激波干扰及超声速湍流边界层的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激波和超声速湍流边界层的研究在流动物理和工程应用中都具有重要意义。本文采用直接数值模拟方法研究了激波-激波干扰和超声速湍流边界层的流动特性。文中着重探讨了激波-激波干扰中的非定常流动现象及反馈机制、超声速湍流边界层内流动拓扑的演化和壁面温度对超声速湍流边界层统计特性的影响。主要工作和研究成果如下:
     (1)研究了高超声速IV型激波-激波干扰的非定常流动特性。基于对涡量和胀压输运方程源项的分析,揭示了流动结构与剪切、压缩及热力过程之间的内在联系。详细地分析了流场中存在的非定常流动现象,包括超声速“喷流”冲击壁面、“喷流”激波的非定常运动、激波-边界层相互作用和旋涡-边界层相互作用等。研究表明:“喷流”激波的振荡和变形会产生“热斑”,导致物体表面热流峰值出现瞬时极大值;“喷流”激波和超声速“喷流”所诱导的剪切层相互作用,形成向上游传播的压缩波;压缩波与上游的弓形激波作用产生向物体传播的熵波和涡波。通过对压力场的本征正交分解发现,流场中的压缩波还与激波-边界层相互作用和旋涡-边界层相互作用相关联。基于对流场演化过程的分析,发现流场非定常运动的反馈机制与超声速“喷流”相关,由向上游传播的压缩波和向下游演化的相干涡结构构成反馈回路。基于自激振荡机制,定量地分析了流动的非定常特征,包括非定常运动的频率以及入射激波角度对运动频率的影响。此外,随着雷诺数的减小,流场由非定常状态变为定常状态。
     (2)研究了超声速湍流边界层内流体质点的拓扑结构演化。系统地分析了速度梯度不变量空间中不变量变化率的瞬时和平均统计特性。研究表明:不变量发生剧烈变化的可能性呈现明显的-3幂次律衰减特征;在归一化的不变量空间内,边界层外层的条件平均迹向内盘旋至原点,缓冲层的条件平均迹呈现极限环行为。基于不变量动力学演化方程统计分析了相互作用项、压力-Hessian相关项和粘性项对拓扑结构演化的贡献,揭示了压缩性对流动拓扑演化的影响。统计结果表明:拓扑结构的平均演化受压缩性的影响显著;不变量间的相互作用项决定了拓扑结构在不变量Q-R平面按顺时针方向演化;在局部压缩区和局部膨胀区,压力项的贡献起主导作用,但两个区域内的演化趋势是相反的;粘性项主要表现为耗散作用,导致速度梯度衰减,在粘性底层以外可以采用线性衰减模型来模化。
     (3)研究了壁面温度对超声速湍流边界层的湍流统计特性的影响。系统地分析了平均量和湍流脉动量的统计特征、拟序涡结构的空间结构以及应变与涡量的相互作用。结果验证了Morkovin假设的合理性,即壁面温度对湍流平均特征的影响主要通过平均密度和粘性的变化所体现。通过分析联合概率密度分布,本文建立了密度脉动和温度脉动之间、流向速度脉动和温度脉动之间的合理关系式。在边界层内层,拟序涡结构与壁面的夹角随着壁面温度的增加而增大;在边界层外层,拟序涡结构与壁面的夹角基本不受壁面温度影响。通过涡拉伸项定量分析了应变与涡量的相互作用;结果表明,在边界层内层第二主应变率相关项占主导,主要来源于不稳定应变占优区域(UN/S/S)和径向收缩、轴向拉伸的涡结构(SF/S),应变占优的UN/S/S的平均涡拉伸强度大于旋转占优的SF/S;在边界层外层第一主应变率相关项占主导,主要来源于SF/S,并且SF/S的平均涡拉伸强度大于UN/S/S。
Investigation of shock-shock interaction and supersonic turbulent boundary layer is of great importance for the development of high-speed vehicles and turbulence model-ing. In this dissertation, the unsteady shock-shock interaction and statistical properties of supersonic turbulent boundary layers are studied by means of direct numerical sim-ulation. The results and conclusions are briefly given as follows:
     (1) Characteristics of the unsteady type IV shock interaction of hypersonic blunt body flows are investigated. The intrinsic relations of flow structures to the shearing, compressing and thermal processes are studied and the physical mechanisms of the unsteady flow evolution are revealed. It is found that the instantaneous sur-face heating rate peak is caused by the fluid in the "hot spot" generated by an oscillating and deforming jet bow shock just ahead of the body surface. The features of local shock/boundary layer interaction and vortex/boundary layer in-teraction are clarified. Based on the analysis of flow evolution, it is identified that the upstream-propagating compression waves are associated with the inter-action of the jet bow shock and the shear-layers formed by a supersonic impinging jet, and then the interaction of the free-stream bow shocks and the compression waves results in the entropy waves and vortical waves propagating to the body surface. Further, the feedback mechanism of the inherent unsteadiness of flow field is revealed to be related to the impinging jet. A feedback model is proposed to reliably predict the dominant frequency of flow evolution. Moreover, the flow field will become steady for low Reynolds number flow.
