温室环境因子时空分布CFD模型构建及预测分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室作为一个半封闭的热力系统,其内部微气候分布是影响作物生长发育最直接的因素。通风作为温室微环境调控的主要手段,一直是设施农业研究的热点问题。由于温室类型较多,通风布局各异,地域之间气候环境差异大,使商用大型温室的应用推广受到一定限制。CFD技术作为目前国内外广泛采用的数值模拟技术,可对不同外界环境条件及通风布局下温室内的气流、温度、湿度等的分布进行预测,是进行温室结构设计和环境调控参数优化的有力工具。本文以Venlo型玻璃温室为研究对象,基于CFD数值技术,开展了对不同边界条件下温室内部微环境因子时空分布及变化机理的理论研究及试验分析,提出了温室环境调控策略。具体工作及结论如下:
     1、构建了3维超声风速风向仪测速系统和温湿度传感器自动测量系统;试验测量了有无、作物存在两种种植模式下温室内外气象参数;明确了太阳辐射强度、温度、湿度等之间的相互耦合关系以及室内风速变化规律。
     2、基于传热学和能量平衡理论,分析了温室内外各物理场之间的质热交换关系,建立了以温室覆盖层和四周围护结构、土壤、作物、室内外混合空气为主要单元的显热和潜热交换数学模型,确立了以防虫网空气动力学参数和结构参数为特征参数的计算模型。使CFD数值模型边界设置更接近温室实际物理过程。
     3、基于流体动力学理论,结合温室内气流湍流流动过程,建立了求解室内湿空气质能传输控制方程;采用非结构化四面体网格对计算域进行离散化处理;提出采用标准k-ε湍流模型求解温室内湿空气的湍流输运过程,近壁区气流流动采用标准壁面函数法进行处理的方法,达到计算时间短,收敛快的目的;提出采用基于Boussinesq假设和组分传输方程求解由热浮力引起的温室内的自然对流过程,解决了单独采用Boussinesq假设无法求解湿空气传输的不足;提出采用基于DO辐射模型的Solar Ray Tracing方法处理太阳辐射边界设置问题,解决了传统方法CFD模型没有现场试验数据就无法对不同地域、不同时间和云遮率情况下温室内部环境进行预测的不足,能更加真实地反映温室建筑材料对太阳光谱的选择性,为探究“温室效应”形成原因提供了依据。
     4、采用辐射、对流、热传导耦合计算方法对没有栽种作物的空温室内微气候进行了数值模拟,结果发现:
     (1)边界条件中不考虑湿度影响时模拟得到的各时刻室内平均温度与试验测试结果基本吻合,最大相对误差为11.3%,平均相对误差为7.6%,模拟精度提高5.9%。边界条件中考虑相对湿度时,温室内温度模拟值与实测值的平均相对误差为11.6%;相对湿度模拟值与实测值的平均相对误差为5.2%,精度提高了8.3%。温室内相对湿度的分布受通风过程中气流流动模式的影响,具有与温度分布类似的梯度模式,即温度高的区域相对湿度低,温度低的区域相对湿度高。温室中部作物区温度较低,相对湿度较高,整体上该区域微环境分布比较均匀一致。
     (2)采用西侧窗与天窗联合通风的调控方式,室外风速风向对温室内微气候分布有影响。温室通风换气率随室外风速的增大呈线性升高的趋势,二者的决定系数R2=0.9846。室外风向显著影响温室内气流流动模式,且各通风窗在通风换气过程中所起的主要作用不同。室外风向垂直屋脊,温室内形成强度不等位置不一的涡流,侧窗是主要的进风口,天窗则起到“烟囱效应”的作用。风向平行屋脊,天窗通风是温室通风换气的主要驱动力,靠近迎风侧侧窗为进风口,其余大部分侧窗区域为出风口,进口处气流流速较低,出口处流速较高。
     (3)自然通风面积对室内温度分布有影响。天窗开度为10。时,室内温度较天窗开度为21。时升高至少1℃;天窗开度为45。时,室温至少降低2℃,且低温范围广。
     (4)采用双侧窗与天窗联合通风可使温室内温度较单独采用西侧窗与天窗的调控方式最大多降2℃,相对湿度则可多降6%。采用外遮阳与湿帘-风机强制通风的调控策略降温幅度高达11℃。
     5、采用高速摄像及激光片光源技术对温室模型内气流流动过程进行定性分析,结果发现:天窗和侧窗在通风换气过程中所起作用与CFD数值模拟结果一致,进一步验证了所建立的CFD数值模型有效。
     6、提出CFD数值模拟中作物边界处理新方法。基于多孔介质渗流理论,以Darcy-Forchheimer定律为理论依据,模拟了番茄作物对气流的动量汇作用。将土壤和番茄与环境之间的显热和潜热交换设为“体积热源边界”条件,对以上复杂边界条件的模拟结果表明:温室中部测点平均温湿度的模拟值与实测值的平均相对误差分别为6.8%和7.9%。温室中部测点总气流速度模拟值与实测值平均相对误差为15.0%;y向速度分量的模拟值与实测值的平均相对误差为10.9%。晴天室内作物区平均温度较阴天时高1.6℃左右,相对湿度约低3.2%;双密度栽培作物区温度较单密度高0.7℃,相对湿度高18%。采用湿帘-风机通风系统对环境进行调控,作物区温度可控制在25℃-27℃,较自然通风调控方式下室温可降低10℃左右。
     以上研究结果表明采用上述数值计算理论方法能够对温室环境因子时空变化规律,作物-环境系统的相互作用机制进行有效预测。
The greenhouse microclimate distributions are key to crops growth because the greenhouse looks like a closed heat system. In agriculture engineering, the researches focus on the effects of the ventilation on microclimates. However, the popularization of big commercial greenhouses is confined because of the lack of datum which is from the different greenhouse and the ventilation configuration and climates difference. The CFD numerical technique is widely used to predict the airflow and temperature and relative humidity distributions inside greenhouse for the different boundary conditions and ventilation configurations. So, it has been a huge tool for greenhouse design and the parameters optimization in microclimates adjustments and controls. In this paper, the greenhouse microclimates temporospatial distributions were studied for the different boundary conditions based on the CFD technique in the Venlo-type glasshouse. And the field measurements were developed to verify the CFD models. At last, the strategy was suggested for microclimates control. The main results were generalized as follows:
     1、The automatic measurement systems were constructed for 3-D wind speed and direction and the temperature-humidity. The climatic factors were measured for the empety greenhouse and for the greenhouse with crops, respectively. The coupling relations were found among the solar radiation intension and the temperature and the relative humidity. But the airflow speed and direction were changeable inside greenhouse.The above datum were used for the boundary conditions for the CFD simulations.
