竖直窄矩形流道液泛特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液泛现象广泛存在于降膜蒸发器、回流冷凝器和热管等工业设备中。反应堆内可能出现的两相流逆向流动,特别是事故状态下蒸汽发生器内的回流冷凝极限对反应堆安全性具有重要影响。随着科技的发展和反应堆设计的不断改进,相应的堆芯换热通道由传统的较大口径变为窄小乃至微小尺寸,深入研究窄小通道内的液泛问题为开发新型反应堆提供理论基础和实验依据,具有重要实际意义。本文对竖直窄矩形流道液泛进行了理论分析和实验研究,通过流道内液泛试验现象与压差变化规律分析了气体入口条件、流道长度和流道间隙等因素与液泛起始点、完全携带点、流向反转点和液泛消失点的内在联系,阐述了竖直窄矩形流道内的液泛机理;分析了竖直窄矩形流道液泛产生的原因,深入研究了完全携带点、流向反转点和液泛消失点的影响因素;最后将竖直窄矩形流道液泛和传统流道液泛进行了对比。主要成果如下:
     1.与传统流道以压差突变判断液泛起始点不同,竖直窄矩形流道液泛发生时需要具备四点特征:流道内压差有明显的变化;有液体被携带出注水口;流道内液体下泄流量明显降低;流道内出现强烈扰动的液膜。
     2.在相同的液体流量下,发生液泛时,流道间隙越小所需要的气体流量越少。流道长度越长,流道内压力越大,发生液泛时所需要的气体流量越小。气体入口条件是影响液泛起始点的重要因素。平切口气体入口条件发生液泛时所需气体流速最低,喇叭口气体入口条件发生液泛时所需气体流速最高,斜切口介于喇叭口与平切口之间。三种气体入口条件的液泛产生位置不同,平切形入口和斜切形入口液泛在流道气体入口产生,而喇叭形入口液泛则在液体入口处产生。
     3.完全携带点与气体流量大小、气体入口条件和流道注水量无关。流向反转点与气体流量大小、气体入口条件和流道注水量无关,而与流道干燥程度有关;相同水流量条件下,流道湿润时发生流向反转所需的气体流量要比流道干燥时所需要的气体流量大的多。
     4.在不同的流道长度、流道间隙、气体入口条件下液泛消失现象均存在一定的滞后。水流量较小时,液泛起始点和消失点差别不太大,随液体流量的不断增大,液泛消失滞后现象越明显。流道间隙越小,滞后现象越明显;流道长度越长,液泛消失时需要的气体流量越低。
     5.窄矩形流道与传统流道液泛过程中压差变化趋势存在较大差异:传统流道发生液泛时,流道内压差发生突变,且为极大值,而在窄矩形流道内,发生液泛时,虽然流道内压差增大,但并没有发生突变,液泛发生时流道内压差并没有达到极大值,窄矩形流道内压差极大值发生在完全携带点。
The phenomenon of flooding widely exists in many industrial equipments, such as thefalling film evaporator, reflux condenser, heat pipes and so on. The possible counter currentflow of gas-liquid two-phase flow occurring within reactor, especially reflux condensing limitwithin the steam generator under the accident will generate critical impact toward the reactorsecurity. With the technolgy development and the continuous improvement of reactor design,the channel used for core heat removal changes from a traditional larger diameter to narrowand even small one. In further study of the flooding problem in the narrow channel to providetheoretical and experimental basis for the development of new reactors, has importantpractical significance. In this paper, the theoretical analysis and experimental study of verticalnarrow rectangular channel flooding were investigated. Firstly, the internal relation of the gasentrance conditions, channel length and the gap of flow etc. with the flooding starting point,completely carrying point, flow reverse and liquid the vanishing point were studied by theresearch of experimental phenomenon and pressure drop of relationship. And floodingmechanism in vertical narrow rectangular channel was described. Moreover, the reason ofvertical narrow rectangular channel flooding and the influencing factors of completelycarrying point, flow reverse and flooding disappear were analyzed respectivly. Finally, theflooding of the narrow rectangular channel was compared with traditional channel. The mainresults are as follows:
     1. As differenting from jadging onset of flooding by pressure mutation in traditionalchannel, four characters should be had on flooding in vertical narrow rectangular channels:sudden rise in the pressure gradient in the test section; appearance of a sustained liquid flowabove the liquid inlet; reduction in the down flow rate of the liquid; appearance of a highlydisturbed film flow.