     (2) Topological evolution of compressible turbulent boundary layers at Mach2is in-vestigated by means of statistical analysis of the invariants of the velocity gradient tensor. The probability density functions of the rate of change of the invariants exhibit the-3power law distribution in the region of large Lagrangian deriva-tive of the invariants in the inner and outer layers.The topological evolution is studied by conditional mean trajectories for the evolution of the invariants. The trajectories illustrate inward spiraling orbits around and converging to the origin of the space of invariants in the outer layer, while they are repelled by the vicinity of the origin and converge towards a limit cycle in the inner layer. The compressibility effect on the mean topological evolution is studied in terms of the'incompressible', compressed and expanding regions. It is found that the mean evolution of flow topologies is altered by the compressibility. The evolution equations of the invariants are derived and the relevant dynamics of the mean topological evolution are analyzed. The compressibility effect is mainly related to the pressure effect. The mutual-interaction terms among the invariants are the root of the clockwise spiral behavior of the local flow topology in the space of invariants.
     (3) Turbulent boundary layers at Mach4.9with the ratio of wall temperature to re-covery temperature{Ts,/Tr) from0.5to1.5are investigated. The influence of wall temperature on Morkovin's scaling, the standard and modified strong Reynolds analogies, turbulent kinetic energy budgets, coherent vortical structure and vor-tex stretching is assessed. The scaling relations proposed for cool and adiabatic cases, such as Morkovin's scaling and the modified strong Reynolds analogy, are also applicable for the hot case. The approximate relations between the densi-ty fluctuations and temperature fluctuations as well as between the streamwise velocity fluctuations and temperature fluctuations are proposed. With the in-crease of wall temperature, the most probable inclination angle (the angle made in the streamwise and wall-normal plane) of coherent vortical structures increases in the inner layer and has little change in the outer layer. Moreover, in the in-ner layer, the enstrophy production is dominated by the intermediate strain-rate term and mainly comes from unstable node/saddle/saddle (UN/S/S) and stable focus/stretching (SF/S), and the vortex stretching of UN/S/S is stronger than SF/S; in the outer layer, the enstrophy production is dominated by the extensive strain-rate term and mainly comes from SF/S, and the vortex stretching of SF/S is stronger than UN/S/S.
引文
张涵信1984差分计算中激波上、下游解出现波动的探讨.空气动力学报1,12-19.
    张兆顺、崔桂香和许春晓2006湍流理论与模拟.清华大学出版社.
    黄章峰、周恒和罗纪生2006超声速平板边界层湍流的直接数值模拟及分析.中国科学G辑物理学力学天文学36(1),46-58.
    黄章峰和周恒2008湍流边界层的空间模式DNS的入口条件.中国科学G辑物理学力学天文学38(3),310-318.
    童秉纲、尹协远和朱克勤2009涡运动理论.中国科学技术大学出版社.
    陈立为2010具有激波和湍流旋涡分离的可压缩绕流数值研究.PhD thesis,中国科学.技术大学,合肥.
    汪利2011可压缩湍流边界层统计特性的直接数值模拟研究.PhD thesis,中国科学技术大学,合肥.
    蔡国飙和徐大军2012高超声速飞行器技术.科学出版社.
    ADAMS, N. A.1998 Direct numerical simulation of turbulent compression ramp flow. Theoret. Comput. Fluid Dyn.12,109-129.
    ADRIAN, R. J., MEINHART, C. D.& TOMKINS, C. D.2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.422,1-53.
    ANDREOPOULOS, Y.& HONKAN, A.2001 An experimental study of the dissipative and vortical motion in turbulent boundary layers. J. Fluid Mech.439,131-163.
    ASHURST, W. T., KERSTEIN, A. R., KERR, R. M.& GIBSON, C. H.1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30 (8),2343-2353.
    ATKINSON, C., CHUMAKOV, S., BERMEJO-MORENO, I.& SORIA, J.2012 La-grangian evolution of the invariants of the velocity gradient tensor in a turbulent boundary layer.Phys. Fluids 24,105104.
    ATKINSON, C., COUDERT, S., FOUCAUT, J.-M., STANISLAS, M.& SORIA, J.2011 The accuracy of tomographic particle image velocimetry for measurements of a tur-bulent boundary layer. Exp. Fluids 50,1031-1056.
    BATCHELOR, G. K.1967 An Introduction to Fluid Mechanics. Cambridge Univ. Press.
    BERMEJO-MORENO, I., ATKINSON, C., CHUMAKOV, S., SORIA, J.& WU, X. 2010 Flow topology and non-local geometry of structures in a flat-plate turbulent boundary layer. In Proc. Summer Program. Centre for Turbulence Research, Stanford University.
    BETCHOV, R. J.1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech.1,497-504.
    BLACKBURN, H. M., MANSOUR, N.& CANTWELL, B. J.1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech.310,269-292.