     2、Based on the heat transfer and energy balance theories, the matter and energy exchangement were analysis for the all physical fields inside and outside of greenhouse. And the sensitive heat and latent heat transfer mathematic models were established according to the energy balance among the greenhouse cover and the enclosing structure and the soil and crops and mixed air. Meanwhile, the mathematic model that was characterized on the base of the air dynamic parameters and the construction parameters was established for the insect screen. The boundary conditions for the CFD simulations were closer to the actual physical process.
     3、Based on the fluid dynamics theory, the turbulent transfer characters were analysis and the control equations were established for the humid airflow inside greenhouse. The standardκ-εturbulent model was used to solve the airflow transferring and the standard wall-function method was advanced for the fluid transfer near the wall. Based on the Boussinesq hypothesis and species transport equation, the method was projected to solve the free convection that was caused by the buoyancy effect. The problem was resolved that humid couldn't be simulated only based on the Boussinesq hypothesis. The Solar Ray Tracing method in DO radiation model was firstly used to solve effect of the solar radiation on the microclimates. As a result, it was easier to predict the micrclimates without measuring datum for the different regions and the time and the sunshine factors, and for the material, the solar spectrum selectivity could be simulated in this model.it was helpful to understand the greenhouse effect.
     4、A couple computational method for radiation, convection and heat transfer was used to simulate the microclimate distributions inside empety greenhouse. The results were shown as follows:
     (1) when the computation did not include the relative humidity, the average simulated temperature values were agreed with the measured values for different times inside greenhouse. The max relative error was 11.3% and the average relative error was 7.6%. The accuracy was 5.9% higher. When the relative humidity was taken into the boundary condition account, the average relative error between the simulated and measured temperature values was 11.6%. However, the average relative error was 5.2% between the simulated and measured humidity values. The accuracy was 8.3% higher. The relative humidity distribution pattern was similarity to the corresponding temperature. Namely, the humidity was lower in the warmer zone and it was higher in the cooler zone. A homogeneous temperature and humidity fields were observed at the crops level where was characterized by the higher temperature and the lower humidity.
     (2) When west side-vent and roof-vent were open, the inside microclimates were effected by the outside wind speed and direction. A linear relationship between ventilation rates and the outside wind speeds was founded, and the decided coefficient R2=0.9846. Outside wind direction had a significant effect on inside airflow patterns and the vents played different roles for greenhouse ventilation. When outside wind direction was normal to the ridge, the vortexes with different intensity were founded inside greenhouse. The side-vent was the inlet and the buoyancy effect that was caused by the roof-vents was unobvious. When outside wind direction was parallel to the ridge, the roof-vents ventilation was dominating over the side-vent for the air exchanged. The part near the windward side-vent was inlet and the others were outlet. The airflow speed was lower for inlet than for outlet.
     (3) The vent area had an effect on inside temperature distributions. When the roof-vent was opened for 10°, the inside temperature was 1℃lower than it was 21°. However, when it was 45°, the temperature was 2℃higher than it was 21°and the low temperature zone was wide.
     (4) When the east-western side-vents and the roof-vents associated ventilation should be used, it was 2℃lower for the inside temperature and it was 6% higher for the relative humidity than that for the west-side-vent and roof-vent associated ventilation. When the regulating strategy that outside shading-screens and pad-fans system was used, the temperature was lowered 11℃.
     5、The qualitative analysis was done for airflow pattern inside scale-greenhouse by means of the high-speed photography and the laser sheet light technology. The results showed that the roof-vent and the side-vent played a similary act with CFD results. The CFD numerical models were validating against the results from the high-speed photography.