     2. At the same liquid flow rate, the gap size of channel is smaller, the gas flow rate islower on flooding. Flooding gas velocities decrease as the pipe length increases. Gas entrancecondition is the important factor effecting on onset of flooding. The gas flow rate is lowest onflooding at plane entrance, highest at bell-mouthed entrance and intermediate at obliqueentrance. Onset of flooding of plane entrance and oblique entrance are produced in the gasentrance but bell-mouthed entrance is produced in the liquid entrance.
     3. Carryover of flooding is no related with liquid flow rate, entrance conditions andliquid flow rate. Reversal point related to channel dryness, but no correlation with gas flowrate, entrance conditions and liquid flow rate; with the same water flow rate, gas flow ishigher in a dry channel than in a dry channel at reversal point.
     4. In different channel length, gap size and gas entrance conditions, flooding disappearedthere are some hysteresis. At the low water flow rate,, onset of flooding and the vanishingpoint are similarly, with the liquid flow increasing, flooding disappeared hysteresisphenomenon more obvious.The hysteresis of flooding becomes more apparently with the gapsize decreasing. At the same liquid flow rate, the length of channel is smaller, the gas flow rateis lower on vanish.
     5. The results show that the flow characteristics and the tendency of pressure drop invertical narrow rectangular channels were similarly with the conventional channels. However,the maximum of pressure drop appeared at the completed carrying up of flooding in verticalnarrow rectangular channels, and it appeared at the onset of flooding in conventionalchannels.
引文
[1]阎昌琪,孙中宁.竖直管内两相流逆向流动特性研究.核动力工程,Vol.22,No1,oct.2001,15-18.
    [2]朱继洲.核电厂运行与原理.西安:西安交通大学出版社,2000,5:106.
    [3] Yamaji A, Kamei K, Oka Y, Koshizuka S.Improved Core Design of the HighTemperature Supercritical-pressure Light Water Reactor,Annals of Nuclear Energy,2005,32:651-670.
    [4] Hibi K,Shimada S,Okubo T et al.Conceptual Designing of Reduced-moderationWater Reactor With Heavy Water Coolant,Nuclear Engineering and Desing,2001,210:9-19.
    [5] Drosos E.I.P., Paras S.V., Karabelas A.J. Counter-current gas–liquid flow in avertical narrow channel—Liquid film characteristics and floodingphenomena.International Journal of Multiphase Flow.2006,32:51–81.
    [6] Barbara Watel.Review of Saturated Flow Boiling in Small Passages of CompactHeat-exchangers,International Journal of Thermal Sciences,2003,42:107-140.
    [7]沈明启.管内液泛问题实验及建模研究.哈尔滨工程大学,2001,24:2-6.
    [8] Bankoff, S.G., Lee, S.C. A critical review of the flooding literature. MultiphaseScience and Technology. Hemisphere, New York,1986,32:95-180.
    [9] Sudo Y, Kaminaga M, A CHF Characteristic for Downward Flow in A NarrowVertical Rectangular Channel Heated From Both Sides. International Journal ofMultiphase Flow,1989,15:755-766.
    [10] Larson, T.K., Oh, C.H., Chapman, J.C. Flooding in a thin rectangular slit geometryrepresentative of ATR fuelassembly side-plate flow channels. Nucl. Eng. Des.1994,152:277–285.
    [11] Sudo, Y., Usui, T., Kaminaga, M. Experimental study of falling water limitationunder a counter-current flow in a vertical rectangular channel. JSME Int. J., SeriesII,1991,34:169-174.
    [12] Mouza A A,Paras S V,et al. The influence of small tube diameter on falling filmand flooding phenomena. International Journal of Multiphase Flow.2002,28:1311-1331.
    [13] Zapke, A., Kroeger, D.G. Counter-current gas–liquid flow in inclined and verticalducts—I: Flow patterns, pressure drop characteristics and flooding. Int. J.Multiphase Flow.2000,26:1439-1455.
    [14] Zapke, A., Kroeger, D.G. Counter-current gas–liquid flow in inclined and verticalducts—II: The validity of the Froude–Ohnesorge number correlation for flooding.Int. J. Multiphase Flow.2000,26:1457-1468.
