柴油机碳烟生成机理多维数值模拟及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机颗粒物排放是柴油机排放控制的重点和难点,研究降低柴油机碳烟排放的控制策略、发展详细且通用的柴油机碳烟生成机理和模型具有很重要的理论意义和实际应用价值。本文采用试验研究和CFD与化学动力学耦合数值模拟手段相结合的方法,对柴油机碳烟生成机理及控制策略进行了系统研究。
     本文首先通过台架试验研究的方法,研究了降低柴油机碳烟排放的控制策略。综合采用进气增压、EGR、后喷射和正丁醇含氧燃料,可以明显改善柴油机的经济性和排放;多次喷射是改善柴油机NO_x和碳烟折衷关系的有效措施;在将NO_x排放控制在2.0g/kW-h情况下,采用多次喷射耦合EGR结合正丁醇含氧燃料,是降低柴油机排放的有效技术途径,可以显著改善柴油机碳烟排放。
     随后本文构建了正庚烷-正丁醇-PAH简化动力学模型,并利用滞燃期、组分浓度和HCCI燃烧等多种试验数据对其进行了广泛验证。该简化机理耦合CFD计算程序计算得到的油束贯穿距离、火焰浮起长度、碳烟体积浓度和分布及其生成区域都与试验结果吻合较好。多维数值模拟结果表明,进气压力主要通过降低缸内当量比和增强碳烟氧化对碳烟排放产生影响;高EGR率条件下碳烟生成量增加,而氧化速率明显降低,造成碳烟排放随EGR率上升而明显上升;通过后喷射提高燃烧后期温度、增强碳烟氧化和增强燃烧后期缸内充量运动,是其降低碳烟排放的主要原因;正丁醇降低碳烟排放主要是通过降低碳烟生成前驱物PAH浓度和增强油气混合过程,降低当量比实现的。计算结果表明,采用后喷射结合正丁醇含氧燃料,可以在NO_x保持不变的前提下大幅度降低碳烟排放;
     将所发展的正庚烷-PAH机理拓展至正庚烷-甲苯-PAH简化动力学机理,并对其进行了验证。采用CFD计算程序耦合简化机理进行了柴油和正庚烷/甲苯混合燃料缸内直喷燃烧和碳烟排放的多维数值模拟计算。计算结果表明简化机理可以预测由EGR率和燃料组分变化引起的缸内压力和燃烧放热率的变化以及不同燃料碳烟排放随EGR率的变化趋势;简化机理也可以在与典型柴油机运行工况类似的环境下准确预测正庚烷和甲苯混合燃料的燃烧和碳烟生成过程。对燃烧过程中的重要参数,如当量比、火焰温度、OH和PAH浓度等的分析结果表明,甲苯分子结构和化学反应特性对燃烧过程和碳烟生成的影响要远大于其物理特性的影响;
     本文所发展的简化机理可以很容易扩展至正庚烷-异辛烷-正丁醇-甲苯-PAH简化动力学模型;所发展的简化机理中与芳烃和PAH生成相关的反应路径是合理的,这对于发展更为完善的柴油多组分替代物反应机理,并实现对PAH和碳烟排放的准确预测有非常重要的理论意义。
The particle matter is one of the major pollutant emissions of diesel engine.Exploring the control strategies to reduce the soot emissions, developing moredetailed and generalized soot formation mechanisms, and models have very importanttheoretical and practical significance. In the current investigation, experimental andnumerical studies have been conducted to explore the soot emission reduction controlstrategies and to develop more sophisticated soot formation mechanisms and models.
     Experiments were conducted to investigate the soot emission reduction controlstrategies. It is found that the fuel economy and emissions of diesel engine can begreatly improved by applying boosting, EGR, post injection and n-butanol additive.By applying multi-injection coupling EGR, combined with n-butanol oxygenatedadditive, it is possible to reduce the NO_x and soot emissions simultaneously whilestill maintaining good fuel economy, thus it is one of the most competitive controlstrategies to realize high efficiency and clean diesel combustion.