     6、Anew crop boundary method was put forwarded in CFD numerical simulations. On above assumption that tomato crops were the isotropic porous medium, the "momentum sink" that was caused when air flew through the tomato crops was simulated based on the Darcy-Forchheimer law. The sensitive and latent heat exchange among the soil and tomato crops and microclimates was well-set for "volume heat source" boundary. The simulation results showed the average relative error between the simulated and the measured temperature values were 6.8% and it was 7.9% for the simulated and the measured humidity values. The average relative error between the simulated and the measured total airflow velocity values was 15.0%, and the average relative error was 10.9% for the y component. The average temperature in crop zone was warmer about 1.6℃and the humidity was 3.2% lower in clear day than those in cloudy day. The solar radiation had an effect on the temperature and relative humidity distribution. the temperature was warmer 0.7℃and the humidity was 18% higher for double plants than for single plants. The temperature in crop zone was 25℃-27℃for the pad-fan system and it was about 10℃lower than natural ventilation.
引文
[1]周长吉.现代温室工程[M].北京:化学工业出版社,2003.
    [2]Mistiiotis A, Bot G P A, Picuno P, et al. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics [J]. Agricultural and Forest Meteorology,1997(a), (85): 217-228.
    [3]Ould khaoua S A, Bournet P E, Migeonet C, et al. Analysis of Greenhouse Ventilation Efficiency based on Computation Fluid Dynamics [J].Biosystems Engineering,2006, 95(1):83-98.
    [4]Dick J B, Thomas. D.Ventilation research in occupied houses [J].Journal of the Institute of Heating and Ventilation Engineers,1951, (10):306-326.
    [5]Ashrae.Handbook of Fundamentals.American Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta, GA,1993.
    [6]Incropera, Frank P, Witt D P De. Fundamental of Heat and Mass Transfer [M].John Wiley and Sons. New York.1990.
    [7]Baille A. Greenhouse structure and equipment for improving crop production in mild winter climates [J]. Acta Horticulture,1999, (491):37-47.
    [8]沈明卫,郝匕麟.连栋塑料温室自然通风流场的稳态模拟[J].浙江大学学报(工学版),2007,41(4):668-672.
    [9]Boulard T, Wang S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel [J].Computers and Electronics in Agriculture,2002, (34):173-190.
    [10]Wang S, Boulard T, et al. Air speed profiles in a naturally ventilated greenhouse with a tomato crop [J]. Agricultural and Forest Meteorology,1999a, (96):181-188.
    [11]Lamran M A, Boulard T, et al. Airflows and Temperature Patterns induced in a Confined Greenhouse [J]. Agriculture Engineering Research,2001,78(1):75-88.
    [12]Fernandez J E, Bailey B J. The influence of Fans on environmental conditions in greenhouses [J]. Agric. Eng. Res.1994, (58):201-210.
    [13]Molina-Aizl F D, Valeral D L, et al. A Wind Tunnel Study of Airflow through Horticultural Crops:Determination of the Drag Coefficient [J]. Biosystems Engineering, 2006,93 (4):447-457.
    [14]Boulard T, Haxaire R, Lamrani M A, et al. Characterization and Modeling of the Air Fluxes induced by Natural Ventilation in a Greenhouse [J].1999, (74):135-144.
    [15]周长吉,王应宽.中国现代温的土要型式及其性能[J].农业工程学报,2001,17(1):16-21.
    [16]周长吉,温室灌溉系统设备与应用[M].北京:中国农业出版社,2004.
    [17]王玉军,张本华.温室技术的现状及发展趋势[J].农机化研究,2008,(1):249-251.
    [18]田宏武,乔晓军.自动监控技术在设施农业生产中的应用系列(五):温室环境信息采 集控制系统在设施农业中的研究与应用[J].农业工程技术:温室园艺,2008,(8):18-19.
    [19]Mistriotis A, Arcidiacono C, Picuno P, et al. Computational analysis of ventilation in greenhouses at zero-and low-wind-speeds [J]. Agriculture for Meteorology,1997(b), (88):121-135.
    [20]Bot G P A. Greenhouse climate:from physical processes to a dynamic model [D].Wageningen University.1983.
    [21]Kittas C, Boulard T. Greenhouse ventilation rates through combined roof and side openings: An experimental study [C].Proceedings of the international conference and British-Israel workshop on greenhouse technology, Acta horticulture,1996, (443):31-38.
    [22]Papadakis G, Mermier M. Meneses J F, Boulard T. Measurements and analysis of air exchange rates in a greenhouse with continuous roof and side opening [J]. Agric. Eng.Res. 1996, (63):219-227.
    [23]Boulard T, Meneses J F. Mermier M.The mechanisms involved in the natural ventilation of greenhouse [J].Agr. And Forest Meteor,1996, (79):61-77.
    [24]Eren Ozcan S, Vranken E, Berckmans D. A critical comparision of existing ventilation rate determination techniques for building openings and prospects and prospects for future [C]. //International Symposium on Air Quality and Waste Management for Agriculture. Broomfield, Colorado:2007.
    [25]Jong D T. Natural ventilation of large multi-span greenhouse [D]. Netherlands: Wangeningen Agricultural University.
    [26]Wang Shuangxi, Wang Xu. Ventilation rate of various vents in plastic covered multi-span greenhouse [J]. Transactions of the CSAE,2009, (25)11:248-254.
    [27]赵云.自然通风温室中防虫网对通风量的影响[J].可再生能源,2003,(3):7-9.
    [28]Bournet P E, Boulard T. effect pf ventilation configulation on the distributed claimate of greenhouse:A view of experimental and CFD studies [J].Computers and electronics in agriculture,2010, (74):195-217.