    [15] Launder B.E.、Spalding.D.B.The Numerical Computation of Turbulent Flows.Computer Methods in Applied Mechanics and Engineering,1974,3:268-298.
    [16] Soo.S.L.Particulates and Continuum Multiphase Fluid Dynamics. Hemisp-herePublishing Corporation,1989,24:20-39.
    [17]许卫新.单气泡在压力脉动场中运动的数值计算.第二届全国空化学术讨论会论文集.中国造船编辑部,1987,6:47-60.
    [18]金忠青.N-S方程的数值解和紊流模型.河海大学出版社,1988,4:119-160.
    [19] Soo.S.L.Multiphase Fluid Dynamics. Science Press,1990,2:80-380.
    [20] Launder.B.E. Spalding.D.B.Mathematical Models of Turbulence. Acad-emic Press,1972,2:126-146.
    [21]范维澄.湍流的双流体模型及改进.中国科学,1987,7:176-208.
    [22]蔡树棠、陈惠国.湍流一和二方程模式与混合长度理论等的关系.中国力学学会第三届全国流体力学学术会议论文集,1986,2:35-38.
    [23]周培源、陈十一.不可压缩流体的湍流理论.中国科学,1987,4:30-35.
    [24]陈景仁.湍流模型及有限分析法.上海交通大学出版社,1989,4:244-361.
    [25] Karimi, G., Kawaji, M. Flooding in vertical counter-current annular flow. Int.J.Multiphase Flow,2000,20:219-233.
    [26] Mouza A A,Paras S V,et al. Incipient Flooding in Inclined Tubes of SmallDiameter.International Journal of Multiphase Flow,2003,29:1395-1412.
    [27] J.S. Lioumbas, S.V. Paras A.J. Karabelas. Co-current stratified gas-liquiddownflow—Influence of the liquid flow field on interfacial structure. InternationalJournal of Multiphase Flow,2005,31:869-896.
    [28] Fiedler S., Thonon B. Flooding in small-scale passages.Experimental Thermal andFluid Science,2002,26:525-533.
    [29] Drosos E.I.P., Paras S.V. Counter-current gas–liquid flow in a vertical narrowchannel-Liquid film characteristics and flooding phenomena.International Journalof Multiphase Flow,2006,32:51–81.
    [30] Wolk G., Dreyer M. Flow patterns in small diameter vertical non-circular channels.International Journal of Multiphase Flow,2000,26:1037-1061.
    [31] Alekseenko S. V., Nakoryakov V. E., Pokusaev B.G. Wave Flow of Liquid Films.Beggel House Inc., New York.,1994.
    [32] Biage, M., Delhaye, J.M., Vernier, Ph. The flooding transition: a detailedexperimental investigation of the liquid film before the flooding point. ANSProceedings, National Heat Transfer Conference, ANS,1989,24:53-60.
    [33] Chang, H. C. Wave evolution on a falling film. Annu. Rev. Fluid Mech,1994,26:103-136.
    [34]杨志林,核电厂事故冷却下逆向流的数值模拟.核动力工程,1995,6:487-491.
    [35]朱继洲.核电厂运行与原理.西安:西安交通大学出版社,2000,5:106-110.
    [36]陈海燕,陈玉宙,张忠岳.垂直管内蒸汽冷凝回流阻液分析模型的研究.核动力工程,1999,20:223-227.
    [37] Dukler E., Smith L., Chopra A. Flooding and Upward Film Flow in VerticalTube-1.Int.J.Of Multiphase flow,1984,5:585-597.
    [38] Briem A.Such D K, Mills F.The Effect of Liquid Flow rate on Flooding in VerticalAnnular Counter Current Two-phase Flow.Int.J.Multiphase Flow,1986,12:699-704.
    [39] Hewitt. G. F. Roberts D. N. Investigation of Interfacial Phenomena in AnnularTwo-phase Flow by Means of the Axial View Technique.Rept.AERE-R607VKAEA.Harwell,1969,26:56-70.
    [40] Imura H.Kusuda.H.Funatsu H.Flooding Velocity in a Counter-current AnnularTwo-phase Flow.chem.Eng.Sci,1977,32:79-87.