    BLAISDELL, G. A.& ZEMAN, O.1992 Investigation of the dilatational dissipation in compressible homogeneous shear flows. In Center for Turbulence Research.
    BOGDANOFF, D. W.1983 Compressibility effects in turbulent shear layer. AIAA J. 21.
    VAN DER BOS, F., TAO, B., MENEVEAU, C.& KATZ, J.2002 Effects of small-scale turbulent motions on the filtered velocity gradient tensor as deduced from holographic
    particle image velocimetry measurements. Phys. Fluids 14 (7),2456-2474.
    BRADSHAW, P.1977 Compressible turbulent shear layers. Ann. Rev. Fluid Mech.9 (1),33-52.
    BUXTON, O. R. H.& GANAPATHISUBRAMANI, B.2009 The classification and com-position of fine scale eddies in a turbulent jet. AIAA Paper 2009-592.
    BUXTON, O. R. H.& GANPATHISUBRAMANI, B.2010 Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J. Fluid Mech.651,483-502.
    CANTWELL, B. J.1992 Exact solution of a restricted euler equation for the velocity gradient tensor. Phys. Fluids A 4 (4),782-793.
    CHACIN, J. M.& CANTWELL, B. J.2000 Dynamics of a low Reynolds number tur-bulent boundary layer. J. Fluid Mech.404,87-115.
    CHAKRABORTY, P., BALACHANDAR, S.& ADRIAN, R. J.2005 On the relationships between local vortex identification schemes. J. Fluid Mech.535,189-214.
    CHEN, J., CHONG, M. S., SORIA, J., SONDERGAARD, R., PERRY, A. E., ROGERS, M., MOSER, R.& CANTWELL, B. J.1990 A study of the topology of dissipating motions in direct numerical simulations of time-developing compressible and incom-pressible mixing layers. In Centre for Turbulence Research.
    CHEN, L. W., XU, C. Y.& Lu, X. Y.2010 Numerical investigation of the compress-ible flow past an aerofoil. J. Fluid Mech.643,97-126.
    CHERTKOV, M., PUMIR, A.& SHRAIMAN, B. I.1999 Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11(8),2394-2410.
    CHEVILLARD, L.& MENEVEAU, C.2006 Lagrangian dynamics and statistical geo-metric structure of turbulence. Phys. Rev. Lett.97,174501.
    CHEVILLARD, L., MENEVEAU, C., BIFERALE, L.& TOSCHI, F.2008 Modeling the pressure Hessian and viscous Laplacian in turbulence:Comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids 20,101504.
    CHONG, M. S., PERRY, A. E.& CANTWELL, B. J.1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5),765-777.
    CHONG, M. S., SOFIA, J., PERRY, A. E., CHACIN, J., CANTWELL, B. J.& NA, Y.1998 Turbulence structures of wall-bounded shear flows using DNS data. J. Fluid Mech.357,225-247.
    CHU, B.-T.& KOVASZNAY, L.S. G.1958 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech.3,494-514.
    COLEMAN, G. N., KIM, J.& MOSER, R. D.1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech.305,159-183.
    DALLMANN, U.1983 Topological structures of three-dimensional flow separation. AIAA Paper 83-1935.
    D'AMBROSIO, D.2002 Numerical prediction of laminar shock/shock interactions in hypersonic flow. AIAA Paper 2002-0582.
    DUAN, L., BEEKMAN, I.& MARTIN, M. P.2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech.655,419-445.
    DUAN, L., BEEKMAN, I.& MARTIN, M. P.2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672,245-267.
    DUAN, L. & MARTIN, M. P.2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech.684,25-59.
    DUCROS, F., COMTE, P.& LESIEUR, M.1996 Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326,1-36.
    EDNEY, B.1968 Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. FFA Rep.115.
    ELSINGA, G. E. & MARUSIC, I.2010a Evolution and lifetimes of flow topology in a turbulent boundary layer. Phys. Fluids 22,015102.
    ELSINGA, G. E.& MARUSIC, I.2010b Universal aspects of small-scale motions in turbulence. J. Fluid Mech.662,514-539.
    ERLEBACHER, G.&; SARKAR, S.1993 Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Phys. Fluids A 5 (12),3240-3254.
    FARIN, G.1992 Curves and Surfaces for Computer Aided Geometric Design.Academic.
    FASEL, H.& KONZELMANN, U.1990 Nonparallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. J. Fluid Mech.221,311-347.
    FAY, J. A.& RIDDLE, F. R.1985 Theory of stagnation point heat transfer in disso-ciated air. J. Aeronaut. Sci.25 (2),73-85.
    FERNHOLZ, H. H.& FINLEY, P. J.1976 A critical compilation of compressible tur-bulent boundary layer data. AGARD Rep.223.
    FERNHOLZ, H. H.&; FINLEY, P. J.1980 A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers. AGARD Rep.253.
    FERNHOLZ, H. H.&; FINLEY, P. J.1981 A further compilation of compressible tur-bulent boundary layer data with a survey of turbulence data. AGARD Rep.263.
