二甲基醚/甲醇双燃料均质压燃燃烧机理多维数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
均质压燃(HCCI)可实现内燃机高效、低污染燃烧,是满足未来更严格排放法规的重要燃烧新技术,近几年引起了国内外的高度关注。
     本文在发展了二甲基醚(DME)和二甲基醚/甲醇双燃料HCCI简化动力学模型的基础上,应用多维流体力学模型与简化动力学模型耦合计算,研究了二甲基醚单一燃料、二甲基醚/甲醇双燃料HCCI燃烧反应过程及有害排放物生成机理。
     计算结果表明,多维模型和零维模型对低温放热时刻预测基本一致;但对高温放热,由于多维模型考虑了缸内流动和缸壁传热,多维模型模拟结果比零维模型推迟,燃烧放热率峰值降低,与实测结果更为吻合。缸内温度变化历程分析表明,缸内温度随着燃烧的进行,从不均匀逐步发展到均匀,同时低温反应和高温反应并不是在燃烧室内部同时发生,而是在燃烧室局部先发生,然后发展到整个缸内;双燃料不仅改变DME反应途径,也改变了燃烧反应开始区域,DME单一燃料低温反应开始于活塞表面附近及压缩余隙区域,高温反应开始于燃烧室内较大的区域;双燃料准低温反应开始于燃烧室内较大的区域,高温反应开始于气缸轴线附近的核心区域,在双燃料中DME和甲醇几乎同时经历单阶段氧化过程。排放分析结果表明,HCCI主要的未燃碳氢排放是未燃燃料和甲醛(CH2O),而且未燃燃料占有很大比例,主要来源于残留在气缸侧隙中的燃料,这是HCCI燃烧效率低的主要原因;相对纯二甲基醚燃烧过程,双燃料未燃碳氢中未燃燃料占总未燃碳氢比例更大。DME燃烧过程中,未燃料燃料主要来源于侧隙的下部,CH2O排放主要生成于侧隙的中部,CO排放来源于气缸壁和侧隙上部;双燃料燃烧过程中,未燃燃料主要来源于气缸侧隙,CH2O排放主要生成于气缸壁附近,CO排放主要生成在活塞顶面,气缸侧隙内CH2O和CO生成量量很少。
     不同初始条件对HCCI排放生成影响研究结果表明,随着当量燃空比的减小,未燃碳氢和一氧化碳的排放上升,但当燃料浓度很小时,CO排放反而降低。双燃料中,随二甲基醚比例减小,未燃燃料和总碳氢排放增加,CO排放上升,但二甲基醚比例很小时,CO排放反而降低。
Homogeneous Charge Combustion Ignition (HCCI) is a promising combustion mode that can achieve high efficiency and low emissions simultaneously, and it is also a key strategy to meet future emission regulations.
     A multi-dimensional model is adopted to investigate the combustion mechanisms and emission processes of Dimethyl Ether(DME) and Dimethyl Ether(DME)/Methanol(MEOH) dual fuel HCCI combustion processes. The multi-dimensional model couples the reduced chemistry and the CFD model.