    [41] Hideaki A., Yutaka K. Sub to Supercrirical Flow Transition in a HorizontallyStratified Two-phase Flow in PWR Hot Legs.Journal of Nuclear science andthchnology.1996,9:696-702.
    [42] Moalem-Maron, D. Dukler A. E. New Concepts on Mechanisms of Flooding andFlow Reversal Phenomena.Lett.Heat Mass Transfer,1981,8:453-463.
    [43] Larson T K, Oh C H, Chapman J C. Flooding in a Thin Rectangular Slit GeometryRepresentative of ATR Fuel Assembly Side-plate Flow Channels, NuclearEngineering and Design,1994,152:277-285.
    [44] Souidi N, Bontemps A, Countercurrent Gas-liqiud Flow in Plate Heat Exchangerswith Plain and Perforated Fins, International Journal of Heat and Fluid Flow,2001,22:450-459.
    [45] Graham B Wallis.One-Dimension Two-Phase Flow.McGraw-Hill, New York,1969,24:330-345.
    [46] Mouza A A, Paras S V, et al. Incipient Flooding in Inclined Tubes of SmallDiameter, International Journal of Multiphase Flow,2003,29:1395-1412.
    [47] Sudo Y, Kaminaga M, A CHF Characteristic for Downward Flow in A NarrowVertical Rectangular Channel Heated from Both Sides International Journal ofMultiphase Flow,1989,15(5):755-766.
    [48] Osakabe M, Kawasaki Y, Top Flooding in Thin Rectangular and Annular Passages,International Journal of Multiphase Flow,1989,15(15):747-754.
    [49] McQuillan, Analysis of Semiscale Mod-3Small Break Test s-07-10, ECC-SEMI-5201,1980,6:45-53.
    [50] Vijayan M., Jayanti S. Effect of the tube diameter on flooding. InternationalJournal of Multiphase Flow,2001,27:797-816.
    [51] Vijayan M., Jayanti S., A.R.Balakrishnan. Experimental study of air-watercountercurrent annular flow under post-flooding conditions. International Journal ofMultiphase Flow,2002,28:51-67.
    [52] Tien C.L., Liu C.P. A review of vertical two-phase countercurrent flooding, in Heatand Mass Transfer in Metallurgical Systems(edited by D.B.Spalding andN.H.Afgan)pp.1981,2:579-596.
    [53] C.P.Liu and C.L.Tien, A review of gas-liguid countercurrent flow through multiplepaths, presented at international seminar on Nuclear Reactor Safety Heat Transfer,1980.6:118-130.
    [54]阎昌琪.气液两相流.哈尔滨工程大学出版社.1995.
    [55] Drosos E.I.P., Paras S.V., Karabelas A.J. Counter-current gas–liquid flow in avertical narrow channel—Liquid film characteristics and flooding phenomena,International Journal of Multiphase Flow,2006,32:51-81.
    [56] Vijayan M., Jayanti S., Balakrishnan A.R. Effect of tube diameter on flooding,International Journal of Multiphase Flow,2001,27:797-816.
    [57] Mouza A.A., Pantizali M.N., Paras S.V. Falling film and flooding phenomena insmall diameter vertical tubes: The influence of liquid properties, ChemicalEngineering Science,2005,60:4981-4991.
    [58] Achim K. Heibel, Freek Kapteijn, Jacob Moulijn. Flooding Performance of SquareChannel Monolith Structures, Ind. Eng. Chem. Res.2002,41:6759-6771.
    [59] W lk G., Dreyer M., Rath H.J. Flow patterns in small diameter vertical non-circularchannels, International Journal of Multiphase Flow,2000,26:1037-1061.
    [60] Osakabe M, Kawasaki Y. Top Flooding in Thin Rectangular and Annular Passages.International Journal of Multiphase Flow,1989,15(15):747-754.
    [61] N. S Sudo. Mechanism and effects of predominant parameters regarding limitationof falling water in vertical counter-current two-phase flow. J. Heat Transfer,1996,118:715-724.
    [62] Mouza, A.A., Paras, S.V., Karabelas, A.J.,. The influence of small tube diameter onfalling film and flooding phenomena. Int. J. Multiphase Flow.2002,28:1311-1331.