     A reduced n-heptane/n-butanol/PAH chemical kinetics mechanism has beendeveloped, and experimental data from shock tube ignition delay, premixed flamespecies concentrations and HCCI combustion were taken to validate the proposedmechanism. The simulation results with CFD coupled the reduced mechanism showthat the predicted spray liquid and vapor penetrations, the lift-off length, theconcentration and distribution of soot volume fraction, as well as soot formationregions, agree quite well with the experimental results in constant volume n-heptanespray combution cases. Simulations were also conducted to study the effects ofboosting, EGR, post injection and n-butanol additive on combustion and sootemissions. Results show that increasing the intake pressure can reduce the overallin-cylinder equivalence ratio and enhance the soot oxidation, thus effectively reducethe soot emission; the soot formation rate increases while the soot oxidation ratedecreases as the EGR rate increases, which results in much more soot emissions,especially under high EGR conditions; post injection is an effective measure to reducethe soot emission, and this can be attributed to the higher temperature caused by thepost injected fuel to accelerate the soot oxidation process, and also the enhancedin-cylinder air motion which can improve the combustion during the late combustion phase, the in-cylinder air utilization can also be improved by splitting single injectioninto double injections; soot emission can be greatly reduced by addition of n-butanol.By blending n-butanol into a non-oxygenated hydrocarbon fuel, air entrainment isenhanced by prolonging the lift-off length and the overall equivalence ratio is reducedby introducing extra available oxygen through the n-butanol molecule. The oxygenatom in the n-butanol molecule can also effectively reduce the carbon remaining inthe form of soot precursors by forming the stable C-O bond. The simulation resultsconfirm that the combination of post injection and n-butanol additive has the potentialto greatly reduce the soot emissions.
     The proposed n-heptane/PAH mechanism has been further extended to formulatean n-heptan/toluene/PAH mechanism, and the mechanism has also been extensivelyvalidated with experimental data from shock tube ignition delay, premixed flamespecies concentrations and HCCI combustion. Simulations were conducted bycouping the reduced mechanism with the KIVA CFD code to investigate thecombustion process and soot emissions of diesel and n-heptane/toluene blended fuelsin direct injection diesel engine. Results show that the proposed mechanism has theability to predict the in-cylinder pressure and heat release of various fuels underdifferent EGR rate conditions, the soot emissions of various fuels were also wellcaptured by the reduced mechanism. The effects of toluene on combustion and sootformation processes in the condition similar to that of a typical diesel engineoperating condtions have also be studied. The effects of toluene in the blended fuelson the distributions of soot volume fraction, equivalence ratio, flame temperature, OHand A4species concentrations show that the toluene molecule structure and chemicalkinetics characteristic play dominat role in the soot formation process compared to thephysical properties.
     It should be pointed out that the proposed mechanisms can be easily extended to ann-heptane/iso-octane/n-butanol/toluene/PAH mechanism; the reaction pathways ofbenzene and PAH formation have been well validated. These indicate that it will bevery helpful for the development of multicomponent diesel surrogate mechanism andfor the accurate predictions of PAH formation and soot emissions with such asophisticated surrogate mechanism.
引文
[1] S. Shafiee, E. Topal, When will fossil fuel reserves be diminished?, Energy Policy,2009,37(1):181-189.
    [2] L. Ma, P. Liu, F. Fu, et al., Integrated energy strategy for the sustainabledevelopment of China, Energy,2011,36(2):1143-1154.
    [3]中国机动车污染防治年报,中华人民共和国环境保护部,北京,2010.
    [4] Mobile Source Emissions-Past, Present, and Future, in, Environmental ProtectionAgency,2012. http://www.epa.gov/otaq/invntory/overview/pollutants/index.htm
    [5] Emission Standards, http://www.dieselnet.com/standards/eu/hd.php
    [6] T.V. Johnson, Review of Diesel Emissions and Control, SAE Int. J. Fuels Lubr.,2010,3(1):16-29.
    [7] T.V. Johnson, Diesel Emissions in Review, SAE Int. J. Engines,2011,4(1):143-157.
    [8] T.V. Johnson, Vehicular Emissions in Review, SAE Int. J. Engines,2012,5(2):216-234.
    [9] D.B. Kittelson, Engines and nanoparticles: a review, Journal of Aerosol Science,1998,29(5–6):575-588.
    [10] M. Matti Maricq, Chemical characterization of particulate emissions from dieselengines: A review, Journal of Aerosol Science,2007,38(11):1079-1118.
    [11] M.Y. Choi, A. Hamins, G.W. Mulholland, et al., Simultaneous opticalmeasurement of soot volume fraction and temperature in premixed flames,Combustion and Flame,1994,99(1):174-186.
    [12] D.R. Tree, K.I. Svensson, Soot processes in compression ignition engines,Progress in Energy and Combustion Science,2007,33(3):272-309.
    [13] J.E. Dec, A Conceptual Model of DI Diesel Combustion Based on Laser-SheetImaging, SAE Technical Paper,1997,970873.
    [14] D. Siebers, B. Higgins, Flame Lift-Off on Direct-Injection Diesel Sprays UnderQuiescent Conditions, SAE Technical Paper,2001,2001-01-0530.
    [15] L.M. Pickett, D.L. Siebers, Soot Formation in Diesel Fuel Jets Near the Lift-OffLength, International Journal of Engine Research,2006,7(2):103-130.
    [16] H. B hm, D. Hesse, H. Jander, et al., The influence of pressure and temperatureon soot formation in premixed flames, Symposium (International) onCombustion,1989,22(1):403-411.
    [17] W.L. Flower, An investigation of soot formation in axisymmetric turbulentdiffusion flames at elevated pressure, Symposium (International) on Combustion,1989,22(1):425-435.
