小尾寒羊、滩羊群体遗传分化水平的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用中心产区典型群随机抽样方法和多种电泳技术检测60只小尾寒羊、73只滩羊编码血液蛋白17个结构基因座上的变异,引用国内外14个绵羊群体相同资料进行比较分析,探讨其遗传分化关系。研究表明:(1)小尾寒羊、滩羊结构基因座平均杂合度分别为0.2360和0.2587:平均多态信息含量分别为0.1974、0.2102;平均有效等位基因数分别为1.5723和1.5751。(2)4个组合(分别为4个、6个、13个及16个绵羊群体)的基因分化系数分别为0.049323、0.059987、0.1728和0.201256,说明湖羊、同羊、小尾寒羊和滩羊4个绵羊群体结构基因座的基因分化程度低;这4种绵羊与蒙古羊群体间基因分化程度次之;蒙古羊系绵羊和南亚羊及欧洲羊之间遗传分化程度较高。(3)前人关于小尾寒羊、滩羊由蒙古羊分化而来的考证得到遗传学实验的进一步证明,湖羊、同羊、小尾寒羊和滩羊受蒙古羊血统的影响递减。群体间亲缘关系远近与其所处地理位置远近并未表现出紧密相关。
     以小尾寒羊、滩羊为材料,检测7个微卫星位点的遗传多态性,并引用湖羊、同羊及长江三角洲白山羊(参照群体)相同资料进行群体遗传分化水平分析。研究表明:(1)小尾寒羊、滩羊7个微卫星位点平均杂合度分别为0.9336和0.9116;多态信息含量与杂合度平行变化:平均有效等位基因数分别为16.4532和11.6884,表明小尾寒羊在非编码区的遗传变异程度高于滩羊。(2)4个绵羊群体7个微卫星位点基因分化系数为0.026329,绵山羊群体则为0.039036,表明绵羊群体间及绵山羊群体间基因分化程度较低。(3)7个微卫星标记分析表明湖羊和同羊、滩羊和小
    
    尾寒羊亲缘关系较近,后者关系需要进一步研究。(4)相对进化距离(RED)可定义
    为:1与同物种群体间模糊聚类置信水平值(入n)的差值和1与近缘物种参考群体、
    同物种总群体模糊聚类置信水平值(人)的差值之比值。湖羊和同羊的相对进化距离
    为0.253:小尾寒羊和滩羊的相对进化距离为0.407;湖羊、同羊和小尾寒羊、滩
    羊的相对进化距离为0.462。
     以中心产区典型群随机抽样方法获得的小尾寒羊、滩羊、湖羊与同羊13个结
    构基因座、7个微卫星位点基因频率分布为研究对象,进行比较分析,尝试探讨群
    体间遗传分化关系。结果表明:(l)微卫星各位点的杂合度、多态信息含量、有效
    等位基因数及其平均值均高于结构基因座的相应指标,微卫星标记揭示的群体变
    异水平较高:基于微卫星标记的群体间标准遗传距离高于结构基因座的相应值;
    微曰己位点雄因频率资料计算的总位点基因分化系数低于结构基因座的相应指
    标,1洋体间基因分化水平总体上较低;两层次基因频率模糊聚类分析揭示的群体
    间关系不完全一致,相异之处有待进一步验证。(2)结构基因座和微卫星位点两层
    次基因频率资料的综合分析得出的结果没有与既有研究报道、文献一记载及本研究
    单层次基因频率资料分析相吻合,需要进一步深入研究探讨。
Using the method of " random sampling in typical colonies of the central area of the habitat " and several electrophoresis techniques, the variations of 17 structural loci encoding blood proteins in 60 Small Tailed Han sheep and 73 Tan sheep were examined and compared with those of 14 other sheep populations in China and other countries to explore their relations of genetic differentiation. The average heterozygosities (h) of Small Tailed Han sheep and Tan sheep were 0.2360 and 0.2587, respectively. Their average polymorphic information contents (PIC) were separately 0.1974 and 0.2102. Their average effective number of alleles (Ne) valued 1.5723 and 1.5751 each. The coefficients of gene differentiation of four groups (including 4, 6, 13, 16 sheep populations, respectively) were 0.049323, 0.059987, 0.1728 and 0.201256, respectively, which indicated that the level of gene differentiation at the structural loci among Hu sheep, Tong sheep, Small Tailed Han sheep and Tan sheep was low, the level of gene different
    iation among above-mentioned four sheep populations and Mongolian sheep higher, and the level of gene differentiation among sheep belonging to Mongolian sheep group, South Asian sheep and European sheep highest. Earlier researchers proposed that Small Tailed Han sheep and Tan sheep both evolved from Mongolian sheep, the proposition was further verified by the results in this study. Hu sheep, Tong sheep, Small Tailed Han sheep and Tan sheep were decreasingly affected by the bloodline of Mongolian sheep. The relationships between sheep populations were not closely related to the distances between sheep populations.