    [63] Paras S.V., Mouza A.A. Visual observations of flooding in narrow rectangularchannels, International Journal of Multiphase Flow,2001,27:1415-1430.
    [64] Larson T K,Oh C H,Chapman J C,Flooding in a Thin Rectangular Slit GeometryRepresentative of ATR Fuel Assembly Side-plate Flow Channels.NuclearEngineering and Design,1994,152:277-285.
    [65] Souidi N,Bontemps A,Countercurrent Gas-liquid Flow in Plate Heat Exchangerswith Plain and Perforated Fins.International Journal of Heat and Fluid Flow,2001,22:450-459.
    [66] Vlachos N A,Paras S V,et al. Visual Observations of Flooding in narrowRectangular channels.International Journal of Multiphase Flow,2001,27:1415-1430.
    [67] Drosos, E.I.P., Paras, S.V., Karabelas, A.J. Characteristics of developing freefalling films at intermediate Reynolds and high Kapitza numbers.Int. J. MultiphaseFlow,2004,30:853-876.
    [68] Karimi G., Kawaji M. Flooding in vertical counter-current annular flow, NuclearEngineering and Design,2000,200:95–105.
    [69] Vijayan M., Jayanti S., Balakrishnan A.R. Experimental study of air-watercountercurrent annular flow under post-flooding conditions, International Journal ofMultiphase Flow,2002,28:51-67.
    [70] Zapke A., Kr ger D.G. Countercurrent gas-liquid flow in inclined and verticalducts-II: The validity of the Froude-Ohnesorge number correlation for flooding,International Journal of Multiphase Flow,2000,26:1457-1468.
    [71] Moon-Hyun Chun, Seon-Oh Yu. Effect of steam condensation on countercurrentflow limiting in nearly horizontal two-phase flow, Nuclear Engineering and Design,2000,196:201–217.
    [72] Lebens P.J.M., Stork M.M. Hydrodynamics and mass transfer issues in acountercurrent gas-liquid internally finned monolith reactor, Chemical EngineeringScience,1999,54:2381-2389.
    [73] Thumm S., Philipp Ch., Gross U. Film condensation of water in a vertical tube withcountercurrent vapour flow, International Journal of Heat and Mass Transfer,2001,44:4245-4256.
    [74] Mouza A.A., Paras S.V., Karabelas A.J. The influence of small tube diameter onfalling film and flooding phenomena, International Journal of Multiphase Flow,2002,28:1311–1331.
    [75]阎昌琪,孙中宁,黄渭堂.复杂管路中的液泛问题研究.核科学与工程,1989,5:84-88.
    [76]阎昌琪.直角弯头连接的竖直管与水平管中的液泛问题.核动力程,1994,15:328-333.
    [77]黄鸿鼎,谷俊杰.垂直管中的液泛.化工学报,1989,5:513-520.
    [78]李广军,郭烈锦,陈学俊.垂直管内气液两相逆向流动中界面波特性及液泛现象研究.西安交通大学学报,1997,31:15-20.
    [79]阎昌琪,孙中宁.反应堆失水事故条件下热管段内的两相流逆向流动研究.核科学与工程,1991,21:223-227.
    [80]阎昌琪.竖直管内液泛及流向反转的实验研究.核动力工程,1992,13:46-50.
    [81]杨燕华,张乐福,刘瑞芹,王涛.核工程导论.上海:上海交通大学出版社.2007,2:115-120.
    [82]陈听宽,杨鲁伟.压水堆冷凝回流特性的研究.工程热物理学报,2000,21(4):491-495.
    [83]陈海燕,陈玉宙,张忠岳.U形管内蒸汽冷凝回流的实验研究.核科学与工程,2001,21(3):252-259.
    [84]陈海燕,陈玉宙,张忠岳.U形管内蒸汽冷凝回流压降特性的研究.核动力工程,2001,22(2):122-126.
    [85]杨鲁伟,陈听宽,徐近良.厚液膜-冷凝回路中的一种特殊现象.工程热物理学报,1998,19(4):494-498.
    [86] Rohit Garg, Dan Luss. Dynamic bifurcations and features of a cooledcountercurrent flow reactor, Chemical Engineering Science,2001,56:3719–3726.
    [87] Yaojiang Hu, Huiping Cheng. Stability boundary analysis of boiling flow in anarrow vertical annulus heated by counterflow fluids from inner and outer surfaces,International Journal of Heat and Mass Transfer,2004,47:2173–2182.
