Dhinnagaran, T. K. Rose. Two-Dimensional Jet Interaction FlowfieldPredictions with an Algrbraic Trubulence Model. AIAA Paper 95-2242, 1995
    89吴先鸿,陈懋章. Baldwin-Lomax模型在转静干涉流动中的应用.航空动力学报. 1998, 13(2): 123~127
    90王松涛.叶轮机三维粘性流场数值方法与弯叶栅内涡系结构的研究.哈尔滨工业大学博士论文. 1999
    91梁德旺,黄国平,赵海峰. B/L湍流模型在强压力梯度流场计算中的应用.南京航空航天大学学报. 1999, 31(1): 37~42
    92刘瑞韬,徐忠.分流叶片位置对高转速离心压气机性能的影响.空气动力学学报. 2005, 23(1): 129~134
    93王军旗,李素循,孙茂.超声速横喷干扰湍流场数值模拟.空气动力学学报.2006, 24(4): 403~409
    94司海青,王同光.数值模拟有外挂物的空腔流动.空气动力学学报. 2007,25(3): 404~409
    95 P. R. Spalart, S. R. Allmaras. A One-equation Turbulence Model forAerodynamic Flow. AIAA Paper 92-0439, 1992
    96 B. S. Baldwin, T. Barth. A One Equation Turbulence Transport Model for HighReynolds Number Wall Bounded Flows. AIAA Paper 92-0439, 1992
    97林麟.可压缩湍流封闭模型初探湍动能K方程.厦门大学学报(自然科学版). 1996, 35(1):17~20
    98王丹华,马威,陆利蓬. S-A湍流模型在分离流动模拟中的改进.推进技术.2008, 29(5): 539~544
    99 D. Gaitonde, J. S. Shang. Performance of Eddy-Viscosity-Based TurbulenceModels in Three-Dimensional Turbulent Interaction. AIAA Journal, 1996, 34(4):844~847
    100R. Paciorri, W. Dieudonne, G. Degrez, et al. Validation of the Spalart-AllmarasTurbulence Model for Application in Hypersonic Flows. AIAA Paper 97-2323,1997
    101黄玉娟,李晓东,陈江.湍流模型对涡轮数值模拟结果的影响.工程热物理学报. 2007, 28(Suppl.1): 97~100
    102杨永,段毅,张强.超声速大迎角分离流中三种湍流模型的比较研究.空气动力学报. 2006, 24(3): 371~374
    103B. E. Launder, D. B. Spalding. Lectures in Mathematical Models of Turbulence.Academic Press, London, England, 1972
    104叶孟琪,陈义良.复杂剪切湍流场中湍流模型的研究.水动力学研究与进展.1996, 11(3): 276~283
    105刘正先,苗永淼.有曲率影响的湍流流场中几种k-模型的数值.天津大学学报. 2000, 33(1): 97~100
    106M. Hishida, Y. Nagano, M. Tagawa. Transport Processes of Heat andMomentum in the Wall Region. Proceeding of English International HeatTransfer Conference. 1986, 3: 925~930
    107W. D. York, J. H. Leylek. Three-dimensional Conjugate Heat TransferSimulation of an Internally-cooled Gas Turbine Vane. ASME paper GT2003-38551, 2003
    108B. Facchini, A. Magi, A. S. Greco. Conjugate Heat Transfer of a RadiallyCooled Gas Turbine Vane. ASME Paper GT2004-54213, 2004
    109D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada,California, 1998
    110F. R. Menter. Two Equation Eddy Viscosity Turbulence Models for EngineeringApplications. AIAA Journal. 1994, 32(8): 1598~1605
    111王志博,姚惠之,张楠.指挥台围壳对潜艇尾流影响的计算研究.船舶力学.2009, 13(2): 196~202
    112母忠强,乔渭阳,罗华玲.某涡轮级三维流畅非定常数值研究.推进技术.2009, 30(2): 169~174
    113谷正气,姜波,何忆斌.基于SST湍流模型的超车时汽车外流场变化的仿真分析.汽车工程. 2007, 29(6): 494~496114陆犇,李凌波,姜培学等.气膜冷却平板通道的数值模拟.热能动力工程.2005, 20(4): 441~445