    [29]司慧萍,苗香雯,等.温室动态温度预测模型及试验研究[J].农机化研究,2003,(4):182-184.
    [30]Wang S, Deltour J, Nijskens J, et al.. Exact analytical solution of a linear dynamic model of greenhouse climate:the direct cover case. Bulletin des Recherches Agronomiques de Gembloux,1990, (25):489-518.
    [31]李树海,马承伟,张俊芳等.多层覆盖连栋温室热环境模型构建[J].农业工程学报,2004,20(3):217-221.
    [32]胥芳,张立彬,陈教料,等.玻璃温室小气候温湿度动态模型的建立与仿真[J].农业机械学报,2005,36(11):102-106.
    [33]孟力力,杨其长,Bot G P A,等.日光温室热环境模拟模型的构建[J].农业工程学报,2009,25(1):164-170.
    [34]李永欣.Venlo型温室自然通风降温的实验研究与CFD模拟[D].北京,中国农业大学博 士学位论文,2003.
    [35]王福军.计算流体动力学分析-----CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [36]Okushima L, Sase S, Nara M. A support system for natural ventilation design of greenhouses based on computational aerodynamics [J]. Acta Horticultural,1989, (248):129-136.
    [37]Wang S, Deltour J. Airflow patterns and associated ventilation function in large scale multi-span greenhouses [J]. Transactions of the ASAE,1999b,42(5):1409-1414.
    [38]Sase S, Takakura T, rt al.Wind tunnel testing on airflow and temperature distribution of a naturallyventilated greenhouse [J].Acta Horticulturae,1984, (148):329-336.
    [39]Kittas C, Bartzanas T. Greenhouse microclimate and dehumidification effectiveness under different ventilator configuration [J].Building and Environment,2007, (42):3774-3784.
    [40]Boulard. Haxaire, Lamrani, et al.Characterization and Modeling of the air fluxes induced by natural ventilation in a greenhouse [J]. J. Agric. Eng. Res.,1999, (74):135-144.
    [41]Lamrani M. A., Boulard T, Roy J C, et al. Airflows and temperature patterns induced in a confined greenhouse [J]. J. agric. Eng. Res.,2001,78 (1):75-88.
    [42]HaxaireR,Roy J C,Boulard T,et al.Etude numerique et experimentale de la ventilation par convection naturelle dans une serve[J]. In Actes du Congres A nnuel de la SFT,1998a,109.
    [43]Haxaier R, Roy J C, Boulard T,et al. Greenhouse natural ventilation by buoyancy forces[C].In EPIC'98/11 Proceedings of the 2nd European Conference on Energy Performance and Indoor Climate in Buildings and 3rd International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings, France,1998b,522-527.
    [44]Kacira Murat, Sase S, Okushima L. Effects of side vents and span numbers on wind-Induced natural ventilation of a Gothic multi-span greenhouse [J].JARQ 2004,38 (4): 227-233.
    [45]Lee I, Short T H. Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse [J]. Transactions of the ASAE,2000,43(3):745-753.
    [46]Reichrath S, Davies T W. Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo type glasshouse [J]. Wind Engineering and Industrial Aerodynamics,2002a, (90):139-149.
    [47]Brugger M,Montero J, Baeza E,et al.Computational Fluid Dynamic Modeilng to Improve the Design of the Spanish Parral Stype Greenhouse[C].2003 ASAE Annual Meeting,2003, Paper No.034046.
    [48]Kacira M, Sase S, Okushima L.Effects of sidevents and span numbers on wind-induced natural ventilation of a gothic multi-span greenhouse [J]. Japan Agricultural Research Quarterly,2004,38(4):227-232.
    [49]Campen J B. Greenhouse design applying CFD for Indonesian conditions [J]. Acta Horticulturae,2005, (691):419-424.
    [50]Boulard T, Fatnassi H.Greenhouse aeration and climate optimization based on CFD studies [J]. Plasticulture,2005, (124):38-57.
    [51]Katsoulas N, Bartzanas T, Boulard T, et al. Effect of vent openings and insect screens on greenhouse ventilation [J]. Biosystems engineering,2006, (93):427-436.
    [52]Majdoubi H, Boulard T, Fatnassi H,et al. Airflow and microclimate patterns in a one-hectare Canary type greenhouse:An experimental and CFD assisted study[J]. Agricultural and Forest Meteorology,2009, (149):1050-1062.
    [53]Bartzanas T, Boulard T, Kittas C. Effect of Vent Arrangement on Windward Ventilation of a Tunnel Greenhouse [J]. Biosystems Engineering,2004,88 (4):479-490.
    [54]Fernandez J E, Bailey B J. The influence of fans on environmental conditions in greenhouses [J]. Agricultural Engineering Research,1994, (58):201-210.
    [55]Teitel M,Ziskind G, Liran O, et al. Effect of wind direction on greenhouse ventilation rate, airflow patterns and temperature distributions [J]. Biosystems engineering,2008, (101): 351-369.
    [56]Fatnassi H, Leyronas C, Boulard T, et al. Dependence of greenhouse tunnel ventilation on wind direction and crop height [J]. Biosystems engineering,2009, (103):338-343.
    [57]李永欣,王朝元,李保明,等.荷兰Venlo型连栋温室夏季自然通风降温系统的试验研究[J].中国农业火学学报,2002,7(6):44-48.
