基于食源藻传递的咪唑羧酸配合物对珍珠层致色研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马氏珠母贝珍珠指我国南海及其周边海域所产的海水珍珠,主要分布在广东、广西、海南三省。马氏珠母贝培育的珍珠多以白色、淡黄色为主,天然彩色珍珠极为稀少,且价格不菲。颜色是衡量珍珠价值的重要指标之一,因此,关于珍珠致色机理的研究一直是国内外研究热点。
     本论文基于构建的室内封闭育珠体系,以诱导合成的2-乙基-4,5-咪唑二甲酸金属配合物为传递物质,经食源藻传递,探讨其对马氏珠母贝珍珠层颜色的影响。首先,分析了室内封闭育珠体系中放养方式、养殖密度和循环水质指标,确定了该体系的最佳育珠条件。其次,采用水热法诱导合成了三种咪唑羧酸金属配合物,分别为锌配合物、铜配合物和镍配合物,并对其结构进行了表征。通过三种配合物对扁藻的急毒试验,确定最佳传递配合物;并对育珠贝进行急毒试验,确定传递配合物的最佳投喂浓度范围。然后,采用稳定氮同位素示踪标记结合元素分析方法,探讨镍配合物在育珠贝体内的传递过程及生化指标变化,分析镍配合物对育珠贝生长的影响。最后,采用CIE标准色度系统对传递后珍珠层的颜色进行表征,分析了镍配合物对珍珠层微结构的影响,确定了金属配合物对珍珠层的致色方式。采用Translight软件模拟珍珠层光子晶体结构,根据其反射率的变化,分析金属配合物对珍珠层的致色机理。本文对揭示马氏珠母贝珍珠层致色机理提供理论基础,为人工培育高值化彩色珍珠提供理论依据。
     本文的研究工作主要包括以下几个方面:
     (1)构建了马氏珠母贝室内封闭育珠体系(IRAS),分析了IRAS中育珠贝的放养方式、养殖密度对其生长状况和死亡率的影响,并分析了IRAS水体中亚硝氮、氨氮、BOD、COD、pH、Ca2+、盐度、悬浮物质8项指标的变化情况。结果发现,IRAS中底养和吊养两种放养方式对育珠贝生长状况的影响不显著,但底养的死亡率明显小于吊养,因此,确定了IRAS最佳的放养方式为底养。IRAS每只小缸中养殖密度较低(20、25、30只/缸)时,育珠贝的生长速率较高,且死亡率较低,综合考虑,选取IRAS每个小缸的养殖密度为30只。IRAS水体中盐度、pH、Ca2+的变化不明显;BOD、COD、亚硝氮的有小幅度变化;氨氮与悬浮物的波动比较显著。在90d的实验周期内,8项指标的含量变化,均符合养殖海水水质标准要求(GB3097-1997)。因此,IRAS中每三个月更换一次循环水即可。
     (2)采用水热合成法,以2-乙基-4,5-咪唑二甲酸为配体,首次诱导合成了锌、铜、镍三种配合物,并采用单晶衍射仪和元素分析仪对其结构进行了表征。锌配合物的化学结构式为[Zn(C7H7N2O4)2(H2O)2]·3H2O,属于三斜晶系,空间群为PT。其不对称单元由一个配体分子,一个中心金属Zn(Ⅱ)离子,一个结合水和一个半游离的水分子组成:铜配合物的化学结构式为[Cu(C7H7N2O4)2]n,属于单斜晶系,空间群为P21/n。其不对称单元由一个Cu(Ⅱ)离子和一个配体分子组成;镍配合物的化学结构式为[Ni(C7H7N2O4)2(H2O)2]·3H2O,属于三斜品系,空问群为P1,与锌配合物是同构化合物。其不对称单元由一个配体分子,一个中心金属Ni(Ⅱ)离子,一个结合水和一个半游离的水分子组成。红外分析发现锌配合物和镍配合物存在O-H、C-H、C-N键的振动吸收峰、金属氮键的吸收峰及羧基的不对称v as(COO-)和对称·v s(COO-)伸缩振动;热重分析发现两个配合物在700℃降解的最终产物为Zn0和NiO。铜配合物红外光谱中存在-NH的振动吸收峰、羧酸基团的特征吸收峰、羧基的不对称振动v as(COO-)和对称振动v s(COO-)吸收峰及金属氮键吸收峰;铜配合物的热重分析发现在700℃,降解的最终产物为Cu0。
     (3)三种配合物对扁藻生长的毒性效应分析发现锌配合物和铜配合物对扁藻生长的毒性效应曲线基本相似,呈现出先促进后抑制的趋势,而镍配合物对扁藻的毒性效应曲线,呈现出先促进后逐渐平稳的趋势,可知镍配合物的毒性相对较小。锌、铜、镍配合物对扁藻生长的96h-ECso分别是24.266、19.187、105.682mg/L,且镍配合物和锌配合物的剂量反应方程符合χ2检验精度要求。通过三种配合物对扁藻的96h-EC50,判断出三种配合物的毒性大小顺序是:铜配合物>锌配合物>镍配合物,因此,选择镍配合物作为食源性传递配合物。镍配合物对马氏珠母贝的急毒试验中,发现随试验时间的延长,镍配合物对育珠贝的毒性效应明显增强,且配合物的浓度越高,死亡率越高。镍配合物对马氏珠母贝48h、72h、96h的ECso分别是78.520mg/L、18.320mg/L和9.441mg/L,结合χ2检验,得出72h和96h急毒试验的剂量反应方程符合精度要求,对应的安全质量浓度分别为0.916mg/L和0.471mg/L。因此,镍配合物的投喂浓度需低于0.471mg/L。
     (4)采用稳定同位素标记示踪结合电感耦合等离子体原子发射光谱分析,发现15N和Ni元素在马氏珠母贝体内的传递顺序:外套膜—珍珠囊—珍珠层,镍配合物以部分或全部组分代谢到珍珠层,其中含氮基团和镍离子在育珠贝体内同步传递,传递后镍配合物的15N和Ni均参与了珍珠层有机质形成。镍配合物传递后,马氏珠母贝体内的碱性磷酸酶活性显著提高,而且与免疫相关的生化指标球蛋白、尿素氮均朝向有利于提升免疫力的方向变化,说明经食源性传递的镍配合物可促进珍珠质的分泌,并能提高马氏珠母贝的免疫力。
     (5)采用CIE标准色度系统计算出镍配合物传递组和对照组珍珠层的色度坐标分别为(0.4661,0.5272)、(0.4245,0.5323),主波长分别为577nm、560nm,对应的主色调分别为黄绿色和黄色,与肉眼观察到的主色调相一致。采用扫描电镜和原子力显微镜对珍珠层的微结构进行了表征,发现镍配合物经食源性传递后,对珍珠层的微结构具有修饰和优化作用,其珍珠层表面结构呈现出层状结构,晶体排列和形貌比较清楚,文石大小均匀、紧密,呈现出规则的六变形。珍珠层傅里叶红外光谱分析表明镍配合物传递后对珍珠层的组成影响不明显,其吸收峰的种类和吸收强度与对照组基本一致,只有一处有机质吸收峰发生小幅度红移。
     (6)珍珠层纵断面经扫描电镜分析,发现其呈现出典型的层状结构,由文石片和有机质层周期性交替排列组成,文石片生长区厚度约为300±35nm,有机质层厚度约为30±5nm,生长区的层数约为20层,符合典型的一维光子晶体结构。采用Translight软件计算珍珠层一维光子晶体结构,设计了三种不同膜层厚度一维结构a、b、c,经软件计算,在Vrml.wrl程序中输出了一维光子晶体的结构模型。该模型的建立,表明Translight软件参数设置和理论计算的正确性。珍珠层一维光子晶体TE端的五条反射率曲线表明,a、b、c三种光子晶体结构在可见光存在一个光子禁带,且发现随着珍珠层层数的增加,一维光子晶体的禁带特征逐渐增强,带隙边缘变陡,带隙特征更加明显,带隙中心发生蓝移。随着层数的增多,珍珠层光子禁带中心发生蓝移现象,珍珠层的颜色会相应的朝向短波颜色变化。本文发现镍配合物传递组珍珠层的反射率峰也发生显著蓝移,而且发现试验组珍珠层纵断面珍珠层层数显著增多,珍珠层的颜色由黄色变为黄绿色,符合上述推测的致色机理。因此,推测食源性传递镍配合物对珍珠层致色机理:经食源性传递的镍配合物提升了育珠贝ALP活性,而ALP活性与珍珠质分泌速度成正比例关系,即镍配合物促进了珍珠质的分泌,导致珍珠层层数增多,使珍珠层光子禁带中心蓝移到黄绿色波段。
The pearls of Pinctada martensii are seawater pearls, mainly produced in the South China Sea and its surrounding waters, which are mainly distributed in Guangdong, Guangxi and Hainan Province. Their colors are mainly white and faint yellow, and those with other natural colors are rare and expensive. Color is an important indicator of measuring pearl's value, which has attracted much attention in studying the mechanism of pearl's color.