    [18] H.S. Hura, I. Glassman, Soot formation in diffusion flames of fuel/oxygenmixtures, Symposium (International) on Combustion,1989,22(1):371-378.
    [19] C. K. Westbrook, W.J. Pitz, H.J. Curran, Chemical Kinetic Modeling Study ofthe Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines,The Journal of Physical Chemistry,2006,110(21):6912-6922.
    [20] L. N, R. P, H. K, et al., The effect of aromatic hydrocarbons on soot formation inlaminar diffusion flames and in a diesel engine, Journal of the Institute of Energy1997,70:84-94.
    [21] B. Haynes, H. Wagner, Soot formation, Progress in Energy and CombustionScience,1981,7:229-273.
    [22] M.P. Musculus, J.E. Dec, D.R. Tree, Effects of Fuel Parameters and DiffusionFlame Lift-Off on Soot Formation in a Heavy-Duty DI Diesel Engine, SAETechnical Paper,2002,2002-01-0889.
    [23] Z. Han, A. Uludogan, G.J. Hampson, et al., Mechanism of Soot and NOxEmission Reduction Using Multiple-Injection in a Diesel Engine, SAE TechnicalPaper,1996,960633.
    [24] C. Park, S. Kook, C. Bae, Effects of Multiple Injections in a HSDI Diesel EngineEquipped with Common Rail Injection System, SAE Technical Paper,2004,2004-01-0127.
    [25] F. Mallamo, M. Badami, F. Millo, Analysis of multiple injection strategies forthe reduction of emissions, noise and BSFC of a DI CR small displacementnon-road diesel engine, SAE Techical Paper,2002,2002-01-2672.
    [26] C. Beatrice, P. Belardini, C. Bertoli, et al., Downsizing of Common Rail D.I.Engines: Influence Of Different Injection Strategies on Combustion Evolution,SAE Technical Paper,2003,2003-01-1784.
    [27] C.Y. Choi, R.D. Reitz, An experimental study on the effects of oxygenated fuelblends and multiple injection strategies on DI diesel engine emissions, Fuel,1999,78(11):1303-1317.
    [28] K. T, Y. T, Y. F, et al., The effects of fuel properties and oxygenates on dieselexhaust emissions, SAE Techical Paper,1995,952349.
    [29] Z. TC, H. DT, K. DA, Experimental investigation to specify the effect ofoxygenated addition content and type on DI diesel engine performance andemissions, SAE Techical Paper,2004,2004-01-0097.
    [30] Y. LI, R. DJ, D. JLC, et al., Oxygenates: an evaluation of their effects on dieselemissions, SAE Techical Paper,2001,2001-01-2019.
    [31] C. Jin, M. Yao, H. Liu, et al., Progress in the production and application ofn-butanol as a biofuel, Renewable and Sustainable Energy Reviews,2011,15(8):4080-4106.
    [32] B.G. Harvey, H.A. Meylemans, The role of butanol in the development ofsustainable fuel technologies, Journal of Chemical Technology&Biotechnology,2011,86(1):2-9.
    [33] C. Cooney, T. Wallner, S. McConnell, et al., Effects of Blending Gasoline WithEthanol and Butanol on Engine Efficiency and Emissions Using aDirect-Injection, Spark-Ignition Engine, ASME Conference Proceedings,2009,43406:157-165.
    [34] P. Saisirirat, F. Foucher, S. Chanchaona, et al., Effects of Ethanol, n-Butanoln-Heptane Blended on Low Temperature Heat Release and HRR Phasing inDiesel-HCCI, SAE Technical Paper,2009,2009-24-0094.
    [35] T. Wallner, S.A. Miers, S. McConnell, A Comparison of Ethanol and Butanol asOxygenates Using a Direct-Injection, Spark-Ignition Engine, Journal ofEngineering for Gas Turbines and Power,2009,131(3):032802-032809.
    [36] F. Lujaji, A. Bereczky, L. Janosi, et al., Cetane number and thermal properties ofvegetable oil, biodiesel,1-butanol and diesel blends, Journal of ThermalAnalysis and Calorimetry,2010,102(3):1175-1181.
    [37] D.C. Rakopoulos, C.D. Rakopoulos, R.G. Papagiannakis, et al., Combustion heatrelease analysis of ethanol or n-butanol diesel fuel blends in heavy-duty DI dieselengine, Fuel,2011,90(5):1855-1867.
    [38] J. Guibet, E. Faure-Birchem, Fuels and Engines: Technology, Energy,Environment, éditions Technip, Paris,1999.
    [39] W.J. Pitz, C.J. Mueller, Recent progress in the development of diesel surrogatefuels, Progress in Energy and Combustion Science,2011,37(3):330-350.