    [58]王健,丁为民,等.间隔互插式连栋温室的自然通风模拟与优化[J].计算机仿真,2006,(12):310-312.
    [59]王健,汪小帛,丁为民,等.风压通风的单栋温室内部流场的ANSYS CFD模拟[J].农业机械学报,2007,38(3):114-116,121.
    [60]佟国红,李保明,DavidM.C,等.用CFD方法模拟日光温室温度环境初探[J].农业工程学报,2007,23(7):178-185.
    [61]李永欣,李保明,李真,等Venlo型温室夏季自然通风降温的CFD数值模拟[J].中国农业大学学报,2004,9(6):44-48.
    [62]李本卿.强制通风条件下Venlo型温室内气流场和温度场的CFD数值模拟研究[D].镇江,江苏大学硕士学位论文,2009.
    [63]吴飞青,张立彬,胥芳,等.机械通风条件下玻璃温室热环境数值模拟[J].农业机械学报,2010,41(1):153-158.
    [64]Keesung K, Jeong Y Y, Kwonb H J, et al.3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers[J]. Biosystems engineering,2008, (100):245-255.
    [65]Bourneta P E, Ould Khaoua S A, Boulard T.Numerical prediction of the effect of vent arrangements on the ventilation and energy transfer in a multi-span glasshouse using a bi-band radiation model [J]. Biosystems Engineering,2007 (98):224-234.
    [66]Okushima L, Sase S, Meakawa T, et al. Airflow patterns forced by wind effect in a Venlo type greenhouse [J]. Social of agriculture structure in Japan,1998,29(3):159-167.
    [67]Lee I B, Okushima L, Ikegushi A, et al. Prediction natural ventilation of multi-span greenhouse using CFD techniques and its verification with wind tunnel test[C].93rd annual meeting of ASAE,2000, July 9-12.Milwaukee WI, USA, Paper No.0050003.
    [68]Bailey B J, Robertson A P, Lockwood A G. The influence of wind direction on greenhouse ventilation [J]. Acta Horticulturae,2004, (633):197-202.
    [69]Kacira M, Sase S,Ikegushi A, et al. Effect on vent configuration and wind speed on three-dimensional temperature distributions in a naturally ventilated multi-span greenhouse by wind tunnel experiments [J]. Biosystems Engineering,2008,93:427-436.
    [70]Montero J I,Hunt G R, Kamaruddin R,et al. Effect on ventilator configuration on wind driven ventilation in a crop protection structure for the tropics [J]. Agricultural Engineering Research,2001,80(1):99-107.
    [71]Boulard T; Wang S; Haxaire R. Mean and turbulent air flows and microclimatic patterns in an empty greenhouse tunnel. Agricultural and Forest Meteorology,2000, (100):169-181.
    [72]Haxaire R; Boulard T; Mermier M. Greenhouse natural ventilation by wind forces. Acta Horticulturae,2000, (534):31-40.
    [73]Boulard T, Haxaire R, Lamrani M A. Characterization and modeling of the air fluxes induced by natural ventilation in a greenhouse[J]. Agricultural Engineering Research,1999, (74):135-144.
    [74]Lee I, Lee S, Kim G, et al. PIV vertification of greenhouse ventilation air flows to evaluate CFD accuracy [J].Transactions of the ASAE,2005,48(6):2277-2288.
    [75]程秀花,毛罕平,等.玻璃温室自然通风热环境时空分布数值模拟[J].农业机械学报,2009,40(6):179-183.
    [76]程秀花,毛罕平,等.栽有番茄的玻璃温室内气流场分布CFD数值模拟[J].江苏大学学报(自然科学版),2010,31(5):510-514.
    [77]李惟毅,韦雪松.温室覆盖材料的热学性质[J].工程热物理学报[J].2005,(26):171-174.
    [78]Willits D H.The effect of cloth characteristics on the cooling performance of external shade cloth for greenhouse[J].J Agric Eng Res,2001,79(3):331-340.
    [79]李永欣,史彦鹏,王朝元,等Venlo型温室外遮阳和屋顶喷淋系统夏季降温效果[J].农业工程学报,2002,18(5):127-130.
    [80]沈明卫,郝飞麟.外遮阳对连栋塑料温室内光环境的影响研究[J].2003,19(6):245-247.
    [81]李式军.设施园艺学[M].北京:中国农业出版社,2002.
    [82]韦雪松.温室覆盖材料热学性质研究[D]:大津:大津大学博士学位论文,2005.
    [83]Yang X.Greenhouse micrometeorology and estimation of heat and water vapour fluxes[J]. J.agric.Engng Res,1995, (61):227-238.
    [84]陶文铨.传热学[M].北京:西北工业大学出版社,2006:345-345.
    [85]江亿.用于空调负荷计算的随机气象模型[D].北京:清华大学硕士学位论文,1980.
    [86]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系中国建筑热环境分析 专用气象数据集北京中国建筑工业出版社,2005.
    [87]Liu Benjamin Y H, Jordan Richard Ci. The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Solar Energy,1960, IV (3)
    [88]早川一也,清水浩明.用于热负荷计算的蒙特卡罗法气象模型研究[R].空气调和卫生工学论文集.1976.3.No.0.
    [89]于殿龙.基于积温和经济最优的夏季Venlo型温室环境控制技术的研究[D].镇江:江苏大学硕士学位论文,2008.