     In this study, we explored the coloring mechanism of2-ethyl-4,5-imidazole dicarboxylic acid metal complex to nacre in Pinctada martensii, based on indoor recirculating aquaculture system through the transmission of dietary algae. Firstly, we analyzed culture way, culture density and water quality in indoor recirculating aquaculture system, and determined the optimum conditions for culturing pearl. Secondly, three imidazole carboxylic acid metal complexes were synthetized by the hydrothermal method, namely zinc complex, copper complex and nickel complex, and their structures were characterized respectively. Then we analyzed acute toxicity tests of three complexes to Platymonas subcordiformis, which determined the optimum transmission complex is nickel complex. Acute toxicity tests of nickel complex to pearl oyster determined the feeding concentration range of nickel complex. Thirdly, the transmission process of nickel complex in pearl oyster was studied with nitrogen stable isotope tracer and element analysis. And biochemical indicators of pearl oyster were detected in the transmission process, which is to analyze influence on nickel complex to the growth of pearl oyster. Finally, the color of nacre after nickel-complex transmission was characterized with a CIE standard colorimetric system, microstructure of nacre was observed with SEM and AFM, and the coloring way of metal complex to nacre was determined. We had simulated the photonic crystal structure of nacre with translight software. And according to reflection change of nacre's strucuture, the coloring mechanism of metal complex to nacre was further analyzed. The study will provide a theoretical basis for revealing the coloring mechanism of nacre in Pinctada marlensii and artificial cultivation of high-value color pearl. The primary subjects of which include six parts as follows:
     (1)Based on indoor recirculating aquaculture system (IRAS), the influences of culture way and culture density to the growth and mortality of pearl oyster were studied, and nitrite, ammonia, BOD, COD, pH, Ca2+, salinity and suspended matters, eight indicators of water were analyzed. The results show that the growth rate of pearl oyster is not significant in two kinds of culture way, bottom and hang, but mortality rate is lower in bottom culture, so we choose bottom culture as the optimum culture way. Under low culture density (20,25and30/vat) in IRAS, the growth rate is higher and mortality is lower, so we select30/vat pearl oysters in IRAS. We find salinity, pH and Ca2+in IRAS did not change significantly; BOD, COD and nitrite are small variations; but ammonia and suspended matters may change significantly. In the90d experimental period, the changes of eight indicators are in line with aquaculture water quality standards (GB3097-1997). Therefore, IRAS can replace ciculating water every three months.
     (2)We synthesized three2-ethyl-4,5-imidazole dicarboxylic acid metal complexes with a hydrothermal method, namely zinc, copper and nickel complex, whose structures were characterized with single-crystal diffractometer and elementary analyzer. Zinc complex's chemical structural formula is [Zn (C7H7N2O4)2(H2O)2]·3H2O, belonging to triclinic system and Pi space group. The asymmetric unit consists of a ligand molecule, a central metal Zn(II) ion, a combination of water and a semi-free water molecule. Copper complex's chemical structural formula is [Cu(C7H7N2O4)2]n, belonging to monoclinic system and P21/n space group. Its asymmetric unit consists of a Cu(II) ion and a ligand molecule. Nickel complex's chemical structural formula is [Ni(C7H7N2O4)2(H2O)2]·3H2O, belonging to triclinic system and P1space group. Nickel complex is isomorphic compounds with zinc complex. The asymmetric unit consists of a ligand molecule, a central metal Ni(Ⅱ) ion, a combination of water and a semi-free water molecule. It can be seen through infrared analysis that zinc complex and nickel complex exist four main absorption peaks followed as, O-H, C-H and C-N bond vibration absorption peak, metal-nitrogen bond absorption peak, and asymmetric v as (COO-) and symmetric v s (COO-) stretching vibration of carboxyl group. TGA analysis shows that degradation final products of znic complex and nickel complex at700℃are respectively ZnO and NiO. Copper complex presents N-H bond absorption peak, carboxylic acid group characteristic absorption peak and asymmetric vibration vas (COO-) and symmetric vibrations vs (COO-) peaks of carboxyl group in the infrared spectrum. TGA of copper complex shows the degradation final product is CuO at700℃.