    [40] C.K. Westbrook, W.J. Pitz, O. Herbinet, et al., A comprehensive detailedchemical kinetic reaction mechanism for combustion of n-alkane hydrocarbonsfrom n-octane to n-hexadecane, Combustion and Flame,2009,156(1):181-199.
    [41] H.R. Zhang, E.G. Eddings, A.F. Sarofim, A Journey from n-Heptane to LiquidTransportation Fuels.1. The Role of the Allylic Radical and Its Related Speciesin Aromatic Precursor Chemistry, Energy&Fuels,2008,22(2):945-953.
    [42] R.X. Fernandes, J. Zador, L.E. Jusinski, et al., Formally direct pathways andlow-temperature chain branching in hydrocarbon autoignition: the cyclohexyl+O2reaction at high pressure, Physical Chemistry Chemical Physics,2009,11(9):1320-1327.
    [43] G. Mittal, C.-J. Sung, Autoignition of methylcyclohexane at elevated pressures,Combustion and Flame,2009,156(9):1852-1855.
    [44] S.S. Vasu, D.F. Davidson, Z. Hong, et al., Shock Tube Study ofMethylcyclohexane Ignition over a Wide Range of Pressure and Temperature,Energy&Fuels,2008,23(1):175-185.
    [45] R. Bounaceur, I. Da Costa, R. Fournet, et al., Experimental and modeling studyof the oxidation of toluene, International Journal of Chemical Kinetics,2005,37(1):25-49.
    [46] D.F. Davidson, B.M. Gauthier, R.K. Hanson, Shock tube ignition measurementsof iso-octane/air and toluene/air at high pressures, Proceedings of theCombustion Institute,2005,30(1):1175-1182.
    [47] J. Herzler, L. Jerig, P. Roth, Shock tube study of the ignition of leann-heptane/air mixtures at intermediate temperatures and high pressures,Proceedings of the Combustion Institute,2005,30(1):1147-1153.
    [48] I.D. Costa, J.W. Bozzelli, R. Seiser, et al., Chemical Kinetic Study of TolueneOxidation Under Premixed and Nonpremixed Conditions,2003.
    [49] A. El Bakali, L. Dupont, B. Lefort, et al., Experimental study and detailedmodeling of toluene degradation in a low-pressure stoichiometric premixedCH4/O2/N2flame, Journal of Physical Chemistry A,2007,111(19):3907-3921.
    [50] F. Battin-Leclerc, Z.Y. Tian, W.J. Pitz, et al., A detailed kinetic modeling studyof toluene oxidation in a premixed laminar flame, Proceedings of theCombustion Institute,2011,33:233-241.
    [51] J.C.G. Andrae, T. Brinck, G.T. Kalghatgi, HCCI experiments with toluenereference fuels modeled by a semidetailed chemical kinetic model, Combustionand Flame,2008,155(4):696-712.
    [52] G. Mittal, C.-J. Sung, Autoignition of toluene and benzene at elevated pressuresin a rapid compression machine, Combustion and Flame,2007,150(4):355-368.
    [53] Y. Sakai, A. Miyoshi, M. Koshi, et al., A kinetic modeling study on the oxidationof primary reference fuel-toluene mixtures including cross reactions betweenaromatics and aliphatics, Proceedings of the Combustion Institute,2009,32(1):411-418.
    [54] H.-P.S. Shen, J. Vanderover, M.A. Oehlschlaeger, A shock tube study of theauto-ignition of toluene/air mixtures at high pressures, Proceedings of theCombustion Institute,2009,32(1):165-172.
    [55] A. El Bakali, A. Ribaucour, A. Saylam, et al., Benzene addition to afuel-stoichiometric methane/O2/N2flat flame and to n-heptane/air mixtures underrapid compression machine, Fuel,2006,85(7-8):881-895.
    [56] Y. Li, J. Cai, L. Zhang, et al., Investigation on chemical structures of premixedtoluene flames at low pressure, Proceedings of the Combustion Institute,2011,33(1):593-600.
    [57] F. Battin-Leclerc, R. Bounaceur, N. Belmekki, et al., Experimental and modelingstudy of the oxidation of xylenes, International Journal of Chemical Kinetics,2006,38(4):284-302.
    [58] J.L. Emdee, K. Brezinsky, I. Glassman, High-temperature oxidation mechanismsof m-and p-xylene, The Journal of Physical Chemistry,1991,95(4):1626-1635.
    [59] A. Roubaud, O. Lemaire, R. Minetti, et al., High pressure auto-ignition andoxidation mechanisms of o-xylene, o-ethyltoluene, and n-butylbenzene between600and900K, Combustion and Flame,2000,123(4):561-571.
    [60] E. Pousse, P.A. Glaude, R. Fournet, et al., A lean methane premixed laminarflame doped with components of diesel fuel: I. n-Butylbenzene, Combustion andFlame,2009,156(5):954-974.