    [90]赵云.机械通风温室内部温度模型的试验验证[J].农机化研究,2005,(5):166-168.
    [91]Monteith J L, Unsworth. M H. Principle of Environmental Physics [M]. London:Edward Arnold,1990.
    [92]Swinbank W C. Long-wave radiation from clear skies [M].Quarterly Journal of the Royal Meteorological Society,1963.
    [93]陶文铨.传热学[M].西安:西北工业大学出版社,2006.
    [94][1] Swinbank W C. Long-wave radiation from clear skies [M].Quarterly Journal of the Royal Meteorological Society,1963.
    [95]Josef Tanny, Shabtai Cohen, Meir Teite. Screenhouse Microclimate and Ventilation:an Experimental Study [J]. Biosystems Engineering,2003,84 (3):331-341.
    [96]Roy J C, Vidal C, Fargues J, Boulard T. CFD based determination of temperature and humidity at leaf surface [J]. Computers and Electronics in Agriculture,2008, (61):201-212.
    [97]Campbell G S. An Introduction to Environmental Biophysics. Springer, New York,1977: 159-159.
    [98]Monteith J L, Unsworth. M H. Principle of Environmental Physics,2nd ed., Edward Arnold, London.1990,291-291.
    [99]戴剑锋,金亮,罗卫红,等.长江中下游Venlo型温室番茄蒸腾模拟研究[J].农业工程学报,2006,22(3):99-103.
    [100]何芬,马承伟,张俊雄.温室湿度动态预测模型建立与试验[J].农业机械学报,2009,40(10):173-177.
    [101]Boulard T, Wang S.Greenhouse crop transpiration simulation from external climate conditions [J]. Agricultural and Forest Meteorology,2000, (100):25-34.
    [102]伍德林,毛罕平.温室作物需水信息指标及湿度控制策略研究进展[J].中国农村水利水电,2007,(1):35-40.
    [103]Bethke J A. Considering installing screening? This is what you need to know [J]. Greenhouse Manager,1994,34-36.
    [104]Klose F, Tantau H J. Test of insect screens measurement and evaluation of the air permeability and light transmission [J]. J Hort Sci,2004,69 (5):235-243.
    [105]Miguel A F, van de Braak N J, Bot, G P A. Analysis of the airflow characteristics of greenhouse screening materials[J]. Agricultural Engineering Researchers,1997, (67): 105-112.
    [106]Miguel A F, van de Braak N J, Silva A M, Bot G P A. Physical modeling of natural ventilation through screens and windows in greenhouses[J]. Agricultural Engineering Researchers,1998, (70):165-176.
    [107]Miguel A F, Silva A M. Porous materials to control climate behavior of enclosures:an application to the study of screened greenhouses [J]. Energy Buildings,2000, (31):195-209.
    [108]Fatnassi H, Boulard T, Demrati H, et al. Ventilation performance of a large Canarian-type greenhouse equipped with insect-proof nets [J]. Biosystems Engineering,2002.82 (1): 97-105.
    [109]Kittas C, Boulard T, BartzanasT,et al. Influence of an insect screen on greenhouse ventilation[J].Trans. ASAE,2002,45 (4):1083-1090.
    [110]Molina-Aiz F D, Valera D L, Alvarez A J. Measurement and simulation of climate inside Almeria-type greenhouse using computational fluid dynamics[J]. Agricultural and forest meteorology,2004, (125):33-51.
    [111]Campen J B. Greenhouse design applying CFD for Indonesian conditions [J]. Acta Hort, 2005, (691):419-424.
    [112]Fatnassi H, Boulard T, Poncet C, et al. Optimisation of greenhouse insect screening with computational fluid dynamics [J]. Biosystems Engineering,2006,93 (3):301-312.
    [113]Sase S, Christianson L L. Screening greenhouses—some engineering considerations[C]. Proceedings of the 1990 Northeast Agricultural/Biological Engineering Conference 1990. ASAE Paper No. NABEC 90-201.
    [114]Ajwang P O, Tantau H J. Prediction of the effect of insect proof screens on climate in a naturally ventilated greenhouse in humid tropical climates [J]. Acta Hort,2005, (691): 449-456.
    [115]Fatnassi H, Boulard T, Bouirden L. Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens [J]. Agric. Forest Meteorol.2003, (118): 97-111.
    [116]Soni P, Salokhe V M, Tantau H J. Effect of screen mesh size on vertical temperature distribution in naturally ventilated tropical greenhouses [J]. Biosystems Engineering,2005, 92 (4):469-482.
    [117]Teitel M, Barak M, Berlinger M J, Lebiush-Mordechai S.Insect-proof screens in greenhouses:their effect on roof ventilation and insect penetration [J]. Acta Hort,1999, (507):25-34.
    [118]Miguel A F. Airflow through porous screens:from theory to practical considerations [J].Energy Building,1998,28(1):63-69.
    [119]Brundrett E. Prediction of pressure drop for incompressible flow through screens [J].ASME Journal of Fluids Engineering,1993,115(2):239-242.
    [120]村上周三.朱清宇(译).CFD与建筑环境设计[M].北京:中国建筑工业出版社,2007.
    [121]Fatnassi H. Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens [J].Agricultural and Forest Meteorology,2003, (118):97-111.
    [122]FLUENT User'sGuide. Fluent Inc.2003.