     (3)Acute toxicity effect of algae show that zinc complex and copper complex have a similar curve about growth of algae, presenting the trend of suppressing growing after promoting, but nickel complex's curve showing the trend of gradual stability after promotion, which can be seen nickel complex has a lower toxicity to algae.96h-EC50of zinc, copper and nickel complex to algae are respectively24.266,19.187and105.682mg/L, nickel complex and zinc complex dose-response equation meet χ2test requirements, determining three complexes' toxicity order is copper complex> zinc complex> nickel complex, and choosing nickel complex as transmission matter. Through the acute toxicity test of nickel complex to pearl oyster, it is found that with the increase of nickel complex's concentration and test time, the mortality rate of pearl oyster is significantly increased.48h-EC50,72h-EC50and96h-ECso of nickel complex to pearl oyster are78.520mg/L,18.320mg/L and9.441mg/L, dose-response equation of72h and96h acute toxicity meet χ2test requirements, and corresponding safety concentrations are respectively0.916mg/L and0.471mg/L. Therefore, the feeding concentration of nickel complex must be less than0.471mg/L.
     (4) It is found15N and Ni elements can transmit into the vivo of pearl oyster with stable isotope labeled tracer and inductively coupled plasma atomic emission spectrometry, and metabolic pathway is mantle-pearl sac-nacre, indicating nickel complex transmists into nacre with some or all of the components, nitrogen-containing groups and nickel ions could synchronously transmit in vivo of pearl oyster, and15N and Ni involve the organic-matter formation of nacre. After transmission nickel complex could significantly increase alkaline phosphatase activity, and boost the immune system, indicating nickel complex can promote the secretion of nacre, and improve the immunity of pearl oyster.
     (5)It is calculated the nacre's chromaticity coordinate in nickel complex transmission group and control group are respectively (0.4661,0.5272) and (0.4245,0.5323) with CIE standard colorimetric system, the main wavelengths are577nm,560nm, and the corresponding primary color are yellow-green and yellow, which is consistent with mian color of naked eye observing. Nacre microstructure is characterized with scanning electron microscopy and atomic force microscopy, founding nickel complex could modify and optimize nacre structure, which exhibiting a layered structure, arrangement crystal, more clearly morphology, aragonite in every layer uniform size, tightly and regular six deformation. It is found nacre's composition have no obvious change after transmission with fourier transform infrared spectroscopy, and type and intensity of absorption peaks are almost same with control group, of which only an organic matter absorption peak have a small range red-shift.
     (6)Cross-section of nacre shows a typical layer structure through scanning electron microscopy, consisting of aragonite and organic matter periodically alternately arranged. The thickness of aragonite layer is about300±35nm, the one of organic matter layer is about30±5nm, and layer number is about20, which is in line with a typical one-dimensional photonic crystal structure. One-dimensional photonic crystal structure of nacre is calculated by translight software. We design three one dimensional structures with different film thickness, respectively structure a, b and c, and one-dimensional photonic crystal structure model is output in Vrml.wrl. The model indicates that parameter settings and theoretical calculations of translight software are correct. TE side's five reflectance curves in one-dimensional photonic crystal indicate a, b, and c three photonic crystal structures in the visible presentof a photonic band gap. As the number of layers increase, the intensity of photonic crystal band gap gradually increase, the edge of band gap becomes steeper, the band gap is more obvious, and the center of band gap has a blue-shift. With the number of nacre's layers increasing, its photonic band gap presents blue-shift, and the color of nacre changes toward short-wave color. In the article, we found reflection peak of nacre has a significant blue shift after nickel-complex transmission, the number of nacre's layers significantly increase in SEM image, and nacre color changes from yellow to yellow-green. These results suggest that the mechanism of nacre coloring through nickel-complex dietary transmission:nickel complex can significantly enhance ALP activity in pearl oyster, which has a positive relation with secretion speed of nacre, namely nickel complex can promote the secretion of nacre, resulting in layer number of nacre increasing, and make photonic band gap of nacre shift to yellow-green wave band.
引文
[1]胡威捷,汤顺青,朱止芳.现代颜色友式原理及应用[M].北京:科文图书业信息技术有限公司,2007.
    [2]李乙洲.生物结构色及人工构色研究[D].上海:复旦大学博士学位论文,2005.
    [3]牛顿.光学-关于光的反射、折射、拐射和颜色的论文[M].北京:科学普及出版社,1988.
    [4]Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors [J]. Reports on Progress in Physics,2008,71:076401.
    [5]Vigneron J P, Simonis P. Chapter 5-structural colours [J]. Advances in Insect Physiology,2011,38:181.
    [6]李家义.生物结构色机理及仿生构色研究[D].安徽:中国科学技术大学,2011.
    [7]Parker A R. Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian [J]. Proceedings of the Royal Society Biological Sciences,1998,265(9): 67-72.
    [8]邵起生.动物的体色[J].生物学通报,1995,30(10):11-13.
    [9]Parker A R.515 million years of structural colour [J]. Journal of Optics A:Pure and Applied Optics,2000,2:15-28.
    [10]Mann S. Biomineralization, principles and concepts in bioinorganic materials chemistry [D]. Oxford:Oxford University Press,2001.
    [11]Vukusic P, Sambles J R. Photonic structures in biology [J]. Nature,2003,424: 852.
    [12]Biro L P, Vigneron J P. Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser Photonics Reviews,2011,5(1):27-51.
    [13]Addadi L, Weiner S. A pavement of pearl [J]. Nature,1997,389:912-915.
    [14]Taylor J, Strack E. Pearl production [M]. In The Pearl Oyster. Southgate P C, Lucas J S, Eds. Elsevier:Amsterdam, the Netherlands,2008,273-302.
    [15]辛承梁,辛海.宝石选购与鉴赏[M].北京:中国金融出版社,1994,89.
    [16]张庆麟,翁臻培.名贵珠宝投资收藏手册[M].上海:上海科学技术出版社,2004,225-226.
    [17]潘炳炎,黄文贵,文仲芬.珍珠实用新技术[M].北京:中国农业科技出版社,1997.
    [18]潘炳炎,文仲芬.珍珠的优化处理(二)[J].珠宝科技,1996,8(2):46-48.