    [61] M.R. Harper, K.M. Van Geem, S.P. Pyl, et al., Comprehensive reactionmechanism for n-butanol pyrolysis and combustion, Combustion and Flame,2011,158(1):16-41.
    [62] P. O wald, H. Güldenberg, K. Kohse-H inghaus, et al., Combustion of butanolisomers: A detailed molecular beam mass spectrometry investigation of theirflame chemistry, Combustion and Flame,2011,158(1):2-15.
    [63] K.A. Heufer, R.X. Fernandes, H. Olivier, et al., Shock tube investigations ofignition delays of n-butanol at elevated pressures between770and1250K,Proceedings of the Combustion Institute,2011,33(1):359-366.
    [64] B.W. Weber, K. Kumar, Y. Zhang, et al., Autoignition of n-butanol at elevatedpressure and low-to-intermediate temperature, Combustion and Flame,2011,158(5):809-819.
    [65] P. Dagaut, C. Togbe, Experimental and Modeling Study of the Kinetics ofOxidation of Butanol n-Heptane Mixtures in a Jet-stirred Reactor, Energy&Fuels,2009,23(7):3527-3535.
    [66] P. Dagaut, C. Togbé, Experimental and modeling study of the kinetics ofoxidation of ethanol-n-heptane mixtures in a jet-stirred reactor, Fuel,2010,89(2):280-286.
    [67] S.M. Sarathy, M.J. Thomson, C. Togbé, et al., An experimental and kineticmodeling study of n-butanol combustion, Combustion and Flame,2009,156(4):852-864.
    [68] J.T. Moss, A.M. Berkowitz, M.A. Oehlschlaeger, et al., An Experimental andKinetic Modeling Study of the Oxidation of the Four Isomers of Butanol, TheJournal of Physical Chemistry A,2008,112(43):10843-10855.
    [69] G. Black, H.J. Curran, S. Pichon, et al., Bio-butanol: Combustion properties anddetailed chemical kinetic model, Combustion and Flame,2010,157(2):363-373.
    [70] P. Dagaut, S.M. Sarathy, M.J. Thomson, A chemical kinetic study of n-butanoloxidation at elevated pressure in a jet stirred reactor, Proceedings of theCombustion Institute,2009,32(1):229-237.
    [71] S. Vranckx, K.A. Heufer, C. Lee, et al., Role of peroxy chemistry in thehigh-pressure ignition of n-butanol:Experiments and detailed kinetic modelling,Combustion and Flame,2011,158(8):1444-1455.
    [72] S.M. Sarathy, S. Vranckx, K. Yasunaga, et al., A comprehensive chemical kineticcombustion model for the four butanol isomers, Combustion and Flame,2012,159(6):2028-2055.
    [73] H.J. Curran, P. Gaffuri, W.J. Pitz, et al., A Comprehensive Modeling Study ofn-Heptane Oxidation, Combustion and Flame,1998,114(1-2):149-177.
    [74] M. Mehl, W.J. Pitz, M. Sj berg, et al., Detailed Kinetic Modeling ofLow-Temperature Heat Release for PRF Fuels in an HCCI Engine, SAETechnical Paper,2009,2009-01-1806.
    [75] Y. Ra, R.D. Reitz, A reduced chemical kinetic model for IC engine combustionsimulations with primary reference fuels, Combustion and Flame,2008,155(4):713-738.
    [76] R. Lemaire, A. Faccinetto, E. Therssen, et al., Experimental comparison of sootformation in turbulent flames of Diesel and surrogate Diesel fuels, Proceedingsof the Combustion Institute,2009,32(1):737-744.-Commercial and Surrogate Diesel Fuels in a Jet-Stirred Reactor: Experimentaland Modeling Studies, Energy&Fuels,2010,24(3):1668-1676.
    [78] O. Mathieu, N. Djeba li-Chaumeix, C.-E. Paillard, et al., Experimental study ofsoot formation from a diesel fuel surrogate in a shock tube, Combustion andFlame,2009,156(8):1576-1586.
    [79] K. Mati, A. Ristori, S. Ga l, et al., The oxidation of a diesel fuel at1-10atm:Experimental study in a JSR and detailed chemical kinetic modeling,Proceedings of the Combustion Institute,2007,31(2):2939-2946.
    [80] J.C.G. Andrae, P. Bjornbom, R.F. Cracknell, et al., Autoignition of toluenereference fuels at high pressures modeled with detailed chemical kinetics,Combustion and Flame,2007,149(1-2):2-24.
    [81] K. Anand, Y. Ra, R.D. Reitz, et al., Surrogate Model Development for Fuels forAdvanced Combustion Engines, Energy&Fuels,2011,25(4):1474-1484.
    [82] A. Patel, S.-C. Kong, R.D. Reitz, Development and Validation of a ReducedReaction Mechanism for HCCI Engine Simulations, SAE Technical Paper,2004,2004-01-0558.