     Simulation results indicate that low temperature reaction timing predicted by zero-dimensional model is the same as that predicted by multi-dimensional model. However, high temperature reaction timing predicted by multi-dimensional model is later than that predicted by zero-dimensional model, and rate of heat release is also lower, because the heat transfer and in-cylinder turbulence flow are considered in the multi-dimensional model. Cylinder temperature throughout the combustion process undergoes a process from inhomogeneity till homogeneity. Both low and high temperature reactions don’t occur simultaneously. Dual fuel not only changes the paths of DME reaction, but also the initial locations of combustion process. Low temperature reaction regions for DME HCCI combustion process are located near piston surface and squish region, and high temperature reaction occurs in the combustion chamber core zone. Quasi-low temperature reaction region for DME/MEOH HCCI combustion process resides in the combustion chamber core zone, and high temperature reaction is initiated in the combustion chamber core zone near the cylinder axis. DME and Methanol undergoes one stage oxidization process respectively. Emission analysis indicates that unburned fuel and CH2O account for the majority of unburned hydrocarbon (HC), and unburned fuel shares greater part. Much of unburned fuel resides in the piston-ring crevice region, which is the main reason of low thermal efficiency for dual fuel combustion process. Compared with pure DME HCCI combustion process, unburned fuel account for greater portion of HC for DME/MEOH HCCI combustion process. For DME HCCI combustion process, unburned fuel, CH2O and CO mainly resides in the bottom, middle and top of piston-ring crevice region respectively. For dual fueled HCCI combustion process, unburned fuel mainly resides in the piston-ring crevice region; the majority of CH2O is located next to
引文
[1]. http://www.tfd.chalmers.se/~ogink/hccifamily.html
    [2]. Lutz Andrew E,Kee Robert J,Miller James.A.SENKIN: A Fortran Program For Predicting Homogenous Gas Chemical Kinetics with Sensitivity Analysis[R].SAND 87-8248,1987
    [3]. Lund C M.HTC--A General Computer Program for Calculating Time-dependent Phenomena inVolvin One-dimensional Hydrodynamics, Transport and Detailed Chemical Kinetis.Lawrence Livermore Laboratory Report.UCRL-52504,1978
    [4]. Flowers D,et al.HCCI in a CFR Engine: Experiments and Detailed Kinetic Modeling,SAE paper,2000-01-0328,2000
    [5]. Zheng J,et al.A Skeletal Chemical Kinetic Model for the HCCI Combustion Process,SAE paper,2002-01-0423,2002
    [6]. Tanaka S,Ayala F,Keck J.A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine,Combustion and Flame,Vol.133,467~481,2003
    [7]. Roy Ogink.Computer Modeling of HCCI Combustion.PHD Paper. Division of Thermo and Fluid Dynamics,Chalmers University of Technology,2004
    [8]. Aceves S M,Flowers D L,Westbrook.et al.A Multi-Zzone Model for Predicting of HCCI Combustion and Emissions. SAE Paper,2000-01-0327,2000
    [9]. 解茂昭,内燃机计算燃烧学,大连:大连理工大学出版社,2005,307~316
    [10]. Fiveland N B. Assanis D N. Developmnet and Validation of a Quasi-dimensional Model for HCCI Engine Performance and Emissions Studies under Turbocharged Conditions. SAE paper,2002-01-1757,2002
    [11]. Flowers, D. L., Aceves, S. M., Martinez-Frias, J., and Dibble, R. W., Prediction of Carbon Monoxide and Hydrocarbon Emissions in Iso-Octane HCCI Engine Combustion Using Multi-Zone Simulations,”Proc. Combust. Inst.,Vol.29,2002
    [12]. Aceves S. M., Flowers D. L. Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling. SAE Brazil Fuels & Lubricants Meeting & Exhibition Rio de Janeiro, Brazil May 11,2005 through May 13,2005
    [13]. Toru Noda, David E. Foster. A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation. SAE paper,2001-01-0250,2001