    [19]史凌云,郭守国,杨明月.珍珠染色技术的研究[J].珠宝科技,2003,15(1):58-60.
    [20]吴广州.高性能化学染色珍珠的制备及其纳米改性研究[D].浙江:浙江大学硕士学位论文,2006.
    [21]吴广州,王慧,翁文剑,等.淡水养殖珍珠的化学染色及其对珍珠表面形貌的影响[J].宝石与宝石学,2004,8(2):9-13.
    [22]王慧.醌亚胺中间体黑色染色珍珠的制备及化学染色珍珠抗外界侵蚀的研究[D].浙江:浙江大学硕士学位论文,2007.
    [23]Wada K T, Jerry D R. Population genetics and stock improvement [M]. In: Southgate, P C, Eds. Lucas, J S, The Pearl Oyster. Elsevier, Amsterdam,2008, 437-464.
    [24]Mario M. Recent Developments in pearl oyster culture and pearl production at Bahia de la Paz. Mexico[J]. Pearl Oyster. Information Bulletin,1997,10:22-23.
    [25]毛勇,梁飞龙,符韶,等.企鹅珍珠贝彩虹珠的研究初报[J].动物学杂志,2004,39(1):100-102.
    [26]Wada K T. The pearls produced from the group of pearl oysters selected for color of nacre in shell for two generations[J]. Bulletin of National Research Institute of Aquaculture. (Fishery Agency of Japan),1985,7:1-7.
    [27]Wada K T, Komam A. Inheritance of white coloration of the prismatic layer of shells in the Japanese pearl oyster Pinctadafucada martensii and its importance in the pearl culture industry[J]. Bulletin of the Japanese Society of Scientific Fisheries,1990, 56:1787-1790.
    [28]Wada K T, Komaru A. Color and weight of pearls produced by grafting the mantle tissue from a selected population for white shell color of the Japanese pearl oyster Pinctada fucata martensii (Dunker) [J]. Aquaculture,1996,142,25-32.
    [29]Erin L M, Brad S E, Joseph U U T, Dean R J. Xenografts and pearl production in two pearl oyster species, P. maxima and P.margaritifera. Effect on pearl quality and a key to understanding genetic contribution [J]. Aquaculture,2010,302:175-181.
    [30]陆东农.海水养殖珍珠新品种一海水养殖彩色珍珠[J].珠宝科技,2004,16(58):55-57.
    [31]Wang Ning, Shigeharu Kinoshita, Naoko Nomura, et al. The mining of pearl formation genes in pearl oyster Pinctadafucata by cDNA suppression subtractive hybridization[J]. Marine Biotechnology,2012,14(2):177-188.
    [32]张蕴韬.卟啉及金属卟啉对珍珠颜色的贡献及致色机理研究[D].北京:中国地质大学,2006.
    [33]李雪英,王海增,孙省利,等.不同颜色珍珠傅里叶变换红外光谱和石墨炉原子吸收光谱分析[J].宝石和宝石学杂志,2007,9(1):15-18.
    [34]Lanbert G. Trace element composition in pearls [D]. Western Australia:Murdoch University,1998.
    [35]马红绝.养殖珍珠质量内在控制因素及优化处理研究[D].湖南:中南工业大学博士论文,1999.
    [36]杨明月,郭守国,史凌云,等.淡水养殖珍珠的化学成分与呈色机理研究[J].宝石和宝石学杂志,2004,6(2):10-13.
    [37]李立平,颜慰首.养殖珍珠的结构特征及其与珍珠色泽的关系[J].中国宝石,1998,4:68-70.
    [38]张刚生,谢先德,王英.我国主要育珠贝《蚌》贝壳珍珠层及珍珠的激光拉曼光谱研究[J].光谱学与光谱分析,2001,21(2):193-196.
    [39]Shigeru A K. Research on pigment produced by pearl oysters[C]. Proceedings of the international gemo logical sympo sium,1991:77.
    [40]Elen S. Spectral reflectance and fluorescence characteristics of natural-color and heat-treated "golden" South Seas cultured pearls [J]. Gems and Gemology,2001,37, 114-123.
    [41]何雪梅,吕林素,张蕴韬.珍珠中的金属卟啉及其致色机理探讨[J].矿物岩石地球化学通报,2007,26:96-98.
    [42]王惊涛,梁金龙,彭明生.珍珠颜色的优化处理[J].矿物岩石地球化学通报,1999,18(4):407-409.
    [43]张元培.韩德举.名优珍珠养殖及饰品加工[M].北京:中国农业出版社.1996.
    [44]Miyoshi T, Matsuda Y, Komatsu H. Fluorescence from pearl to distinguish mother oysters used in pearl culture[J]. Japanese Journal of Applied Physics,1987,26(4): 578-581.
    [45]Kennedy S J. The Hope pearl[J]. Journal of Gemmology,1994,24(4):235-239.
    [46]张刚生.谢先德,王英.三角帆蚌贝壳珍珠层中类胡萝卜素的激光拉曼光谱研究[J].矿物学报,2001,21(3):389-392.
    [47]张刚生.珍珠层的微结构及其中类胡萝卜素的原位研究[D].广州:中国科学院广州地球化学研究所,2001.
    [48]Urmos J, Sharma S K, Mackenzie F T. Characterization of some biogenic carbonates with raman spectroscopy[J]. American Mineralogist,1991,76:641-646.
    [49]Merlin J C, Dele-Dubois M L. Resonance raman characterization of polyacetylenic pigmments in the calcareous skeleton[J]. Comparative Biochemistry and Physiology,1986,84(1) 97-103.
    [50]Cusack M, Curry G, Clegg H, et al. An inreacrytalline chromoprotein from red brachiopod Shell:implications for the process of biomineralization[J]. Comparative Biochemistry and Physiology Part B,1992,102(1):93-95.
    [51]Akamatsu S, Komatsu H, Koizumi C, et al. Comparison of sugar compositions of yellow and white pearls[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1977,43:773-777.
    [52]Suzuki M, Saruwatari K, Kogure T, et al. An acidic matrix protein, pif, is a key macromolecule for nacre formation [J]. Science,2009,325,1388.
    [53]秦作路,马红艳,木十春,等.优质淡水珍珠的体色及其与拉曼光谱的关系[J].矿物学报,2007,27(1):73-76.
    [54]Snow M R., Pring A., Self P G, et al. The origin of the color of pearls in iridescence from nano-composite structures of the nacre [J]. American Mineralogist, 2004,89:1353-1358.
