增压锅炉用SiC耐火砖墙的工程热分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增压锅炉作为舰船上常用的动力装置,具有高效率、高可靠性等优点。增压锅炉耐火砖墙的材料及结构对增压锅炉的性能有重大影响。由于炉墙各构件在结构上相互约束而自由热膨胀系数各不相同,温度变化将导致结构产生热应力。过大的热应力会造成炉墙组件的损坏,进而影响锅炉主体的破坏。因此开展对增压锅炉耐火砖墙的相关研究工作,对保证炉墙安全防止锅炉损坏具有重要意义,同时对于整个舰船的动力装置经济性和可靠性的提高也起到重要作用。
     本文以某实际舰用增压锅炉碳化硅耐火砖墙为研究对象,运用传热学及有限单元法原理,并结合所测定碳化硅耐火砖的热物理性能参数,建立了增压锅炉耐火砖墙结构的三维实体有限元模型;仿真模拟了增压锅炉在几种线性及非线性启动模式、不同升温速率以及不同散热降温条件下的瞬态温度场分布,获得了炉墙各构件在对应工况下温度场随时间的变化规律,并对不同工况下得到的炉墙典型构件的温度进行了对比分析。
     在增压锅炉耐火砖墙热应力分析方面,本文利用炉墙瞬态温度场分析结果进行了热应力计算,得出炉墙结构在各种工况下最大瞬态热应力随时间的变化规律。对增压锅炉从启动到达稳态过程中,炉墙的热变形和膨胀量进行了计算分析,并分析了碳化硅耐火砖的热物理性能参数对炉墙温度场和应力场的影响规律。研究结果为炉墙设计及碳化硅砖的研制提供了指导和参考规范。
     通过理论仿真计算得到如下主要结论:增压锅炉在启动过程中,升温速率越快,结构中产生的最大热应力也越大,炉墙外侧对流换热系数对不同工况启动过程下结构最大瞬态热应力值影响很小;降温过程中,炉墙内侧对流换热系数对结构最大瞬态热应力值影响显著。上述结合碳化硅砖性能测定的工程热分析结果对实际确定增压锅炉启动方式、升温速率和降温模式,以保证耐火砖墙乃至锅炉的安全有重要参考价值。
As a general power device, supercharged boiler has the advantage of high efficiency and high reliability. Material and structure of supercharged boiler fireproof brick wall have a major impact on boiler performances. Temperatureshift can result in heat stress because brick wall components constrain each other but have different heat expansion coefficients. Overlarge heat stress may destroy the brick wall components and then the main body of boiler. For this reason, people had paid great attention to this and a lot of research work about supercharged boiler fireproof brick wall was carried, it is significant to ensure boiler wall in good condition and safety running for the work.
     This dissertation deals with the study of carborundum fireproof brick wall of supercharged boiler for vessels. Combined with thermophysics performances of carborundum fireproof brick wall gained by tests, 3D solid model and finite element model of fireproof brick wall are set up based on heat transfer theory and finite element principles. Transient temperature field distributions with different heating rates and temperature reduction conditions under several liner and unliner start modes are simulated, and the temporal change of brick wall components temperature field is shown. What’s more, temprature viration laws of some typical components are contrasted and analyzed.
     In the matter of heat stress analysis, heat stress is cuculated based on transient temperature field date, and the maximum transient heat stress which changes along with variation of time under different working conditions is gained. Heat deformation and swell increment during the boil runing process are caculated and the effecting law of carborundum fireproof brick wall thermophysics performance parameters on brick wall temperature field and heat stress field is analyzed, which provides guidance for brick wall design and carborundum brick study.
     From the therotical simulation, it can be concluded that, the higher the heating rates, the bigger the maximum heat stress, and the offside heat transfer coefficient have little impact on maximum transient heat stress while the inside heat transfer coefficient have remarkable impact on maximum transient heat stress. The thermoanalysis results combined with carborundum brick performance tests will do much help to determine boiler starting mode, heating rate and temperature reduction conditions in order to guarantee the safety of fireproof brick wall and even the boiler.
引文
1李江,李楠.铁水脱硫喷枪用新型耐火材料研究[M].上海科学普及出版社, 2007.