    [88] Yuri V. Fairuzov. Transient gravity-driven countercurrent two-phase liquid–liquidflow in horizontal and inclined pipes, International Journal of Multiphase Flow,2003,29:1759–1769.
    [89] Hae Yong Jeong. Prediction of counter-current flow limitation at hot leg pipeduring a small-break LOCA, Annals of Nuclear Energy,2002,29:571–583.
    [90] W lk G., Dreyer M., Rath H.J. Flow patterns in small diameter vertical non-circularChannels, International Journal of Multiphase Flow,2000,26:1037-1061.
    [91] Takeuchi K., Young M.Y., Gagnon A.F. Flooding in the pressurizer surge line ofAP600plant and analyses of APEX data, Nuclear Engineering and Design,1999,192:45–58.
    [92] Mouza A.A., Paras S.V., Karabelas A.J. The influence of small tube diameter onfalling film and flooding phenomena, International Journal of Multiphase Flow,2002,28:1311–1331.
    [93] Wallis G.B. Flooding velocities for air and water in vertical tubes, UKAEA ReportAEEW-R,1961,4:120-131.
    [94] Bankoff S.G., Tankin R.S., Yuen M.C. Countercurrent flow of air/water andsteam/water through a horizontal perforated plate,Int.J.Heat Mass Transfer,1981,24:1381-1395.
    [95] Richter H.J. Flooding in tubes and annuli,prsrented at Internaional Seminar onNuclear Reactor Safety Heat Transfer,Dubrovnik,1980,26:120-125.
    [96] Fukano T., Kariyasaki A. Characteristics of gas-liguid two-phase flow in a capillarytube.Nucl.Engng Design,1993,141:59-68.
    [97] Jayanti S., Hewitt G.F. Prediction of the slug-to-churn flow transition in verticaltwo-phase flow.Int, J. Multiphase Flow,1992,18:847-860.
    [98] Liu T.J. Bubble size and entrance length effects on void development in a verticalchannel.Int.J.Multiphase Flow,1993,19:99-113.
    [99] Lowry B., Kawaji M. Adiabatic vertical two-phase flow in narrow flowchannels.AIChE Symp,1988,84:133-139.
    [100] Mishima K., Hibiki T. Some characrteristics of gas-liquid flow in narrowrectangular ducts.Int.J.Multiphase Flow,1993,19:115-124.
    [101] Mishima K., Hibiki T. Flow regime transition criteria for upward two-phase flow invertical tubes.Int.J.Heat Mass Transfer,1984,27:723-737.
    [102] Wilmarth T., Ishii M. Two-phase flow regimes in narrow recangular vertical andhorizontal channels.Int.J.Heat Mass Transfer,1994,37:1749-1758.
    [103] Taitel Y., Barnea D. Countercurrent gas-luid vertical flow, model for flow patternand pressure drop, Int.J. Multiphase Flow,1983,96:637-647.
    [104] Taitel Y., Barnea D. A film model for the predicion of flooding and flow reversalfor gas-liquid flow in vertical tubes, Int.J.Multiphase flow,1982,81:1-10.
    [105] Cumo G.E., Furrer M. Effect of inlet water distribution and length on flooding testconditions, European Two-Phase Flow Group Meeting, Rome,1984,6:19-21.
    [106] Lebens P.J.M, Van der Meijden R. Hydrodynamics of gas-liquid counter-crrentflow in internally finned monolithic structures.Chem.Eng.Sci,1997,52:3893-3899.
    [107] Chun M.H., Kang H.C. Contercurrent flow limitation in a horizontal pipe connectedto an inclined riser, ANS Transaction, Winter Meeting and Embedded TopicalMeeting,1999,6:340-344.
    [108] Whalley P.B., Mcquilan V.W. Flooding in two-phase flow: the effect of tube lengthand aritifical waves injection, Physiochem.Hydrodyn,1985,6:3-21.
    [109]阎昌琪.液泛过程中管内压差和流型的变化.应用科技,1994,4:14-20.
    [110] Hee Cheon. Flooding correlation based on the concept of hyperbolicity breaking ina vertical annular flow.Nuclear Engineering and Design,1996,166:249-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700