    FERNHOLZ, H. H., SMITS, A. J., DUSSAUGE, J. P.& FINLEY, P. J.1989 A survey of measurements and measuring techniques in rapidly distorted compressible turbulent boundary layers. AGARD Rep.315.
    FESZTY, D., BADCOCK, K. J.& RICHARDS, B. E.2004a Driving mechanisms of high-speed unsteady spiked body flows. Part 1. Pulsation mode. AIAA J.42,95-106.
    FESZTY, D., BADCOCK, K. J.& RICHARDS, B. E.2004b Driving mechanisms of high-speed unsteady spiked body flows. Part 2. Oscillation mode. AIAA J.42,107-113.
    FREUND, J. B., LELE, S. K.& MOIN, P.2000 Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech.421,229-267.
    FRISCH, U.1995 Turbulence. Cambridge Univ. Press.
    FU, D.& MA, Y.1997 A high order accurate difference scheme for complex flow fields. J. Comput. Phys.134,1-15.
    FURUMOTO, G. H.& ZHONG, X.1997 Numerical simulation of viscous unsteady type IV shock-shock interaction with thermochemical nonequilibrium. AIAA Paper 97-0982.
    GAITONDE, D.& SHANG, J. S.1995 On the structure of an unsteady type IV inter-action at Mach 8. Comput. Fluids 24,469-485.
    GANAPATHISUBRAMANI, B.2007 Statistical properties of streamwise velocity in a su-personic turbulent boundary layer. Phys. Fuids 19,098108.
    GANAPATHISUBRAMAI, B., CLEMENS, N. T.& DOLLING, D. S.2006a Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech.556,271-282.
    GANAPATHISUBRAMANI, B., HUTCHINS, N., HAMBLETON, W. T., LONGMIRE, E. K.& MARUSIC, I.2005 Investigation of large-scale coherence in a turbulent bound-ary layer using two-point correlations. J. Fluid Mech.524,57-80.
    GANAPATHISUBRAMANI, B., LONGMIRE, E. K.& MARUSIS, I.2006b Experimental investigation of vortex properties in a turbulent boundary layer. Phys. Fuids 18, 055105.
    GAO, H., FU, D. X.,MA, Y. W.& LI, X. L.2005 Direct numerical simulation of supersonic turbulent boundary layer flow. Chin. Phys. Lett.22,1709.
    GATSKI, T. B.& ERLEBACHER, G.2002 Numerical simulation of a spatially evolving supersonic turbulent boundary layer. NASA TM-211934.
    GAVIGLIO, J.1987 Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Intl J. Heat Mass Transfer 30 (5),911-926.
    GIRIMAJI, S. S.& POPE, S. B.1990 A diffusion model for velocity gradients in turbulence. Phys. Fluids A 2 (2),242-256.
    GLASS, C.E.1999 Numerical simulation of low-density shock-wave interactions. NASA TM-209358.
    GODUNOV, S. K.1959 A difference method for the numerical calculation of discontin-uous solutions of hydrodynamic equations. Mat. Sb.47 (3),271-306.
    GROSS, A.& FASEL, H. F.2007 Characteristic ghost-cell boundary condition. AIAA J.45,302-306.
    GUALA, M., LIBERZON, A., TSINOBER, A.& KINZELBACH, W.2007 An experimen-tal investigation on Lagrangian correlations of small-scale turbulence at low Reynolds number. J. Fluid Mech.574,405-427.
    GUARINI, S. E., MOSER, R. D., SHARIFF, K.& WRAY, A.2000 Direct numerical simulation of a supersonic boundary layer at Mach 2.5. J. Fluid Mech.414,1-33.
    GUO, Y.& ADAMS, N. A.1994 Numerical investigation of supersonic turbulen-t boundary layers with high wall temperature. In Proc. Summer Program. Centre for Turbulence Research, Stanford University.
    HAMLINGTON, P. E., SCHUMACHER, J.& DAHM, W. J. A.2008 Direct assessment of vorticity alignment with local and non-local strain rates in turbulent flows. Phys. Fluids 20,11703.
    HAMMAN,C. W., KLEWICKI, J. C.& KIRBY, R. M.2008 On the Lamb vector divergence in Navier-Stokes flows. J. Fluid Mech.610,261-284.
    HARDY, B.& ATASSI, H. M.1997 Interaction of acoustic, entropic, and vortical waves with a plane shock. AIAA Paper 97-1614.
    HARTEN, A.1983 High resolution schemes for hyperbolic conservation laws. J. Comput. Phys.49,357-393.
    HARTEN, A., ENGGQUIST, B., OSHER, S.& CHAKRAVARTHY, S. R.1987 Uniformly high order accurate essentially nonoscillatory schemes, Ⅲ. J. Comput. Phys.71, 231-303.
    HEAD, M. R.& BANDYOPADHYAY, P. R.1981 New aspects of turbulent boundary structure. J. Fluid Mech.107,297-338.
    HO, C. M. & NOSSEIR, N. S.1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech.105,119-142.