    
    
    Using seven microsatellite markers, we examined the genetic variations of Small Tailed Han sheep and Tan sheep and estimated their gene frequencies. The same data of Hu sheep, Tong sheep and Yangtse River Delta White goat, which served as the referenced population, were cited to further explore their levels of genetic differentiation. The mean heterozygosities of Small Tailed Han sheep and Tan sheep were 0.9336 and 0.9116, respectively. The polymorphic information content values were parallel to the heterozygosities. The mean effective number of alleles valued 16.4532 and 11.6884, respectively. The values of these three parameters showed the degree of genetic variation in Small Tailed Han sheep in non-coding regions was higher than that in Tan sheep. The coefficient of gene differentiation among four sheep populations was 0.026329, and that among sheep and goat populations was 0.039036, indicating that the degree of gene differentiation was comparatively low among sheep populations and that among sheep and goat populations higher. The relationships of the pair Hu-Tong sheep and Small Tailed Han-Tan sheep were both close. The latter, however, needed further verification. Further, we calculated the relative evolution distance (RED) of the above sheep populations. RED is defined as a ratio of the converse of the confidence level value( n) of the fuzzy cluster among the infraspecific populations to the converse of the least confidence level value( ) among a referenced population of closely related species and all the infraspecific populations. RED between Hu sheep and Tong sheep was 0.253, that between Small Tailed Han sheep and Tan sheep 0.407, and that between Hu sheep-Tong sheep and Small Tailed Han sheep-Tan sheep 0.462.
    The gene frequencies of 13 structural loci and 7 microsatellite loci in Small Tailed Han sheep, Tan sheep, Hu sheep and Tong sheep, which were sampled by the method " random sampling in typical colonies of the central area of the habitat ", were comparatively analyzed and discussed to verify the relationships of genetic differentiation among populations. The results showed the heterozygosity, polymorphic
    
    information content, effective number of alleles at each microsatellite locus and their average were higher than those at each structural locus, which indicated that the levels of population variations revealed by the microsatellite loci were higher than those by the structural l
引文
1.储明星,马月辉,王端云等.山东小尾寒羊研究概况.国外畜牧科技,1999,26(4):25~27.
    2.铃木正三等著.比较血型学.程光潮等译.北京:中国科学技术出版社,1991,214~223.
    3.张细权,李加琪,杨关福编著.动物遗传标记.北京:中国农业大学出版社,1997,133~153.
    4.程瑞禾,沈瑜,陈明朗.湖羊、苏联美利奴羊血红蛋白型及钾型的研究.畜牧与兽医,1991,23(4):147~149.
    5.魏春红,邱怀.同羊、陕北滩羊和小尾寒羊血红蛋白的多态性.畜牧兽医杂志,1992,(1):1~2.
    6.庞有志,邹继业,徐廷生.大尾寒羊和小尾寒羊血红蛋白及转铁蛋白的遗传多态性研究.中国养羊,1993,(3):20~22.
    7.张才骏,张武学.高福卿等.青海省门源藏养血红蛋白多态性的研究.中国养羊,1998,(3):21~23.
    8.王桂芝.王建民.山东地方绵羊品种血液蛋白质多态性研究.中国畜牧杂志,2001,37(1):8~10.
    9.孙伟.湖羊、同羊遗传检测的研究.扬州大学硕士论文.2002.
    10. Buchanan E C., Adams L. J., Littlejohn R. P. et al. Determination of Evolutionary Relationships among Sheep Breeds Using Microsatellites. Genomics, 1994, 22: 397~403.
    11. Forbes S. H., Hogg J. T., Buchanan E C. et al. Microsatellite Evolution in Congeneric Mammals: Domestic and Bighorn Sheep. Molec. Biol. Evol., 1995, 12:1106~1113.
    12 Bancroft D. R., Pemberton J. M. & King P. Extensive Protein and Microsatellite Variability in an Isolated, Cyclic Ungulate Population. J. Hered., 1995, 74:326~336.
    13. Arranz J. J., Bay6n Y. & Primitivo E S. Genetic Relationships among Spanish Sheep Using Microsatellites. Animal Genetics, 1998, 29: 435~440.
    14. Arranz J.J., Bay(?)n Y. & Primitivo E S. Genetic variation at rnicrosatellite loci in Spanish sheep. Small Ruminant Research, 2001, 39(1): 3~10.