    [83] Y. Ra, R.D. Reitz, A combustion model for IC engine combustion simulationswith multi-component fuels, Combustion and Flame,2011,158(1):69-90.
    [84] T. Lu, C.K. Law, Toward accommodating realistic fuel chemistry in large-scalecomputations, Progress in Energy and Combustion Science,2009,35(2):192-215.
    [85] P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagation-based reductionmethod for large chemical kinetic mechanisms, Combustion and Flame,2008,154(1–2):67-81.
    [86] Y. Shi, H.-W. Ge, J.L. Brakora, et al., Automatic Chemistry MechanismReduction of Hydrocarbon Fuels for HCCI Engines Based on DRGEP and PCAMethods with Error Control, Energy&Fuels,2010,24(3):1646-1654.
    [87] K.J. Hughes, M. Fairweather, J.F. Griffiths, et al., The application of the QSSAvia reaction lumping for the reduction of complex hydrocarbon oxidationmechanisms, Proceedings of the Combustion Institute,2009,32(1):543-551.
    [88] J.Y. Chen, Y.F. Tham, Speedy solution of quasi-steady-state species bycombination of fixed-point iteration and matrix inversion, Combustion andFlame,2008,153(4):634-646.
    [89] H. Hiroyasu, T. Kadota, M. and Arai, Development and Use of a SprayCombustion Modeling to Predict Diesel Engine Efficiency and PollutantEmissions: Part1Combustion Modeling, Bulletin of JSME,1983,26:569-575.
    [90] S.-C. Kong, C.D. Marriott, R.D. Reitz, et al., Modeling and Experiments ofHCCI Engine Combustion Using Detailed Chemical Kinetics withMultidimensional CFD, SAE Technical Paper,2001,2011-01-1026.
    [91] R. Kee, F. Rupley, J. Miller, CHEMKIN-II: A Fortran Chemical KineticsPackage for the Analysis of Gas-Phase Chemical Kinetics, Sandia Report,1989,SAND89-8009.
    [92] A. Amsden, Kiva-3v, Release2, Improvements to Kiva-3v, LA-UR-99-915,1999.
    [93] C.A. Idicheria, L.M. Pickett, Formaldehyde Visualization Near Lift-Off Locationin a Diesel Jet, SAE Techical Paper,2006,2006-01-3434.
    [94] G. Vishwanathan, R.D. Reitz, Development of a Practical Soot ModelingApproach and Its Application to Low-Temperature Diesel Combustion,Combustion Science and Technology,2010,182(8):1050-1082.
    [95] J. Appel, H. Bockhorn, M. Frenklach, Kinetic modeling of soot formation withdetailed chemistry and physics: Laminar premixed flames of C2hydrocarbons,Combustion and Flame,2000,121(1-2):122-136.
    [96] Y. Yoshihara, A. Kazakov, H. Wang, et al., Reduced mechanism of sootformation-Application to natural gas-fueled diesel combustion, Symposium(International) on Combustion,1994,25(1):941-948.
    [97] J. Xi, B.J. Zhong, Reduced Kinetic Mechanism of n-Heptane Oxidation inModeling Polycyclic Aromatic Hydrocarbon Formation in Diesel Combustion,Chemical Engineering&Technology,2006,29(12):1461-1468.
    [98] H. Wang, M. Frenklach, A detailed kinetic modeling study of aromaticsformation in laminar premixed acetylene and ethylene flames, Combustion andFlame,1997,110(1-2):173-221.
    [99] N.A. Slavinskaya, P. Frank, A modelling study of aromatic soot precursorsformation in laminar methane and ethene flames, Combustion and Flame,2009,156(9):1705-1722.
    [100] N.A. Slavinskaya, U. Riedel, S.B. Dworkin, et al., Detailed numerical modelingof PAH formation and growth in non-premixed ethylene and ethane flames,Combustion and Flame,2012,159(3):979-995.
    [101] I.M. Kennedy, Models of soot formation and oxidation, Progress in Energy andCombustion Science,1997,23(2):95-132.
    [102] P.A. Tesner, T.D. Smegiriova, V.G. Knorre, Kinetics of dispersed carbonformation, Combustion and Flame,1971,17(2):253-260.
    [103] B. J, F. Liu, W.S. Neill, An improved soot formation model for3D dieselengine simulations, Journal of Engineering for Gas Turbines and Power,2007,129:(877-884)
    [104] M.A. Patterson, R.D. Reitz, Modeling the Effects of Fuel Spray Characteristicson Diesel Engine Combustion and Emission, SAE Technical Paper,1998,980131.
    [105] J. Nagle, R.F. Strickland-Constable, Oxidation of Carbon between1000-2000oC, Proceeding of the Fifth Carbon Conference,1962,1:154.