    HOLDEN, M.S.1989 Shock-shock boundary layer interaction. AGARD Rep.764.
    HOLDEN, M. S., MOSELLE, J. R.& LEE, J.1991 Studies of aerothermal loads gen-erated in regions of shock/shock interaction in hypersonic flow. NASA CR-181893.
    HORIUTI, K. & TAKAGI, Y.2005 Identification method for vortex sheet structures in turbulent flows. Phys. Fluids 17,121703.
    HORSTMAN, C. C.& OWEN, F. K.1972 Turbulent properties of a compressible boundary layer. AIAA J.10 (11),1418-1424.
    HUANG, P. G., COLEMAN, G. N.& BRADSHAW, P.1995 Compressible turbulent channel flows:DNS results and modelling. J. Fluid Mech.305,185-218.
    HUMBLE, R. A., SCARANO, F.& VAN OUDHEUSDEN, B. W.2009 Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech.635, 47-74.
    HUNT, J. C. R., WRAY, A. A.& MOIN, P.1988 Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research.
    HUTCHINGHINS, N., HAMBLETON, W. T.& MARUSIC, I.2005 Inclined cross-stream stere-o particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech.541,21-54.
    ISRAELI, M.& ORSZAG, S. A.1981 Approximation of radiation boundary conditions. J. Comput. Phys.41,115-135.
    JAMESON, A., SCHMIDT, W.& TURKEL, E.1981 Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes. AIAA Paper 81-1259.
    JEONG, E.& GIRIMAJI, S. S.2003 Velocity-gradient dynamics in turbulence:Effect of viscosity and forcing. Theoret. Comput. Fluid Dynamics 16,421-432.
    JEONG, J.& HUSSAIN, F.1995 On the identification of a vortex. J. Fluid Mech.285, 69-94.
    JIANG, G. S.& SHU, C. W.1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys.126,202-228.
    JIMENEZ, J.1992 Kinematic alignment effects in turbulent flows. Phys. Fluids A 4 (4), 652-654.
    KHOLMYANSKY, M., TSIONOBER, A. & YORISH, S.2001 Velocity derivatives in the atmospheric surface layer at Reλ=104. Phys. Fluids 13 (1),311-314.
    KIDA, S.& ORSZAG, S. A.1990 Enstrophy budget in decaying compressible turbu-lence. J. Sci. Comput.5(1),1-34.
    KIM, J., MOIN, P.& MOSER, R.1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.177,133-166.
    KIM, S. I. & PARK, S. O.2005 Oscillatory behavior of supersonic impinging jet flows. Shock Waves 14,259-272.
    KLOIFER, G. H.& YEE, H. C.1988 Viscous hypersonic shock-on-shock interaction on blunt cowl lips. AIAA Paper 88-0233.
    KROTHAPALLI, A., RAJKUPERAN, E., ALVI, F. & LOURENCO, L.1999 Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech.392,155-181.
    LAGHA, M., KIM, J., ELDREDGE, J. D.& ZHONG, X.2011a A numerical study of compressible turbulent boundary layers. Phys. Fluids 23,015106.
    LAGHA, M., KIM, J., ELDREDGE, J. D.& ZHONG, X.2011b Near-wall dynamics of compressible boundary layers. Phys. Fluids 23,065109.
    LEE, K., GIRIMAJI, S. S.& KERIMO, J.2009 Effect of compressibility on turbulent velocity gradients and small-scale structure. J. Turbul.10 (9),1-18.
    LELE, S. K.1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys.103,16-42.
    LI, Q.& COLEMAN, G. N.2003 DNS of an oblique shock wave impinging upon a turbulent boundary layer. In Direct and Large-Eddy Simulation V, pp.387-396. Kluwer.
    LI, X. L., Fu, D. X.& MA, Y. W.2006 Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at Ma= 6. Chin. Phys. Lett.23,1519.
    LI, Y., CHEVIKKARD, L., EYINK, G.& MENEVEAU, C.2009 Matrix exponential-based closures for the turbulent subgrid-scale stress tensor. Phys. Rev. E 79,016305.
    LI, Y. SZ MENEVEAU, C.2005 Origin of non-Gaussian statistics in hydrodynamic turbulence. Phys. Rev. Lett.95,164502.
    LI, Y.& MENEVEAU, C.2006 Intermittency trends and Lagrangian evolution of non-Gaussian statistics in turbulent flow and scalar transport.J. Fluid Mech.558, 133-142.
    LIND, G. A.& LEWIS, M. J.1996 Computational analysis of the unsteady type iv shock interaction of blunt body flows. J. Prop. Power 12,127-133.
    LIU, X. D., OSHER, S.& CHAN, T.1994 Weighted essentially non-oscillatory schemes. J. Comput. Phys.115,200-212.
    LUGT, H. J.1983 Vortex Flow in Nature and Technology. John Wiley & Sons.
    LUND, T. S., Wu, X. H.& SQUIRES, K. D.1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys.140,233-258.