    [55]张伟钢,汪港,严俊,等.珍珠层独特的反射光谱特征及其成因[J].光谱学与光谱分析,2009,29(5):1186-1188.
    [56]Raman C V. On iridescent shells-Part Ⅱ. Colours of laminar diffraction[J]. Proceedings of Indian Academy of Sciences-A,1934,1:574-589.
    [57]Towe K M, Harper C W. Pholidostrophiid brachipods:origin of the nacreous luster [J]. Science, New Series,1966,154(3745):153-155.
    [58]Liu Y, Shigley J E, Hurwit K N. Iridescence color of a shell of the mollusk Pinctada margaritifera caused by diffraction[J]. Optics Express,1999,4(5):177-182.
    [59]Liu Y, Hurwit K N, Shigley J E. Iridescence of a shell of the abalone Haliolis rufescens caused by diffraction [J]. The Journal of Gemmology,2002,28(1):1-5.
    [60]Brink D J, Berg N G, Botha A J. Iridescent colors on seashell:an optical and structural investigation of Helcionpruinosus[J]. Applied Optics,2002,41(4):717-722.
    [61]Zi J, Yu X, Li Y, et al. Coloration strategies in peacock feathers[J]. Proceedings of the National Academy of Science,2003,100:12576-12578.
    [62]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters,1987,58:2059.
    [63]John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters,1987,58:2486.
    [64]Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals:Molding the Flow of Light [M]. Princeton:Princeton University Press,1995.
    [65]Soukoulis C M. Photonic Band Gaps Materials [C]. Dordrecht:Plenum Press, 1996.
    [66]Soukoulis C M. Photonic Band Gaps and Localization[C]. New York:Plenum Press,1993.
    [67]Vigneron J P, Colomer J F, Vigneron N, Lousse V. Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera)[J]. Physical Review E,2005,722005:061904.
    [68]韩志武,邬立岩,邱兆美,任露泉.紫斑环蝶鳞片的微结构及其结构色[J].科学通报,2008,53(22):2692-2696.
    [69]Whitney H M, Kolle M, Andrew P, et al. Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators[J]. Science,2009,323:130.
    [70]Vigonlini S, Rudall P J, Rowland A V, et al. Pointillist structural color in Pollia fruit[J]. Proceedings of the National Academy of Science,2012,109(39): 15712-15715.
    [71]Xu J, Guo Z G. Biomimetic photonic materials with tunable structural colors[J]. Journal of Colloid and Interface Science,2013,406:1-17.
    [72]Welch V L. Structural colouration in Jellyfish, Fish and Ctenophores[D]. Oxford: Thesis submitted for the degree of Doctor, University of Oxford,2005.
    [73]Welch V, Vigeron J P, Lousse V, et al. Optical properties of the iridescent organ of the comb-jellyfish Beroe cucumis (Ctenophora)[J]. Physical Review E,2006,73: 041916.
    [74]Srinivasarao M. Nano-optics in the biological world:Beetles, butterflies, birds, and moths[J]. Chemical Reviews,1999,99:1935.
    [75]Stavenga D G, Foletti S, Palasantzas G, et al. Light on the moth-eye corneal nipple array of butterflies[J]. Proceedings of the Royal Society B,2006,273:661.
    [76]Parker A, Townley H E. Biomimetics of photonic nanostructures[J]. Nature Nanotechnology,2007,2:347-353.
    [77]Watson G S, Watson J A. Natural nano-structures on insects-Possible functions of ordered arrays characterized by atomic force microscopy[J]. Applied Surface Science, 2004,235:139.
    [78]Vigneron J P, Rassart M, Vertesy Z, et al. Optical structure and function of the white filamentary hair covering the edelweiss bracts[J] Physical Review E,2005,71: 011906
    [79]Vigeron J P, Ouedraogo M, Colomer J F, et al. Spectral sideband produced by a hemispherical concave multilayer on the African shield-bug Calidea panaethiopica (Scutelleridae). Physical Review E,2009,79:021907.
    [80]Berthier S, Boulenguez J, Balint Z. Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects:application to anti-counterfeiting of banknotes[J]. Applied Physics A,2007,86:123.
    [81]F Liu, H Yin, B Dong, et al. Inconspicuous structural coloration in the elytra of beetles Chlorophila obscuripennis (Coleoptera)[J]. Physical Review E,2008,77(1): 012901.
    [82]Bir6L P, Kertesz K, Vertesy Z, et al. Living photonic crystals:butterfly scales-nanostructure and optical properties[J]. Materials science and engineering C,2007,27: 941.
    [83]Biro L P, Balint Zs, Kertesz K, et al. Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair[J]. Physical Review E,2003,-67,021907.
    [84]Wilts B D, Leertouwer H L, Stavenga D G. Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers[J]. Journal of the Royal Society Interface,2009,6(Suppl 2):S185.
    [85]Vertesy Z, Balint Z s, Kertesz K, et al. Wing scale microstructures and nanostructures in butterflies--natural photonic crystals[J]. Journal of Microscopy, 2006,224:108.
    [86]Piszter G, Kertesz K, Veetesy Z, et al. Color based discrimination of chitin-air nano composites in butterfly scales and their role in conspecific recognition [J]. Analytical Methods,2011,3:78.
    [87]Busch K, Lolkes S, Wherspohn R B, et al. Photonic crystals-advance in design, frication, and characterisation[M]. Germany:Die Deutsche Bibliothek,2004.
    [88]Johnson S G, Joannopoulos J D. Designing synthetic optical media:photonic crystals[J]. Acta Materialia,2003,51:5823-5835.
    [89]Welch V, Lousse V, Deparis O, et al. Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae)[J]. Physical Review E,2007,75:041919.
    [90]Shi L, H W Yin, R Y Zhang, X H Liu, J Zi, D Y Zhao, Macroporous oxide structures with short-range order and bright structural coloration:a replication from parrot feather barbs[J]. Journal of Materials Chemistry,2010,20:90.
    [91]Biener B J, Nyce G W, Hodge A M, et al. Nanoporous plasmonic metamaterials[J]. Advanced Materials,2008,20:1211.
    [92]Garin M, Trifonov T, Rodriguez A, et al. Optical properties of 3D macroporous silicon structures[J]. Materials Science and Engineering B,2008,149:275.
    [93]Ramiro-Manzano F, Atienzar P, Rodriguez I, et al. Apollony photonic sponge based photoelectrochemical solar cells[J]. Chemical Communications,2007,3:242.