    2李文新,李文辉.碳化硅陶瓷的耐磨损性能研究.哈尔滨理工大学学报. 2003, 8(1):88~91
    3葛学贵,曹宏等.液硅渗碳法制备硅化石墨工艺及性能初探.华南地质与矿产. 1997, (2):11~17
    4李文新,李文辉.常压烧结碳化硅陶瓷的力学性能与质量密度.哈尔滨理工大学学报. 2002, 7(2): 80~82
    5葛山,尹玉成,刘志强.高炉炭砖导热系数的测定.炼铁. 2008, 27 (2): 47~49
    6周祥发,王勇,等.铁水脱硫喷枪耐火浇注料的抗热震性能.重庆大学学报(自然科学版). 2007, 30(3):60~63
    7张亚静.耐火材料热膨胀试验方法解析.耐火材料. 2007, 41(4)312~314
    8 Wood W L, Lewis R H. A comparison of time marching schemes for the transient heat conduction equation. Int J Num Mech Eng. 1975, 9:679
    9 Surana K S, Philips R K. Three dimensional curved shell finite element for heat conduction. Computers and Structures. 1987, 25:775
    10 Hu Zhong, Zhu Lihua, Wang Benny, et al. Computer simulation of the deep extrusion of a thin-walled cap using the thermo-mechanically coupled elasto-plastic FEM. J Mater Proc Techn. 2000, 102:128
    11 Rolfes R, Rohwer K. Intergrated thermal and mechanical analysis of composite plates and shells. Comp Sci Techn. 2000, 60: 2097
    12 Rodriguez M P, Shammas N Y A. Finite element simulation of thermal fatigue in multiplayer structures. Microelectronics Reliability. 2001, 41: 517
    13 Zhong D, Mustoe G G W, Moorie J J, et al. Finite element analysis of coating architecture for glass-molding dies. Surf Coat Techn. 2001, 146: 312
    14 Lee Y S, Choi M H, Kang Y H, et al. A structural analysis of the circular cylinder with multi holes under thermal loading. Nucl Eng Des. 2002, 212: 273
    15 Lee Y S, Choi M H, Kang Y H, et al. Thermal and mechanical Characteristics of an instrumeneed capsule for a material irradiation test.Nucle Eng Des. 2001, 205: 205
    16陈浩然,息志臣,贺晓东.复合材料层合板的热变形非线性分析.大连理工大学学报. 1994, 34(3): 280
    17应力霞,王黎钦,等. 3D激光熔覆陶瓷-金属复合涂层温度场的有限元仿真与计算.金属热处理. 2004, 29(7): 24~27
    18王洪海,高炳军,李春利,等.加氢反应器瞬态温度场数值模拟.石油机械. 2007, 35(6): 21~24
    19周百令,胡永华,王寿荣. ANSYS在挠性陀螺仪温度场分布分析中的应用.中国惯性技术学报. 2000, 8(4):89
    20高学仕,张立新,潘迪超,等.热采井筒瞬态温度场的数值模拟分析.石油大学学报(自然科学版). 2001, 25(2):67
    21高学仕,张立新,何牛仔.热采井筒应力的数值模拟分析.石油大学学报(自然科学版). 2001, 25(2):65
    22 Hawashima H, MiyaharaM, NagahataT, et al. Study of thermal stress in the refractories at the bottom of top and bottom blowing BOF. Steelmaking Conference Proceedings, 1991: 305~312
    23 Singh K N, Bechan C R, Russo T J, et al. Reducing thermally induced stresses in BOF. Steelmaking Conference Proceedngs, 1995: 491~497
    24 Andrade De, S O C, et al. Thermomechanical analysis of refractory lining in the blast furnace shaft, Congr. Anu. Assoc. Bras. Metal. Mater. 1996, 51(1): 939~954
    25 Ryosuke NAKAMURA, Shigeki UCHIDA, Michinori YOSHIKAWA, 3-D FEM analysis for long-nozzle under attachment force and vibration. Shinagawa Technical Report, 1997: 40
    26 Osamu Nomura Ryosuke Nakamura. Effect of thermal conductivity on thermal stress generated in BOF bricks. Shinagawa Technical Report, 1998: 41
    27 Volkov-Husovic T, Jancic R M, Cvetkovic M, et al. Thermal shock behavior of alumina based refractories: fracture resistance parameters and water quench test. Material Letters. 1999, 38: 372~378
    28 Lanin A G, Deryawko I I. Influence of residual stresses on thermal stress resistance of refractory ceramic. Journal of the European Ceramic Society. 2000, 20: 209~213
    29 Zhou Y C, Hashida T. Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system. International Journal of solids and structures. 2001, 38: 4235~4264
    30 Andrieux C, Gasser V, Boisse P, et al. Castable anchoring life of refractory lining. Proeeedings of UNITECR’97, 1997: 317
    31 Gasser A, Andrieux C, Boisse P, et al. Modeling and design of an anehoredrefractory lining. Proeeedings of UNITECR’99, 1999: 10
    32 Gasser A, Boisse P, Rousseau J, et al. Thermo-mechanical behavior analysis and simulation of steel/ refractory composite linings. Comp Sci Techn. 2001, 61: 2095
    33 Boisse P, Gasser A, Poirier J, et al. Simulations of thermo-mechanical behavior of composite refractory linings. Composites: Part B. 2001, 32: 461
    34李永刚.温度-应力-时间作用下耐火材料的物理性能[J].耐火材料. 1999, 33(4):224~226
    35李远兵,王兴东,李楠.有限元法在耐火材料中的应用.耐火材料. 2001, 35(5): 293
    36任学平,章博,邹家样.大型转炉炉体温度场有限元仿真试验.上海金属. 2001, 23(5): 38
    37任学平,郭志强.转炉炉壳热应力分析.炼钢. 2001, 17(6): 47
    38张德臣,李艳平.利用有限元法分析耐火砖的热应力和变形[J]. 2000, 34(5): 281~282
    39张永宏,张晓丽,吴懋林.鱼雷罐砖衬工作层热应力研究[J].矿冶. 2001, 10(3): 56~60
    40陈峰军,皱云,等.材料物性参数对脱硫喷枪热应力的影响.武汉理工大学学报. 2004, 26(3):76~79
    41李江,李楠,等.铁水脱硫喷枪内部结构对热应力的影响.炼钢. 2005, 21(3): 33~36
    42陈荣.钢包温度分布和应力分布模型及应用研究.武汉科技大学硕士论文. 2005: 24~33
    43白晨,蒋国璋,李公法.耐火材料制品的温度和热应力分析研究.湖北工业大学学报. 2006, 21(3): 80~82
    44陈家祥.连续铸钢手册.冶金工业出版社, 1991: 352~354
    45张德信,高捷,等.工业炉耐热炉衬.化学工业出版社, 2007: 83
    46张玉龙,马建平.使用陶瓷材料手册.化学工业出版社, 2006: 276~279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700