    [14]. Roy Ogink, Valeri Golovitchev. Gasoline HCCI Modeling: An Engine Cycle Simulation Code with a Multi-Zone Combustion Model. SAE paper,2002-01-1745,2002
    [15]. Jing Qin, Hui Xie , Yan Zhang and Hua Zhao. A Combustion Heat Release Correlation for CAI Combustion Simulation in 4-Stroke Gasoline Engines. SAE paper,2005-01-0183,2005
    [16]. P. Priesching, R. Wanker, P. Cartellieri, R. Tatschl. Detailed and Reduced Chemistry CFD Modeling of Premixed Charge Compression Ignition Engine Combustion. International Multidimensional Engine Modeling User’s Group Meeting 2003
    [17]. Kong S C, Reitz R D.Modeling and Experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD. SAE paper,2001-01-1026,2001
    [18]. Kong S C, Reitz R D. Modeling the effects of geometry-generated turbulence on HCCI engine combustion. SAE Paper,2003-01-1088,2003
    [19]. Kong S C, Reitz R D. Numerical study of premixed HCCI engine combustion and its sensitivity to computational mesh and model uncertainties Combustion Theory and Modeling.7:417-433,2003
    [20]. Y.Z. Zhang, E.H. Kung, and D.C. Haworth. A PDF Method for Multidimensional Modeling of HCCI Engine Combustion: Effects of Turbulence/Chemistry Interactions on Ignition Timing and Emissions International Multidimensional Engine Modeling User’s Group Meeting 2004, Detroit, MI
    [21]. Noel L, Maroteaux F. Numerical Study of HCCI Combustion in Diesel Engines Using Reduced Chemical Kinetics of n-Heptane with Multidimensinal CFD Code. SAE paper,2004-01-1909,2004
    [22]. A. Babajimopoulos, D. N. Assanis, D. L. Flowers, S. M. Aceves and R. P. Hessel. A Fully Integrated CFD and Multi-zone Model with Detailed Chemical Kinetics for the Simulation of PCCI Engines. 15th International Multidimensional Engine Modeling User’s Group Meeting, Detroit, MI, April 2005
    [23]. http://www.nersc.gov/news/annual_reports/annrep02/16-terascale-hi-fi.html
    [24]. Fenimore C P. and FrankeI H A. Formation and Interconversion of Fixed-Nitrogen Species in Laminar Diffusion Flames. 18th Symposium (Int.) on Combustion. The Combustion Institute. Pittsburgh. PA, 143,1981
    [25]. Spalding D B. Concentration Fluctuations in a Round Turbulent Free Jet. Chemical Engineering Science. V26, 95-106,l97l
    [26]. Spalding D B. Mixing and Chemical Reaction in Steady Confined Turbulent Flame. 13th Symposium (Int.) on Combustion,1971
    [27]. Elghobashi, S E. and Pan, W H. A Theoretical and Experimental study of Turbulent Diffusion Flames in Cylindrical Furnaces. 15th Symposium (Int.) on Combustion,1974
    [28]. Magnussen, T S. and Hjertager, B H. on mathematical models of turbulent combustion with special emphasis on soot formation and combustion, p719-729, 16th Symposium (Int.) on Combustion, The Combustion Institute. Pittsburgh. 1977
    [29]. Pitsch, H Chen M. and Peters, N. Proceedings of the Combustion Institute, vol. 27, The Combustion Institute. Pittsburgh, 1998, pp. 1057-1064
    [30]. Mauss F. keller, D. and Peters, N. 1990 A Lagrangian simulation of flamelet extinction and re-ignition in turbulent jet diffusion flames. 27th Symposium (Int.) on Combustion. p 693-698. the combustion institute Pittsburgh
    [31]. 周力行 著 陈文芳 林文漪 译. 湍流气粒两相流动与燃烧的理论与数值模拟.科学出版社 1994
    [32]. Lundren, T.S. Distribution function in statistical theory of turbulence, Phys. Fluids. 1967. vol.10: 969-975
    [33]. O'Brien, E.E The probability density function (pdf) approach to reacting turbulent flows, in P.A. Libby and F.A. Williams, editors. Turbulent Reacting Flows. P:185-218. Springer Verlage. Press
    [34]. Norris, A.T. Pope, S. B. Modeling of Extinction in Turbulent Diffusion Flames by the Velocity-Dissipation-Composition PDF Method Combustion and Flame Volume:100, Issue:1-2,January,1995,pp.211-220
    [35]. Dopazo, C. Recent developments in PDF methods. In: Libby, P.A, Williams, F. A.eds Turbulent Reactive Flows. London: Academic Press,1994, 375-474