    [106] K.M. Leung, R.P. Lindstedt, W.P. Jones, A simplified reaction mechanism forsoot formation in nonpremixed flames, Combustion and Flame,1991,87(3-4):289-305.
    [107] J.B. Moss, C.D. Stewart, K.J. Young, Modeling soot formation and burnout in ahigh temperature laminar diffusion flame burning under oxygen-enrichedconditions, Combustion and Flame,1995,101(4):491-500.
    [108] I.M. Kennedy, C. Yam, D.C. Rapp, et al., Modeling and measurements of sootand species in a laminar diffusion flame, Combustion and Flame,1996,107(4):368-382.
    [109] K.B. Lee, M.W. Thring, J.M. Beér, On the rate of combustion of soot in alaminar soot flame, Combustion and Flame,1962,6:137-145.
    [110] C.P. Fenimore, G.W. Jones, Oxidation of Soot by Hydroxyl Radicals, Journal ofPhysical Chemistry,1967,71(3):593.
    [111] A. Fusco, A.L. Knox-Kelecy, D.E. Foster, Application of a phenomenologicalsoot model to diesel engine combustion, International Symposium COMODIA,1994,571-576.
    [112] A. Kazakov, D.E. Foster, Modeling of Soot Formation During DI DieselCombustion Using a Multi-Step Phenomenological Model, SAE Technical Paper,1998,982436.
    [113] F. Tao, V.I. Golovitchev, J. Chomiak, A phenomenological model for theprediction of soot formation in diesel spray combustion, Combustion and Flame,2004,136(3):270-282.
    [114] M. Frenklach, Method of moments with interpolative closure, ChemicalEngineering Science,2002,57(12):2229-2239.
    [115] M. Frenklach, S.J. Harris, Aerosol dynamics modeling using the method ofmoments, Journal of Colloid and Interface Science,1987,118(1):252-261.
    [116] M. Yao, H. Wang, Z. Zheng, et al., Experimental study of n-butanol additiveand multi-injection on HD diesel engine performance and emissions, Fuel,2010,89(9):2191-2201.
    [117] H. Wang, R.D. Reitz, M. Yao, et al., Development of an n-Heptane-n-Butanol-PAH Mechanism and its Application for Combustion and SootPrediction, Submitted to Combustion and Flame,2012.
    [118] Y. Wang, H.-W. Ge, R.D. Reitz, Validation of Mesh and Timestep-Independent Spray Models for Multi-Dimensional Engine CFD Simulation, SAEInt. J. Fuels Lubr.,2010,3(1):277-302.
    [119] A. Munnannur, R.D. Reitz, A new predictive model for fragmenting andnon-fragmenting binary droplet collisions, International Journal of MultiphaseFlow,2007,33(8):873-896.
    [120] Y. Ra, R.D. Reitz, A vaporization model for discrete multi-component fuelsprays, International Journal of Multiphase Flow,2009,35(2):101-117.
    [121] V. Yakhot, S.A. Orszag, Renormalization-Group Analysis of Turbulence, PhysRev Lett,1986,57(14):1722-1724.
    [122] Z. Han, R.D. Reitz, Turbulence modeling of internal combustion engines usingRNG k-epsilon models, Combustion Science and Technology,1995,106(4-6):267-295.
    [123] R.D. Reitz, Modeling atomization processes in high-pressure vaporizing sprays,Atomisation and Spray Technology,1987,3(4):309-337.
    [124] J.C. Beale, R.D. Reitz, Modeling Spray Atomization with theKelvin-Helmholtz/Rayleigh-Taylor Hybrid Model, Atomization and Sprays,1999,9(6):623-650.
    [125] F. Tao, J. Chomiak, Numerical Investigation of Reaction Zone Structure andFlame Liftoff of DI Diesel Sprays with Complex Chemistry, SAE TechnicalPaper,2002,2002-01-1114.
    [126] S.C. Kong, R.D. Reitz, Use of Detailed Chemical Kinetics to Study HCCIEngine Combustion With Consideration of Turbulent Mixing Effects, Journal ofEngineering for Gas Turbines and Power,2002,124(3):702-707.
    [127] S. Singh, R.D. Reitz, M.P.B. Musculus, et al., Validation of engine combustionmodels against detailed in-cylinder optical diagnostics data for a heavy-dutycompression-ignition engine, International Journal of Engine Research,2007,8(1):97-126.
    [128] S.L. Kokjohn, R.D. Reitz, Investigation of the Roles of Flame Propagation,Turbulent Mixing, and Volumetric Heat Release in Conventional and LowTemperature Diesel Combustion, Journal of Engineering for Gas Turbines andPower-Transactions of the Asme,2011,133(10):5-10.
    [129] G.P. Smith, D.M. Golden, M. Frenklach, et al., GRI-mech3.0,2005.
    [130] Y. Sun, Diesel Combustion Optimization and Emissions Reduction UsingAdaptive Injection Strategies (AIS) with Improved Numerical Models,University of Wisconsin-Madison, Madison, WI, U.S.A,2007.