    115F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, S. Volker. ACorrelation Based Transition Model Using Local Variables Part 1- ModelFormulation. ASME-GT2004-53452, 2004
    116E. R. Van Driest, C. B. Blumer. Boundary Layer Transition: FreestreamTurbulence and Pressure Gradient Effects. AIAA Journal. 1963, 1(6):1303~1306
    117Z. Mazur, A. Hernández-Rossette, et al. Analysis of Conjugate Heat Transfer ofa Gas Turbine First Stage Nozzle. ASME Paper GT2005-68004, 2005
    118J. Luo, E. H. Razinsky. Conjugate Heat Transfer Analysis of a Cooled TurbineVane Using the V2F Turbulence Model. ASME Paper GT2006-91109, 2006
    119T. Bamba, T. Yamane, Y. Fukuyama. Turbulence Model Dependencies onConjugate Simulation of Flow and Heat Conduction. ASME Paper GT2007-27824, 2007
    120王华阁.航空发动机设计手册.航空工业出版社, 2001
    121杨世铭,陶文铨.传热学.高等教育出版社, 1998
    122陶文铨.传热学.西北工业大学出版社, 2006
    123黄海波.涡轮叶片中流场和温度场计算及实验研究.中国科学院研究生院硕士论文. 2002
    124R. W. Moss, M. L. G. Oldfield. Measurements of the Effect of Free-StreamTurbulence Length Scale on Heat Transfer. ASME Paper 92-GT-244, 1992
    125R. S. Abhari, G. R. Guenette, A. H. Epstein, M. B. Giles. Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and NumericalCalculations. ASME Paper 91-GT-268, 1991
    126黄洪雁,韩万金,王仲奇,候建东.具有静止顶部间隙透平叶栅气动特性的实验研究.汽轮机技术. 1997, 39(4): 224~228
    127杨庆海,黄洪雁,韩万金.有叶顶间隙的涡轮弯叶栅拓扑与旋涡结构(I)-试验模型、端壁与叶片表面拓扑结构.应用数学和力学. 2002, 23(8): 843~850
    128黄洪雁,杨庆海,韩万金,王仲奇.大间隙涡轮叶栅流场结构的研究.航空动力学报. 2002, 17(4): 392~398
    129黄洪雁,韩万金,王仲奇.具有叶顶间隙涡轮转子叶栅流动的拓扑及旋涡结构观测.航空学报. 1997, 18(3): 257~261
    130韩万金,钟兢军,黄洪雁,王仲奇.具有叶顶间隙的涡轮正弯叶栅流场的拓扑与旋涡结构.空气动力学学报. 1999, 17(2): 141~149
    131杨庆海,黄洪雁,韩万金.有叶顶间隙的涡轮弯叶栅拓扑与旋涡结构(II)-横截面流场拓扑结构与叶栅旋涡结构.应用数学和力学. 2002, 23(8): 851~854
    132袁宁,张振家,黄洪雁,王松涛,冯国泰.基于区域分裂算法的叶顶间隙流场的数值模拟.工程热物理学报. 2000, 21(4): 443~445
    133吴宏伟,丁水汀,曹玉璋,陶智.旋转平板型叶端气膜冷却实验研究.北京航空航天大学学报. 2001, 27(5): 569~572
    134杨汇涛.旋转叶片端部气膜冷却效率及其换热系数的研究.北京航空航天大学博士论文. 1999
    135曹玉璋,邱绪光.实验传热学.北京:国防工业出版社, 1989
    136朱谷君.工程传热传质学.北京:航空工业出版社, 1989
    137E. R. C. Eckert, R. M. Drake.传热与传质分析.航青译.北京:科学出版社,1983
    138P. W. Dittus, L. M. K. Bortler. Univ. Of Calif., Eng. Publ., 1930, 2: 443
    139B. S. Petuknov, V. V. Kirillov. Teploenergetika, 1958, (4)
    140V. Gnielinski. Int. Chem. Eng. 1976, 6: 359~368
    141H. Martin. Heat and Mass Transfer between Impinging Gas Jets and SolidSurface. Advances in Heat Transfer. 1977, 13
    142S. Talya, A. Chattopadhyay, J. Rajadas. Multidisciplinary Design OptimizationProcedure for Improved Design of a Cooled Gas Turbine Blade. EngineeringOptimization. 2002, 34(2): 175~194