    [94]Liu Y X, Dai H X, Deng J G, et al. Three-dimensional ordered macroporous bismuth vanadates:PMMA-templating fabrication and excellent visible-light-driven photocatalytic performance for phenol degradation[J]. Nanoscale,2012,4: 2317-2325.
    [95]李勃,周济,李龙土等.鲍鱼壳中的一维光子带隙结构[J].科学通报,2005,50(13):1422-1424.
    [96]李青梅,黄增琼,张刚生.翡翠贻贝珍珠层的光子彩虹色表征及理论模拟[J].光学学报,2012,32(7):0730001.
    [97]李青梅.珍珠层的新结构模型及其光子彩虹色成因[D].广西:广西大学,2012.
    [98]Hedegaard C, Bardeau J F, Chateigner D. Molluscan Shell Pigments:An In Situ Resonance Raman Study[J]. Journal of Molluscan Studies,2006,2:157-162.
    [99]Ji L L, Liu J S, Song W D, et al. Effects of Dietary Europium Complex and Europium(Ⅲ) on Cultured Pearl Color in the Pearl Oyster Pinctada Martensii[J]. Aquaculture Research.2012,44(8):1300-1306.
    [100]Obethaven K J, Riehardson J P, Bvehanan R M. et al. Synthesis and characterization of binuclear copper complexes of the binuclearing ligand 2, 6-bis[(bis((1-methy limidazole-2-yl) methyl) amino) methyl]-4-methylphenol [J]. Inorganic Chemistry,1990,30,1357.
    [101]Jin Z, Li Z, Huang R. Muscarine, imidazole, oxazole, thiazole, amaryllidaceae and sceletium alkaloids [J]. Natural Product Reports,2002,19,454.
    [102]Lewis J R. Amaryllidaceae, sceletium, imidazole, oxazole, thiazole. peptide and miscellaneous alkaloids [J]. Natural Product Reports,2002,19,223.
    [103]Piedrahita R H. Reducing t he potential environmental impact of tank aquaculture effluent s through intensification and recirculation [J].Aquaculture,2003, 226:35-45.
    [104]Brixh. How "green" are aquaculture, constructed wetlands and conventional wastewater treatment systems[J]. Water Science Technology,1999,40(3):43-50.
    [105]宋志文,王玮,赵丙辰,等.海水养殖废水的生物处理技术研究进展[J].青岛理工大学学报,2006,27:13-16.
    [106]刘鹰.欧洲循环水养殖技术综述[J].渔业现代化,2006,6:47-49.
    [107]陈军,徐皓,倪琪,等.我国工厂化循环水养殖发展研究报告[J].渔业现代化,36(4):1-7.
    [108]Lefevre G, Curtis W C. Experiments in the artificial propagation of freshwater mussels[J]. U.S. Bureau of Fisheries Bulletin,1910,28:615-626.
    [109]Coker R E, Shira A F, Clark H W, et al. Natural history and propagation of freshwater mussels[J]. U.S. Bureau of Fisheries Bulletin,1921,37:76-181.
    [110]Layzer J B, Madison L M, Khym J R, Quinn R D. Developing technology for long-term holding of mussels in captivity[J].1998 Annual Report to the U.S. Fish and Wildlife Service, Asheville, North Carolina,1999.
    [111]O'Beirn F X, Neves R J, Steg M B. Survival and growth of juvenile freshwater mussels (Unionidae) in a recirculating aquaculture system[J]. American Malacological Bulletin,1998,14:165-171.
    [112]Willian F H, Lora L Z, Richard J N. Design and evaluation of recirculating water systems for maintenance and propagation of freshwater mussels[J]. North American Journal of Aquaculture,2001,63:144-155.
    [113]Kovitvadhi S, Kovitvadhi U, Sawangwong P, et al. Optimization of diet and culture environment for larvae and juvenile freshwater pearl mussels, Hyriopsis (Limnoscapha) myersiana Lea[J]. Invertebrate Reproduction and Development,2006, 49:61-70.
    [114]Kovitvadhi S, Kovitvadhi U, Sawangwong P, et al. A laboratory-scale recirculating aquaculture system for juveniles of freshwater pearl mussel Hyriopsis (Limnoscapha) myersiana (Lea,1856)[J]. Aquaculture,2008,275,169-177.
    [115]Wang N, Christopher G I, Hardesty D K, et al. Acute toxicity of copper, ammonia, and chlorine to glochidia and juveniles of freshwater mussels (Unionidae). Environmental Toxicology and Chemistry,2007,26,2036-2047.
    [116]符世伟.马氏珠母贝生长模型研究与数量性状遗传力估计[D].湛江:广东海洋大学,2008.
    [117]Faulkner D J. Highlghts of marine natural produets chemistry[J]. Natural Product Reports,2000,17(1):1-6.
    [118]Dugas H. Bioorganic Chemisty,3rd Edition[M]. New York:Springer-Verlag, 1996.
    [119]大木道则,金岗佑一,吉田善一,安守忠译.含氮有机化合物概论[M].北京:科学出版社,1983,87-91.
    [120]Jin Z, Li Z, Huang R. Muscarine, imidazole, oxazole, thiazole, amaryllidaceae and sceletium alkaloids[J]. Natural Product Reports,2002,19:454.
    [121]Al-Said N H, Lown J W. Synthesis of novel cross-linked bis-lexitropsins[J]. Tetrahedron Letters,1994,35(41):7577-7580.
    [122]Ho J Z, Hohareb R M, Ahn J H, et al. Enantiospecific synthesis of carbapentostat ins[J]. Journal of Organic Chemistry,2003,68(1):109-114.
    [123]李世杰.三种羧酸系列金属配合物的合成及活性研究[D].湛江:广东海洋大学,2011.
    [124]王浩.苯并咪唑-5,6-二羧酸系列金属配合物的合成及抑菌活性研究[D].湛江:广东海洋大学,2010.
    [125]颜建斌.2-丙基-4,5-咪唑二甲酸金属配合物的合成、表征及生物活性研究[D].湛江:广东海洋大学,2010.
    [126]Alkordi M H, Brant J A, Wojtas L, et al. Zeolite-like metal-organic frameworks (ZMOFs) based on the directed assembly of finite metal-organic cubes (MOCs) [J]. Journal of the American Chemical Society,2009,131:17753-17755.