    [131] G. Vishwanathan, R.D. Reitz, Numerical Predictions of Diesel Flame Lift-offLength and Soot Distributions under Low Temperature Combustion Conditions,SAE Technical Paper,2008,2008-01-1331.
    [132] G. Vishwanathan, R.D. Reitz, Modeling Soot Formation Using ReducedPolycyclic Aromatic Hydrocarbon Chemistry in n-Heptane Lifted Flames WithApplication to Low Temperature Combustion, Journal of Engineering for GasTurbines and Power-Transactions of the Asme,2009,131(3):032801-032807.
    [133] K.G. Neoh, J.B. Howard, A.F. Sarofim, Effect of oxidation on the physicalstructure of soot, Symposium (International) on Combustion,1985,20(1):951-957.
    [134] K. Kohse-Hoinghaus, P. Osswald, T.A. Cool, et al., Biofuel CombustionChemistry: From Ethanol to Biodiesel, Angewandte Chemie-InternationalEdition,2010,49(21):3572-3597.
    [135] J.L. Brakora, Y. Ra, R.D. Reitz, Combustion Model for Biodiesel-FueledEngine Simulations using Realistic Chemistry and Physical Properties, SAE Int.J. Engines,2011,4(1):931-947.
    [136] CHEMKIN PRO: a chemical kinetics package for the analysis of gas-phasechemical kinetics, Reaction Design,2008, Release15101.
    [137] M. Mehl, W.J. Pitz, C.K. Westbrook, et al., Kinetic modeling of gasolinesurrogate components and mixtures under engine conditions, Proceedings of theCombustion Institute,2011,33(1):193-200.
    [138]苏万华,赵华,王建昕,均质压燃低温燃烧发动机理论与技术,科学出版社,北京,2010.
    [139] K.J. Hughes, T. Turányi, A.R. Clague, et al., Development and testing of acomprehensive chemical mechanism for the oxidation of methane, InternationalJournal of Chemical Kinetics,2001,33(9):513-538.
    [140] K. Fieweger, R. Blumenthal, G. Adomeit, Self-ignition of S.I. engine modelfuels: A shock tube investigation at high pressure, Combustion and Flame,1997,109(4):599-619.
    [141] M. Hartmann, I. Gushterova, M. Fikri, et al., Auto-ignition of toluene-dopedn-heptane and iso-octane/air mixtures: High-pressure shock-tube experimentsand kinetics modeling, Combustion and Flame,2011,158(1):172-178.
    [142] H.-P.S. Shen, J. Steinberg, J. Vanderover, et al., A Shock Tube Study of theIgnition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at ElevatedPressures, Energy&Fuels,2009,23(5):2482-2489.
    [143] M.J. Castaldi, N.M. Marinov, C.F. Melius, et al., Experimental and modelinginvestigation of aromatic and polycyclic aromatic hydrocarbon formation in apremixed ethylene flame, Symposium (International) on Combustion,1996,26(1):693-702.
    [144] F. Inal, S.M. Senkan, Effects of equivalence ratio on species and sootconcentrations in premixed n-heptane flames, Combustion and Flame,2002,131(1-2):16-28.
    [145] J.D. Naber, D.L. Siebers, Effects of Gas Density and Vaporization onPenetration and Dispersion of Diesel Sprays, SAE Technical Paper,1996,960034.
    [146] S. D.L., Liquid-phase fuel penetration in diesel sprays, SAE Technical Paper,1998,980809.
    [147] B. Higgins, D. Siebers, A. Aradi, Diesel-Spray Ignition and Premixed-BurnBehavior, SAE Technical Paper,2000,2000-01-0940.
    [148] L.M. Pickett, D.L. Siebers, Soot in diesel fuel jets: effects of ambienttemperature, ambient density, and injection pressure, Combustion and Flame,2004,138(1-2):114-135.
    [149] Engine Combustion Network, http://www.sandia.gov/ecn/.
    [150] D. Siebers, B. Higgins, Flame Lift-Off on Direct-Injection Diesel Sprays UnderQuiescent Conditions, SAE Technical Paper,2001,2001-01-0530.
    [151] M.U. Alzueta, P. Glarborg, K. Dam-Johansen, Experimental and kineticmodeling study of the oxidation of benzene, International Journal of ChemicalKinetics,2000,32(8):498-522.
    [152] R. Sivaramakrishnan, R.S. Tranter, K. Brezinsky, A high pressure model for theoxidation of toluene, Proceedings of the Combustion Institute,2005,30(1):1165-1173.
    [153] B. Yang, Y. Li, L. Wei, et al., An experimental study of the premixedbenzene/oxygen/argon flame with tunable synchrotron photoionization,Proceedings of the Combustion Institute,2007,31(1):555-563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700