    143T. J. Martin, G. S. Dulikravich. Aero-Thermo-Elastic Concurrent Optimizationof Internally Cooled Turbine Blades, in Coupled Field Problems, Series ofAdvances in Boundary Elements (eds. Kassab A., Aliabadi M.), WIT Press,Boston, MA, 2001: 137~184
    144M. Jeong, B. Dennis, S. Yoshimura. Multidimensional Solution Clustering andIts Application to the Coolant Passage Optimization of a Turbine Blade, Int.Design Engineering Technical Conference (DETC’03), Chicago, 2003
    145B. Dennis, I. Egorov, G. Dulikravich, S. Yoshimura. Optimization of a LargeNumber Coolant Passages Located Close to the Surface of a Turbine Blade.ASME Paper GT2003-38051, 2003
    146B. Dennis, I. Egorov, H. Sobieczky, S. Yoshimura, G. Dulikravich.Thermoelasticity Optimization of 3-D Serpentine Cooling Passages in TurbineBlades. ASME Paper GT2003-38180, 2003
    147G. Dulikravich, T. Martin, B. Dennis, N. Foster. Multidisciplinary HybridConstrained GA Optimization, Evolutionary Algorithms in Engineering andComputer Science: Recent Advances and Industrial Applications, Editors: K.Miettinen, M. M. Makela, P. Neittaanmaki and J. Periaux, Wiley & Sons, 1999
    148A. Haasenritter, B. Weigand. Optimization of the Rib Structure inside a 2DCooling Channel. ASME Paper GT2004-53187, 2004
    149G. Nowak, W. Wróblewski. Thermo-mechanical Optimization of Turbine Vane.ASME Paper GT2007-28169, 2007
    150G. Nowak, W. Wróblewski, T. Chmielniak. Optimization of Cooling Passageswithin a Turbine Vane. ASME Paper GT2005-68552, 2005
    151G. Nowak, I. Nowak. Shape Optimization of Cooling Passages Within a TurbineVane, Proc. of Eurotherm Sem. 82 (Numerical Heat Transfer), Gliwice-Cracow,2005
    152虞跨海.航空发动机涡轮冷却叶片多学科设计优化技术研究.西北工业大学硕士论文. 2006
    153虞跨海,岳珠峰.涡轮冷却叶片参数化建模及多学科设计优化.航空动力学报. 2007, 22(8): 1346~1351
    154虞跨海,岳珠峰,杨茜.涡轮叶片转弯流道换热分析与优化设计.推进技术.2009, 30(3): 323~327
    155虞跨海,杨茜,倪俊,岳珠峰.基于响应面的涡轮叶片冷却通道设计优化.航空学报. 2009, 30(9): 1630~1634
    156G. Nowak, W. Wróblewski. Application of Conjugate Heat Transfer for CoolingOptimization of a Turbine Airfoil. ASME Paper GT2009-59818, 2009
    157J. M. Conley. Modification of the MML Turbulence Model for Adverse PressureGradient Flows. AIAA Paper 94-2715, 1994
    158F. M. White. Viscous Fluid Flow. McGraw-Hill, New York, 1974
    159刘柏峰,陈伟,段永刚.工程中的边界元法.湖南工程学院学报. 2006, 16(4):53~55
    160曾军,卿雄杰.涡轮叶栅外换热系数计算.航空动力学报. 2008, 23(7):1198~1204
    161D. Bohn, R. Jing, K. Kusterer. Cooling Performance of the Steam-Cooled Vanein a Steam Turbine Cascade. ASME Paper 2005-GT-68148, 2005
    162R. L. Webb, E. R. G. Eckert, R. J. Goldstein. Heat Transfer and Friction inTubes with Repeated-rib Roughness. Int. J. Heat and Mass Transfer. 1971, 14:601~617

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700