    [123]李先庭,李晓锋,彦启森.一种求解湿空气温度和相对湿度的CFD算法[J].暖通空调,2000,30(2):66-68.
    [124]Lorenz E N. Deterministic nonperiodic flow [J]. Atmospheric Sciences,1963,20:130-141.
    [125]过增元.热流体学[M].北京:清华大学出版社,1992.
    [126]Sase S, Takakura T,et al. Wind tunnel testing on airflow and temperature distribution of a naturally ventilated greenhouse [J].Acta Horticulturae,1984, (148):329-336.
    [127]Mistriotis A, Arcidiacono C, Picuno P, et al. Computational analysis of ventilation in greenhouses at zero-and low-wind-speeds [J]. Agriculture for Meteorology,1997, (88):121-135.
    [128]朱文见.冬季供暖条件下连栋温室夜间热环境的CFD模拟[D].北京:中国农业大学硕士学位论文,2005,6-6.
    [129]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006.
    [130]贺铸.非等温气固两相各向同性湍流的直接数值模拟[D].武汉:华中科技大学博士学位论文,2004.
    [131]Marzio Piller, Enrico Nobile, Thomas J. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J].Fluid Mechanics,2002, (458):419-441.
    [132]Wissinl J G DNS of separating low Reyonds number flow in a turbine cascade with incoming wakes [J]. International Journal of Heat and Fluid Flow,2003,24(4):626-635.
    [133]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [134]崔桂香,许春晓,张兆顺.湍流大涡数值模拟进展[J].空气动力学学报,2004,22(2):121-129.
    [135]David C. Wilcox. Turbulence Modeling for CFD [M].1993.
    [136]Jones E P, Launder B E. The Prediction of Laminarization with Two Equation Model of Turbulence[J].International Journal of Heat and Mass Transfer,1972,15.
    [137]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [138]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [139]Launder B E, Spalding D B. The numerical computation of turbulent flows [J]. Comp. Method in Applied Mech and Eng,1974, (3):269-289.
    [140]Shklyar A, Arbel A. Numerical model of the three-dimensional isothermal flow patterns and mass fluxes in a pitched-roof greenhouse [J]. Wind Engineering and Industrial Aerodynamics,2004,92(12):1039-1059.
    [141]Bartzanas T, Kittas C, Sapounas A A, et al. Analysis of airflow through experimental rural buildings:Sensitivity to turbulence models [J]. Biosystems Engineering,2007, 97(2):229-239.
    [142]Nebbali R, Roy J C, Boulard T, et al. Comparison of the accuracy of different turbulent models for the prediction of the climatic parameters in a tunnel greenhouse [J].Acta Horticulterae,2006, (719):287-294.
    [143]Blackwelder R F. An analogy between transitional and turbulent boundary layers [J].Phys Fluids,1983,26(10):2807-2807.
    [144]Kim J Hussain F.Propagation velocity of perturbations in turbulent channel flow [J].Phys Fluids,1993,5(3):695-695.
    [145]Cebeci T,Shao J P,Kafyeke F.工程计算流体力学[M].北京:清华大学出版社,2009.
    [146]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [147]周光垌,严宗毅,许世雄,等.流体力学[M].北京:高等教育出版社,2000.
    [148]郭宏伟,王延儒,范铭.边界层控制方程的研究[J].东南大学学报(自然科学版),2002,32(2):100-104.
    [149]崔杰.湍流边界层速度分布的显式表示[J].空气动力学学报,1994,12(2):208-212.
    [150]覃文洁,胡春光,郭良平,等.近壁面网格尺寸对湍流计算的影响[J].北京理工大学学报,2006,26(5):388-392.
    [151]Kacira M, Short T H, Stowell R. A CFD evaluation of naturally ventilated multi-span sawtooth greenhouse [J].Transaction of the ASAE,1998,41(3):833-836.
    [152]Short T H, Lee I B. Temperature and airflow predictions for multi-span naturally ventilated greenhouses [J].Acta Horticulturae,2002, (578):114-152.
    [153]Kim K, Yoon J Y, Kwon H J,et al.3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers[J]. Biosystems Engineering,2008,100(2):245-255.
    [154]刘林华,余其铮,阮立明,等.求解辐射传递方程的离散坐标法[J].计算物理,1998,15(3):337-343.
    [155]王瑞金,张凯,王刚Fluent技术基础与应用实例[M].北京:清华大学出版社,2007:1.
    [156]Esteban J, Baeza, Jeronimo J, et al. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamic [J]. Biosystems Engineering,2009, (104):86-96.
    [157]Critten D L. Light transmission losses due to structural members in multispan greenhouses under diffused skylight conditions [J]. J. Agric. Eng. Res.1987, (38):193-207.
    [158]张野,谢晓娜,罗涛.建筑环境设计模拟分析软件[J].暖通空调,2004,34(10):55-65.
    [159]Wang S, Deltour J.Ariflow pattens and associated ventilation function in large-scale multi-span Greenhouse. American Society of Agricultural Engineers,1999, 42(5):1409-1414.
    [160]Richrath S, Dayies T W. CFD modeling of the internal environment of commercial multi-span venlo-type glasshouses [J]. An ASAE Meeting Presentation.2001,(1):40-54.
    [161]恽起麟.风洞试验[M].北京:国防工业出版社,2000.