    LUTHI, B., HOLZNER, M.& TSINOBER, A.2009 Expanding the Q-R space to three dimensions. J. Fluid Mech.641,497-507.
    MAEDER, T.2000 Numerical investigation of supersonic turbulent boundary layers. PhD thesis, ETH, Zurich.
    MAEDER, T., ADAMS, N. A.& KLEISER, L.2001 Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech.429, 187-216.
    MARTIN, J., OOI, A., CHONG, M. S.&; SORIA, J.1998 Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids 10 (8),2336-2346.
    MARTIN, J., OOI, A., DOPAZO, C., CHONG, M. S.& SORIA, J.1997 The inverse
    diffusion time scale of velocity gradients in homogeneous isotropic turbulence. Phys. Fluids 9 (4),814-816.
    MARTIN, M. P.2003 Preliminary DNS database of hypersonic turbulent boundary layers. AIAA Paper 2003-3726.
    MARTIN, M. P.2004 Dns of hyersonic turbulent boundary layers. AIAA Paper 2004-2337.
    MARTIN, M. P.2007 Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech.570, 347-364.
    MARTIN, M. P., TAYLOR, E. M., Wu, W.& WEIRS, V. G.2006 A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys.220,270-289.
    MARTIN, P. M.& CANDLER, G. V.2000 DNS of Mach 4 boundary layer with chemical reactions. AIAA Paper 2000-0399.
    MARTIN, P. M.& CANDLER, G. V.2001 Temperature fluctuation scaling in reacting turbulent boundary layers. AIAA Paper 2001-2717.
    MARTIN, P. M., WEIRS, G. V., OLEJNICZAK, D.& CANDLER, G. V.1998 DNS of reacting hypersonic turbulent boundary layers. AIAA Paper 98-2817.
    MENEVEAU, C.2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech.43,219-245.
    MEYER, K. E., PEDERSEN, J. M.& OZCAN, O.2007 A turbulent jet in crossflow analysed with proper orthogonal decomposition. J. Fluid Mech.583,199-227.
    MIZUNO, Y., ATKINSON, C.& SORIA, J.2011 Topology and dynamics of flow struc-tures in wall-bounded turbulent flows. J. Phys.:Conf. Ser.318,062018.
    MORKOVIN, M.1962 Effects of compressibility on turbulent flows. In Mechanique de la Turbulence, pp.367-380.
    MULLIN, J. A. & DAHM, W. J. A.2006 Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. Ⅱ. Experi-mental results. Phys. Fluids 18,035102.
    O'FARRELL, C.& MARTIN, M. P.2009 Chasing eddies and their wall signature in dns data of turbulent boundary layers. J. Turbul.10,1-22.
    ONG, L.& WALLACE, J. M.1998 Joint probability density analysis of the structure and dynamics of the vorticity field of a turbulent boundary layer. J. Fluid Mech.367, 291-328.
    OOI, A., MARTIN, J., SOFIA, J. & CHONG, M. S.1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech.381,141-174.
    OWEN, F. K.& HORSTMAN, C. C.1972 On the structure of hypersonic turbulent boundary layers. J. Fluid Mech.53,611-616.
    OWEN, F. K., HORSTMAN, C. C.& KUSSOY, M. I.1975 Mean and fluctuating flow measurements of a fully-developed, non-adiabatic, hypersonic boundary layer. J. Fluid Mech.70,393-413.
    PANARAS, A. G.& DRIKAKIS, D.2009 High-speed unsteady flows around spiked-blunt bodies. J. Fluid Mech.632,69-96.
    PANARAS, A. G.& DRIKAKIS, D.2011 Physical and numerical aspects of the high-speed unsteady flow around concave axisymmetric bodies. CEAS Space J.1,23-32.
    PANTANO, C.& SARKAR, S.2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech.451,329-371.
    PERRY, A. E.& CHONG, M. S.1987 A description of eddying motions and flow patterns using critical-point concepts. Ann. Rev. Fluid Mech.19,125-155.
    PICONE, J. M.& BORIS, J. P.1988 Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech.189,23-51.
    PIROZZOLI, S.2011 Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43,163-194.
    PIROZZOLI, S., BERNARDINI, M.& GRASSO, F.2008 Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech.613, 205-231.
    PIROZZOLI, S., BERNARDINI, M.& GRASSO, F.2010 On the dynamical relevance of coherent vortical structures in turbulent boundary layers. J. Fluid Mech.648, 325-349.
    PIROZZOLI, S.& GRASSO, F.2004 Direct numerical simulations of isotropic com-pressible turbulence:Influence of compressibility on dynamics and structures. Phys. Fluids 16 (12),4386-4407.
    PIROZZOLI, S., GRASSO, F.& GATSKI, T. B.2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M= 2.25. Phys. Fluids 16 (3),530-545.
    POINSOT, T. J.& LELE, S. K.1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys.101,104-129.
    RAGAB, S. A.& WU, J. L.1989 Linear instabilities in two-dimensional compressible mixing layers. Phys. Fluids A 1,957-966.