    [127]Maji T K, Mostafa G, Chang H. et al. Porous Lanthanide-Organic Framework with Zeolite like Topology [J]. Chemical Communications,2005,2436.
    [128]Sun Y Q, Yang G Y. Organic-inorganic hybrid materials constructed from inorganic lanthanide sulfate skeletons and organic 4,5-imidazoledicarboxylic acid [J]. Journal of the American Chemical Society,2007,3771-3781.
    [129]Sun Y Q, Zhang J, Yang G Y. A series of luminescent lanthanide-cadmium-organic frameworks with helical channels and tubes[J]. Chemical Communications,2006,45:4700-4702.
    [130]Li C J, Hu S. Li W. Rational design and control of the dimensions of channels in three-dimensional, porous metal-organic frameworks constructed with predesigned hexagonal layers and pillars[J]. European Journal of Inorganic Chemistry,2006,10: 1931-1935.
    [131]Lu W G, Gu J Z, et al. Achiral and Chiral Coordination Polymers Containing Helical Chains:The Chirality Transfer Between Helical Chains[J].Crystal Growth and Design,2008,8:192-199.
    [132]Lu W G, Jiang L, Feng X L, et al. Three 3D coordination polymers constructed by Cd(Ⅱ) and Zn(Ⅱ) with imidazole-4.5-dicarboxylate and 4,4'-bipyridyl building blocks[J].Crystal Growth and Design,2006,6:564-571.
    [133]Zou R Q, Jiang L, Senoh H, et al. Rational assembly of a 3D metal-organic framework for gas adsorption with predesigned cubic building blocks and 1D open channels[J]. Chemical Communications,2005,3526-3528.
    [134]Cheng A L, Liu N, Zhang J Y, et al. Assembling the Cage-Based Metal-Organic Network from a Cubic Metalloligand[J]. Inorganic Chemistry,2007,46:1034-1035.
    [135]Gu J Z, Lu W G, Jiang L, et al.3D Porous Metal-Organic Framework Exhibiting Selective Adsorption of Water over Organic Solvents[J]. Inorganic Chemistry,2007,46:5835-5837.
    [136]Applebury M L, Coleman T E. E.eoli alkaline phosphatase metal binding, protein conformation and quaternary structure[J]. Journal of Biological Chemistry, 1969,244:308-318.
    [137]郝之奎,王嫣,顾志峰,等.珍珠颜色的研究进展[J].安徽农业科学,2007,35(11):3260-3261.
    [138]刘娟花.室内封闭育珠系统中镍配合物对珍珠的形成及微结构的影响[D].湛江:广东海洋大学,2012.
    [139]Fisher N S. Accumulation of metals by marine micoplank- ton [J]. Marine Biology,1985,87:1137-1142.
    [140]Sicko-Goad L. A morphometric analysis of algal response to low dose, short-term heavy metal exposure [J]. Protoplasma,1982,110(2):75-86.
    [141]南京农业大学.田间实验和统计方法[M].北京:农业出版社,1990,91-100.
    [142]徐恒振,马永安,尚龙生,等.溢油指示物(或指标)的HPLC模糊最大矩阵元研究[J].海洋环境科学,2000,19(1):11-14.
    [143]李昊翔.螺旋藻对重金属的耐受性和吸附研究[D].浙江:浙江大学,2005.
    [144]Maria B, Dorism, Eckhard L. Cell wall cornposition of chlorococ-cal algae[J]. Phytochem istry,1983,22(7):1603-1604.
    [145]Gsrdea-Toerrsdey J L, Becker-Hapak M K, Hosea J M, et al. Effect of chemical modification of algal carboxyl groups on metal ion binding[J]. Enviornmental Science and Technology,1990,24:1372-1378.
    [146]Nuhoglu Y, Malkoc E, Gurses A. The removal of Cu(Π) from aqueous solutions by ulothrix zonata[J]. Bioresource technology,2002,85:331-333.
    [147]Slverberg B A. Cadmium-induced ultrastructural changes in mitochondria of freshwater green algae[J]. Phycologia,1976,15:155-160.
    [148]张志杰,张维平.环境污染生物监测与评价[M].北京:中国环境科学出版社,1991:69.
    [149]Layman C A, Araujo M S, Boucek R, et al. Applying stable isotopes to examine food-web structure:an overview of analytical tools[J]. Biological Reviews,2012, 87(3):545-562.
    [150]Sandberg P A, Loudon J E, Sponheimer M. Stable isotope analysis in primatology:a critical review[J]. American Journal of Primatology,2012,74(11): 1098-2345.
    [151]Schellekens R C A, Stellaard F, Woerdenbag H J, et al. Applications of stable isotopes in clinical pharmacology[J]. British Journal of Clinical Pharmacology,2011, 72(6):879-897.
    [152]曾庆飞,孔繁翔,张恩楼,等.稳定同位素技术应用于水域食物网的方法学研究进展[J].湖泊科学,2008,20(1):13-20.
    [153]古滨河.生态系统生态学研究中的稳定同位素标记技术[J].现代生态学讲座(三):学科进展与热点论题,2006.
    [154]Peterson B J, Fry B. Stable isotopes in ecosystem studies[J]. Annual Review of Ecology and Systematics,1987,18:293-320.
    [155]Nadelhoffer KJ, Fry B. Nitrogen isotope studies in forest ecosystems[M]. In: Stable Isotopes in Ecology and Environmental Science (Eds Lajtha K, Michener R M), Oxford:Blackwell Scientific Publishers,1994,22-44.
    [156]DeNiro M J, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis[J]. Science,1978,197:261-263.
    [157]Minagawa M, Wada E. Stepwise enrichment of 15N along food chains:further evidence and the relation between 15N and animal age[J]. Geochimica et Cosmochimica Acta,1984,48(5):1135-1140.
    [158]DeNiro M J, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals[J]. Geochimica et Cosmochimica Acta,1981,45(3):341-351.
    [159]Haines E B, Montague C L. Food sources of estuarine invertebrates analyzed using13C/12C ratios[J]. Ecology,1979,60(1):48-56.
    [160]McConnaughey T, Mcroy C P. Food web structure and the fraction of carbon isotope in the Bering Sea[J]. Marine Biology,1979,53(2):257-262. [161]Vender Zanden M J, Joseph B R. Variation in the δ15N and δ13C trophic fractionation:Implications for aquatic food web studies[J]. Limnology and Oceanography,2001.46(8):2061-2066.
    [162]McCutchan Jr J H, Lewis V M, Kendall C. et al. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur[J]. Oikos,2003.102(2):378-390.