    [36]. Dopazo,C. Relaxation of initial probability density functions in the turbulent convection of scalar fields. Phys. Fluids, 1979,22:20
    [37]. Subramaninm, S. and Pope, S.B.Turbulent model for turbulent reactive flows based on Euclidian minimum spanning tress, Combustion and Flame. 1998. vol. 115:487-517
    [38]. 陈义良,李艺,基于最小均方差估计值的非线性 IEM 模型,工程热物理学报,23 卷,2 期,261-264.2002
    [39]. S.B. Pope (1981)”Monte Carlo calculations of premixed turbulent flames,” 18th Symposium (International) on Combustion, The Combustion Institute, 1001-1010
    [40]. W P. JONES and M. KAKHI, PDF Modeling of Finite-rate Chemistry Effects in Turbulent Non-premixed Jet Flames, COMBUSTION AND FLAME. 115:210-229(1998)
    [41]. JUN XU and STEPHEN B. POPE. PDF Calculations of Turbulent Non-premixed Flames with Local Extinction. Combustion And Flame 2000. vol.123:281-307
    [42]. 邹春 郑楚光 周力行. 条件矩模型对 CH_4-空气扩散燃烧及其 NO_x 生成的数值模拟. 化工学报 2002.vo l.53:473-478
    [43]. Corrsin S. Limitations of gradient transport models in random walksand in turbulence Adv. Geophys.1974.A vol.18:25-60
    [44]. Jaberi F A, James S. A dynamic similarity model for large eddy simulation of turbulent combustion. Physics of Fluids, 1998,10(7): 1175-1177
    [45]. Colucci P J, Jaberi F A, Givi P. Filtered density function for large eddy simulation of turbulent reacting flows. Physics of Fluids, 1998, 10(2): 499~515
    [46]. Klimenko, A Y Multicomponent diffusion of various admixtures in turbulent flow. Fluid Dyn. 1990.vol.25:327-473
    [47]. Bilger, R.W Conditional moment closure for turbulent reacting flow. Phys. Fluids. 1993.vol. A5: 327-343
    [48]. Libby P A, Williams F A. Fundamental aspects and review. In: Libby P A, Williams F A, ed. Turbulent Reacting Flows. Academic Press,1993.1-62
    [49]. Givi P. Model free simulations of turbulent reactive flows. Progress in Energy and Combustion Science, 1989, 15: 1-107
    [50]. Robert W Bilger. New directions in turbulent combustion research, In: Proceedings of the First Asian-Pacific Conference on Combustion, Osaka, Japan, May, 1997. 1-8
    [51]. CD adapco Group.STAR/KINetics Manual. Reaction Design/adapco, 2004
    [52]. Curran, H. I., Fischer, S. L., & Dreyer, F. L. (2000) The reaction kinetics of dimethyl ether. II: Low-temperature oxidation in flow reactors. International Journal of Chemical Kinetics, 32, 741-759.
    [53]. YAO Ming-fa,ZHENG Zun-qing,QIN Jing, A Study on the HCCI Combustion Process of Dimethyl Ether and Natural Gas Dual Fueled Engine, the Fourth Asian-Pacific Conference on Combustion (ASPACC 2003), Nanjin, China, 2003
    [54]. Mingfa YAO, Jing Qin, Zunqing ZHENG. Numerical Study of the Combustion Mechanism of HCCI Engine with Dimethyl Ether and Methane with a Detailed Kinetics Model(1): The Reaction Kinetics of Dimethyl. Ether Journal of Automobile Engineering,Vol 219,1213-1223.
    [55]. 秦静,[二甲基醚/天然气双燃料均质压燃燃烧反应动力学的数值模拟研究[D], 天津大学硕士学位论文],天津大学,2003.1
    [56]. 梁霞.二甲醚/甲醇双燃料均质压燃燃烧数值模拟研究.天津大学硕士学位论文
    [57]. 张晓宇,苏万华等.Bump 环强化混合过程的数值模拟.内燃机学报.2005-1.p1-9.
    [58]. CD adapco Group. STAR-CD User Guide(Version 3.22). Japan: Yokohama Computational Dynamics Limited, 2004.
    [59]. CD adapco Group. STAR-CD Command(Version 3.22).Japan: Yokohama Computational Dynamics Limited, 2004. STAR/KINetics Manual. Reaction Design/adapco.2004
    [60]. CD adapco Group.STAR/KINetics Manual. Reaction Design/adapco.2004
    [61]. 陈征.二甲醚/甲醇双燃料均质压燃发动机的试验研究.广西大学硕士学位论文
    [62]. Held, T. J. and Dryer, F. L., A Comprehensive Mechanism for MethanolOxidation, Int. J. Chem. Kinetics, v. 30, pp. 805-830 (1998).
    [63]. Peter H. Cribb,John E. Dove, and Satoshi Yamazaki, A Kinetic Study of the Oxidation of Methanol Using Shock Tube ang Computer Simulation Techniques,Combustion and Flame 88: 186-200(1992).
    [64]. Tarek Echekki and Jacqueline H. Chen, Stricture and Propgation of Methanol-Air Triple Flames, Combustion and Flame 114:231-245(1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700