    RAI, M. M., GATSKI, T. B.& ERLEBACHER, G.1995 Direct numerical simulation of spatially evolving compressible turbulent boundary layers. AIAA Paper 95-0583.
    RINGUETTE, M. J., WU, M.& MARTIN, M. P.2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech.594, 59-69.
    ROBINSON, S. K.1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.23,601-639.
    ROBINSON, S. K., KLINE, S. J.& SPALART, P. R.1989 A review of quasi-coherent structures in a numerically simulated boundary layer. NASA TM-102191.
    ROWEY, C. W., COLONIUS, T.& BASU, A. J.2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech.455, 315-346.
    RUBESIN, M. W.1990 Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows. NASA Cr-177556.
    SAFFMAN, P. G.& BAKER, G. R.1979 Vortex interactions. Ann. Rev. Fluid Mech. 11,95-112.
    SAGAUT, P.& CAMBON, C.2008 Homogeneous turbulence dynamics. Cambridge Univ. Press.
    SAMIMY, M., ARNETTE, S. A.& ELLIOTT, G. S.1994 Streamwise structures in a turbulent supersonic boundary layer. Phys. Fluids 6 (3),1081-1083.
    SANDERSON, S. R.1995 Shock wave interaction in hypervelocity flow. PhD thesis, California Institute of Technology.
    SANDERSON, S. R., HORNUNGg, H. G.&; STURTEVANT, B.2003 Aspects of planar, oblique and interacting shock waves in an ideal dissociating gas. Phys. Fluids 15.
    SANDHAM, N. D., LI, Q.& YEE, H. C.2002 Entropy splitting for high-order numer-ical simulation of compressible turbulence. J. Comput. Phys.178,307-322.
    SANDHAM, N. D., YAO, Y. F.& LAWAL, A. A.2003 Large-simulation of transonic turbulent flow over a bump. Intl. J. Heat Fluid Flow 24,584-595.
    SCHRAMM, J. M.& EITELBERG, G.1999 Shock boundary layer interaction in hy-personic high enthalpy flow on a double wedge. In 22nd International Symposium on Shock Waves.
    SHU, C. W.1997 Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA CR-206253.
    SHU, C. W.2009 High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev.51,82-126.
    SHU, C. W.&; OSHER, S.1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys.77,439-471.
    SMITS, A. J.& DUSSAUGE, J. P.2006 Turbulent Shear Layers in Supersonic Flow. American Institute of Physics.
    SMITS, A. J., MARTINt, P.& GIRIMAJI,S.2009 Current status of basic research in hypersonic turbulence. AIAA Paper 2009-151.
    SMITS, A. J., SPINA, E. F., ALVING, A. E., SMITH, R. W., FERNANDO, E. M. & DONOVAN, J. F.1989 A comparison of the turbulence structure of subsonic and supersonic boundary layers. Phys. Fluids A 1 (11),1865-1875.
    SONDERGAARD, R., CHEN, J. H., SORIA, J.& CANTWELL, B. J.1991 Local topol-ogy of small scale motions in turbulent shear flows. In Proc. Eighth Symposium on Turbulent Shear Flows.
    SORIA, J., SONDERGAARD, R., CANTWELL, B. J., CHONG, M. S.& PERRY, A. E.1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2),871-884.
    SPALART, P. R.1988 Direct numerical simulation of a turbulent boundary layer up to Reθ= 1410. J. Fluid Mech.187,61-98.
    SPINA, E. F., DONOVAN, J. F.& SMINTS, A. J.1991 On the structure of high-Reynolds-number supersonic turbulent boundary layers. J. Fluid Mech.222,293-327.
    SPINA, E. F.&:SMITS, A. J.1987 Organized structures in a compressible turbulent boundary layer. J. Fluid Mech.182,85-109.
    SPINA, E. F., SMITS, A. J.& ROBINSON, S. K.1994 The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech.26,287-319.
    STANISLAS, M., PERRET, L.& FOUCAUT, J. M.2008 Vortical structures in the turbulent boundary layer:a possible route to a universal representation.J. Fluid Mech.602,327-382.
    SUMAN, S.& GIRIMAJI, S. S.2009 Homogenized Euler equation:a model for com-pressible velocity gradient dynamics. J. Fluid Mech.620,177-194.
    SUMAN, S.& GIRIMAJI, S. S.2010 Velocity gradient invariants and local flow-field topology in compressible turbulence. J. Turbul.11 (2),1-24.
    SUMAN, S.& GIRIMAJI, S. S.2012 Velocity-gradient dynamics in compressible tur-bulence:influence of Mach number and dilatation rate.J. Turbul.13 (8),1-23.
    SUTHERLAND, W.1893 The viscosity of gases and molecular force. Phil. Mag. Ser.36, 507-531.
    TAM, C. K. W.& AHUJA, K. K.1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech.214,67-87.
    TAYLOR, E. M., WU, W.&; MARTIN,M. P.2007 Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys.223,384-397.
    TAYLOR, G. I.1938 Production and dissipation of vorticity in a turbulent fluid. Proc. R. Soc. Lond. A 164,15-23.