    [163]Harrigan P H, Zieman J C, Macko S A. The base of nutrition support for the gray snapper:an evaluation based on a combined stomach content and stable isotope analysis[J]. Bulletin of Marine Science,1989,44(1):65-77.
    [164]Whitledge G W, Rabeni C F. Energy sources and ecological role of crayfishes in an Ozark stream:insights from stable isotopes and gut analysis[J]. Canadian Journal of Fisheries and Aquatic Sciences,1997,54(11):2555-2563.
    [165]Herwig B R, Herwig D A, Soluk J M D, et al. Trophic structure and energy flow in backwater lakes of two large floodplain rivers assessed using stable isotopes[J]. Canadian Journal of Fisheries and Aquatic Sciences,2003,61(1):12-22.
    [166]Connolly R M. Differences in trophodynamics of commercially important fish between artificial waterways and natural coastal wetlands[J]. Estuarine Coastal and Shelf Science,2003,58(4):929-936.
    [167]Gaines E F G, Ruth H C, Sara P G, et al. Stable isotopic evidence for changing nutrition sources of juvenile horseshoe crabs[J]. Biology Bulletin,2002,203(2): 228-230.
    [168]Stephen E M, Stephen A M, Greg C G. Isotope turnover in aquatic predators: quantifying the exploitation of migratory prey[J]. Canadian Journal of Fisheries and Aquatic Sciences,2000,58(5):923-932.
    [169]李忠义,金显仕,庄志猛,等,稳定同位素技术在水域生态系统研究中的应用[J].生态学报,2005,25(11):3052-3060.
    [170]纪丽丽.基于钻配合物干预下的马氏珠母贝优质培育过程研究[D].湛江:广东海洋大学,2010.
    [171]宋慧春.关于淡水无核珍珠的形成机理和生化特性[J].生物学通报,1999,389:912-915.
    [172]Addadi L, Weiner S A. Pavement of pearl[J]. Nature,1997,389:912-915.
    [173]张勇,肖锐,凌立,等.珍珠质水溶性基质蛋白的分离纯化及其对碳酸钙结晶的影响[J].海洋科学,2004,28(1):33-37.
    [174]Bass L E. Influence of temperature and salinity on oxygen consumption of tissues in the American oyster(Crassostrea virginica)[J]. Comparative and Biochemical Physiology,1977,58:125-130.
    [175]Lan W G, Wong M K, Chen N, et al. Effect of combined copper, zinc, chromium and selenium by orthogonal array design on alkaline phosphatase activity in liver of the red sea bream, Chrysophrys major[J].Aquaculture,1995,131:219-230.
    [176]Lohner T W, Reash R J, Williams M. Assessment of tolerant sunfish populations(Lepomis sp.) inhabiting selenium laden coal ash effluents tissue biochemistry evaluation[J]. Ecotoxicology and Environmental Safety,2001,50: 217-224.
    [177]张洪渊,刘克武,龚由彬,等.金属离子和脲对背角无齿蚌碱性磷酸酶的影响[J].四川大学学报(自然科学版),1996,33(1):100-105.
    [178]周玉,郭文场,杨振国,等.鱼类血液学指标研究的进展[J].上海水产大学学报,2001,(2):163-165.
    [179]Xiao R, Xie L P, Lin J Y, et al. Purification and enzymatic characterization of alkaline phosphatase from Pinctada fucatc[J]. Journal of Molecular Catalysis B: Enzymatic,2002,17(2):65-74.
    [180]Malmlof K. Amino acid in farm animal nutrition metabolism, partition and consequences of imbalance [J]. Swedish Journal of Agricultural Research,1988,18(4): 191-193.
    [181]张勇,肖锐,凌立,等.珍珠质水溶性基质蛋白的分离纯化及其对碳酸钙结晶的影响[J].海洋科学,2004,28(1):33-37.
    [182]彭文世,刘高魁.方解石族与文石族矿物振动光谱的因子群分析[J].矿物学报,1983,(3):169-174.
    [183]Parker A R, Martini N. Structural colour in animals-simple to complex optics[J]. Optics and Laser Technology,2006,38:315-322.
    [184]Parker A R, McPhedran R C, McKenzie D R, et al. Photonic engineering. Aphrodite's iridescence[J]. Nature,2001,409:36-37.
    [185]Argyros A, Manos S, Large M C J, et al. Electron omography and computer visualization of a three-dimensional 'photonic' crystal in a butterfly wing-scale pergamon[J]. Micron,2002,33:483-487.
    [186]Fink Y, Winn J N, Fan S, et al. Omnidirectional reflection from a one 2 dimentional photonic crystal[J]. Optics Letters,1998,23:1573-1575.
    [187]Sharkway A, Shi S. Prather D W. Multichannel wavelength division multiplexing with photonic crystals[J]. Applied Optics,2001,40(14):2247-2252.
    [188]Cumpston B H, Ananthauel S P, Barlow S. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature,1999,398: 51.
    [189]张刚生.大珠母贝韧带中的光子品体型结构[J].科学通报,2007,52(2):240-242.
    [190]张刚生,冯庆玲.青蛤贝壳韧带的结构色及微结构[J].矿物岩石,2006,26(3):1-5.
    [191]邱兆美.蝴蝶鳞片微观耦合结构及其光学性能与仿生研究[D].吉林:吉林大学,2008.
    [192]宋清海,徐雷.光子品体的原理与应用[J].物理实验,2004,24(6):3-7.
    [193]Lee D W. Ultrastructural basis and function of iridescent blue color of fruits in Elaeocarpus[J]. Nature,1991,349:260-262.
    [194]Parker A R, Welch V L, Driver D, et al. Structural colour-opal analogue discovered in a weevil[J]. Nature,2003,426:786-787.
    [195]Rayleigh L. Studies of iridescent colour and the structure producing it Ⅱ. Mother of pearl [J]. Royal Society of London Proceedings A,1923,102(729):674-677.
    [196]Brink D J, Berg N Q, Prinsloo L C, et al. Unusual coloration in scarabaeid beetles [J]. Journal of Physics D:Applied Physics,2007,40(7):2189-2196.
    [197]李立平,张军利.鲍贝壳的宝石学特征及其晕彩成因分析[J].宝石和宝石学杂志,2001,3(2):1-5.
    [198]Tan T L, Wong D, Lee P. Iridescence of a shell of mollusk Haliotis glabra [J]. Optics Express,2004,12(20):4847-4854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700