    [162]吴德铭,郜冶.实用计算流体动力学基础[M].哈尔滨:哈尔滨工程大学出版社,2006:
    [163]Gambit用户手册
    [164]沈明卫,郝飞麟.浙江大学学报(工学版),2006,40(11):1852-1857.
    [165]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [166]赵福云,汤广发,刘娣,等.CFD数值模拟的系统误差反馈及其实现[c].第十二届全国计算流体力学会议论文,2004.
    [167]俞永华,王剑平,应义斌.连栋塑料温室多工况下风压的数值模拟[J].江苏大学学报(自然科学版),2007,28(5):373-376.
    [168]Richards P J, Hoxey R P. Appropriate boundary conditions for computational wind engineering models using the kappa-epsilon turbulence model [J]. Journal of Wind Engineering and Industrial Aerodynamics,1993,46(7):145-153.
    [169]Soteris A Kalogirou. Generation of typical meteorological year (TMY-2) for Nicosia, Cyprus [J]. Renewable Energy,2003,28(15):2317-2334.
    [170]Lan C W, Liu C C.Hsu C M. An adaptive finite volume method for incompressible heat flow problem in solidification [J]. Journal of Computational Physics,2002,178:262-297.
    [171]Molina-Aiz F D, Fatnassi H, Boulard T, et al.Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses [J]. Computers and Electronics in Agriculture,2010, (72):69-86.
    [172]Launder B E, Spalding D B. Lecture in mathematical models of turbulence[C]. Academic press, London,1972.
    [173]Van Doormal J P.Raithby G G Enhancement of the SIMPLEC method for predicting incompressible fluid flows [J]. Numerical Heat Transfer,1984, (7):147-163.
    [174]单鹏.多维气体动力学基础[M].第2版,北京:北京航空航天大学出版社,2008.
    [175]Eren Ozcan S, Vranken E, Berckmans D. A critical comparison of existing ventilation rate determination techniques for building openings and prospects and prospects for future [J]. International Symposium on Air Quality and Waste Management for Agriculture.2007,9.
    [176]Josef Tanny, Shabtai Cohen, Meir Teite. Screenhouse Microclimate and Ventilation:an Experimental Study [J]. Biosystems Engineering,2003,84 (3):331-341.
    [177]Murat Kacira, Sadanori Sase, Limi Okushima. Effects of side vents and span numbers on wind-induced natural ventilation of a Gothic multi-span greenhouse [J].JARQ 2004,38 (4): 227-233.
    [178]http://www.lrn.cn/basicdata/ressituation/elsesituation/200603/t20060310_109269.htm镇江自然气候概况.
    [179]张三喜,姚敏,孙卫平.高速摄像及其应用技术[M].北京:国防工业出版社,2006.
    [180]周福君,蒋恩臣.气流吸运中振动输送辅助装置的研究[J].农业机械学报,2001,(6):55-58.
    [181]周福君,张巍.高速摄像技术在两相流场籽粒运动测量中的应用[J].东北农业大学学报,2008,39(4):22-24.
    [182]张文斌,李耀明,徐立章,等.应用高速摄像技术研究清选筛面上物料的运动[J].农机化 研究,2008,(5):21-23.
    [183]王健,刘德新,刘书亮.等.用 PIV方法研究四气门汽油机缸内滚流运动[J].燃烧科学与技术,2004,10(5):433-437.
    [184]阮彩群,刘丽孺,谢灵,等.直接投入固体粒子示踪物显示气流的研究[J].力学与实践,2009,43(6):75-76.
    [185]Schmiti T, Koster J N, Hsmachers H. Particle design for displacement tracking velocimetry [J]. Meas.Sci.Technol,1995(6):682-689.
    [186]Fuchs M. Transpiration and foliage temperature in a greenhouse[C].//Proceedings of the International Workshop on Cooling Systems for Greenhouse, Tel-Aviv,1993.
    [187]Boulard T, Wang S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel [J].Computers and Electronics in Agriculture,2002, (34):173-190.
    [188]赵云.湿帘风机系统温室夏季蒸腾与微气候试验[J].农业机械学报,2008,39(8):109-113.
    [189]Wang S, Boulard T, et al. Air speed profiles in a naturally ventilated greenhouse with a tomato crop [J]. Agricultural and Forest Meteorology,1999, (96):181-188.
    [190]Lamran M A, Boulard T, et al..Airflows and Temperature Patterns induced in a Confined Greenhouse [J]. Agriculture Engineering Research,2001,78(1):75-88.
    [191]Fernandez J E, Bailey B J, The influence of Fans on environmental conditions in greenhouses [J]. Agric. Eng. Res.1994, (58):201-210.
    [192]Roy J C, Boulard T, et al. Convective and ventilation transfers in greenhouses, part 1:the greenhouse considered as a perfectly stirred tank [J]. Biosystems Engineering,2002,83 (1): 1-20.
    [193]Bartzanas T, Boulard T, Kittas C. Effect of vent arrangement on windward ventilation of a tunnel greenhouse [J]. Biosystems Engineering,2004, (88):479-490.
    [194]Bartzanas T, Boulard T, Kittas C. Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings [J]. Computers and Electronics in Agriculture,2002, (34):207-221.
    [195]吴飞青,胥芳,张立彬,等.基于多孔介质的玻璃温室加热环境数值模拟[J].农业机械学报,2011,42(2):180-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700