    TENNEKES, H.&; LUMLEY, J. L.1972 A First Course in Turbulence. MIT Press.
    THAREJA, R. R., STEWART, J. R., HASSAN, O., MORGAN, K.K. PERAIRE, J.1989 A point implicit unstructured grid solver for the Euler and Navier-Stokes equations. Int. J. Numer. Meth. Fluids 9,405-425.
    THEODORSEN, T.1952 Mechanism of turbulence. In Proceedings of the Second Mid-western Conf.on Fluid Mechanics, pp.17-19.
    THOMPSON, K. W.1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys.68,1-24.
    TSINOBER, A.2000 Vortex stretching versus production of strain/dissipation. In Tur-bulence Structure and Vortex Dynamics, pp.164-191. Cambridge Univ. Press.
    TSINOBER, A.2009 An Informal Conceptual Introduction to Turbulence. Springer.
    TSINOBER, A., KIT, E.& DRACOS, T.1992 Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech.242,169-192.
    TSINOBER, A., ORTENBERG, M.& SHTILLMAN, L.1999 On depression of non-linearity in turbulence. Phys. Fluids 11 (8),2291-2297.
    TSINOBER, A., SHTILMAN, L.& VAISBURD, H.1997 A study of properties of vortex stretching and enstrophy generation in numerical and laboratory turbulence. Fluid Dyn. Res.21,477-494.
    URBIN, G.&; KNIGHT, D.2001 Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J.39,1288-1295.
    VIEILLEFOSSE, P.1982 Local interaction between vorticity and shear in a perfect incompressible fluid. J. Physique 43,837-842.
    VINCENT, A.& MENEGUZZI, M.1991 The spatial and statistical properties of homo-geneous turbulence. J. Fluid Mech.225,1-20.
    VOISINET, R. L. P.& LEE, R. E.1972 Measurements of a Mach 4.9 zero-pressure-gradient turbulent boundary layer with heat transfer. Part 1. Data compilation. Tech. Rep.0033757. Naval Ordnance Lab, White Oak, MD.
    WALZ, A.1969 Boundary Layers of Flow and Temperature. MIT Press.
    WANG, B. C., BERGSTROM, D. J., YIN, J.& YEE, E.2006 Turbulence topologies predicted using large eddy simulations. J. Turbul.7 (34),1-28.
    WANG, J., SHI, Y., WANG, L.-P., XIAO, Z.& CHEN, X. T. H. S.2012 Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713 (25),588-631.
    WANG, L.& Lu, X.-Y.2011 Statistical analysis of coherent vortical structures in a supersonic turbulent boundary layer. Chin. Phys. Lett.28 (3),034703.
    WANG, L.& Lu, X.-Y.2012 Flow topology in compressible turbulent boundary layer. J. Fluid Mech.703,255-278.
    WANG, S.-W., HSIEH, S. Y.& YANG, V.2005 Unsteady flow evolution in swirl injector with radial entry. I. stationary conditions. Phys. Fluids 17,045106.
    WIETING, A. R.1987 Experimental study of shock wave interface heating on a cylin-drical leading edge. NASA TM-100484.
    WIETING, A. R.& HOLDEN, M. S.1989 Experimental shock-wave interference heating on a cylinder at Mach 6 and 8. AIAA J.27,1557-1565.
    WILCOX, D. C.1992 Dilatation-dissipation corrections for advanced turbulence mod-els. AIAA J.30,2639-2646.
    WU, J. Z., MA, H. Y.& ZHOU, M. D.2006 Vorticity and Vortex Dynamics. Springer-Verlag.
    WU, X.& MOIN, P.2010 Transitional and turbulent boundary layer with heat trans-fer. Phys. Fluids 22,085105.
    XU, C. Y., CHEN, L. W.& Lu, X. Y.2010 Large-eddy simulation of the compressible flow past a wavy cylinder. J. Fluid Mech.665,238-273.
    XU, S. & MARTIN, M. P.2004 Assessment of inflow boundary conditions for com-pressible turbulent boundary layers. Phys. Fluids 16,2623-2639.
    YAMAMOTO, S., KANO, S.& DAIGUJI, H.1998 An efficient CFD approach for simu-lating unsteady hypersonic shock-shock interference flows.Comput. Fluids 27,571-580.
    ZHANG, S., ZHANG Y. T.& SHU, C. W.2005 Multistage interaction of a shock vortex and a strong vortex. Phys. Fluids 17,116101.
    ZHANG, Y.-S., BI, W.-T., HUSSAIN, F., LI, X.-L. & SHE, Z.-S.2013 A general Reynolds analogy theory for the compressible wall-bounded turbulence, (submitted).
    ZHONG, X.1994 Application of essentially nonoscillatory schemes to unsteady hyper-sonic shock-shock interference heating problems. AIAA J.32,1606-1616.
    ZHOU, J., ADRIAN, R. J., BALACHANDAR, S.& KENDALL,T. M.1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387,353-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700