    15. Diez-Tasctn C. Littlejohn R. E, Almeida P. A. R. et al. Genetic Variation within the Merino Sheep Breed: Analysis of Closely Related Populations Using Microsatellites. Animal Genetics, 2000, 31(4): 243~251.
    15. Takahashi H., Nirasawa K., Nagamine M. et at Genetic Relationships among Japanese Native Breeds of Chicken Based on Microsatellite DNA Polymorphisms. The Journal of Heredity, 1998, 89(6): 543~546.
    17.张细权,吕雪杨,王华等.用微卫星多态性和RAPD分析广东地方鸡种的群遗传变异.遗传学报1998,25(2):112~119.
    18.杨勇.朱庆.胡刚安.利用微卫星标记分析家鸡的群体遗传变异.四川大学学报(自然科学版),2000,37:148~152(增刊).
    19. Pandey A. K., Tantia M. S., Kumar D. et al.Microsatellite Analysis of Three Poultry Breeds of India. Asian-Aust. J. Anita. Sci., 2002, 15(11): 1536~1542.
    20. (?)ang X., Leung F.C., Chan D. K O. et al.Comparative Anaylsis of Allozyme, Randomly Amplitied Polymorphic DNA and Microsatellite Polyrnorqhism on Chinese Native Chickens. Poultry Science, 2002, 81:1093~1098.
    21. Zhang X., Leung E C., Chan D. K. O. et al. Genetic Diversity of Chinese Native Chicken Breeds Based on Protein Polymorphism, Randomly Amplified Polymorphic DNA and Microsatellite Polymorphism. Poultry Science, 2002, 81: 1463~1472.
    22.吴信生,陈国宏,王得前等.利用微卫星技术分析中国部分地方鸡种的遗传结构.遗传学报2004,31(1):43~50..
    23.樊斌,李奎.彭中镇等.湖北省三品种猪27个微卫星座位的遗传变异.生物多样性,1999,7(2):91~96.
    24.牛荣,商海涛,魏泓等.版纳小耳猪近交系5家系35个微卫星座位的遗传分析.遗传学报,2001,28(6):518~526.
    25. Arranz J. J., Bay6n Y. & Primitivo E S. Comparison of Protein Markers and Microsatellites in Differentiation of Cattle Populations. Animal Genetics, 1996, 27: 415~419.
    26. Maudet C., Luikart G. & Taberlet R Genetic Diversity and Assignment Tests among Seven
    
    French Cattle Breeds Based on Microsatellite DNA Analysis. J. Anim. Sci., 2002, 80: 942~950.
    27.吴伟,王栋,曹红鹤.微卫星DNA标记对5个中外黄牛品种/群体遗传结构的研究.吉林农业大学学报,2000,22(4):5~10.
    28.马月辉,曹红鹤,陈幼春等.部分黄牛品种(群体)遗传多样性分析.中国农业科学,2003,36(6):696~699.
    29. Naitbekova N., Gaillard C., Obexer-Ruff G. et al. Genetic Diversity in Swiss Goat Breeds Based on Microsatellite Analysis. Animal Genetics, 1999, 30:36~41.
    30. Yang L.,Zhao S. H., Li K. et al.Determinations of Genetic Relationships among Five Indigenous Chinese Goat Breeds with Six Microsatellite Markers. Animal Genetics,2000, 30: 452~455.
    31. Kim K. S., Tanabe Y., Park C. K. et al. Genetic Variability in East Asian Dogs Using Microsatellite Loci Analysis. J. Hered., 2001, 92 (5): 398~403.
    32. Guti(?) nez-Espeleta G. A., Kalinowski S. T., Boyce W. M. et al.Genetic Variation and Population Structure in Desert Bighorn Sheep: Implications for Conservation. Conservation Genetics, 2000, 1: 3~15.
    33.张尧庭,方开泰编著.多元统计分析引论.北京:科学出版社,1982,393~457.
    34.安希忠,林秀梅编著.实用多元统计方法.吉林:吉林科学技术出版社,1992,51~93.114~161.
    35.Nei M.& Kumar S.著.分子进化与系统发育.吕宝忠.钟扬,高莉萍等译.北京:高等教育出版社,2002,232~241.
    36.惠大丰,姜长鉴编著.统计分析系统SAS软件使用教程.北京:北京航空航天大学出版社,1996,98~105.
    37.卢纹贷,朱一力,沙捷等编著.SPSS for Windows从入门到精通.北京:电子工业出版社,1997,358~403.
    38.洪楠,侯军编著.SAS for Wmdows统计分析系统教程.北京:电子工业出版社,2001,203~210,234~247.
    39.常洪主编.家畜遗传资源学纲要.北京:中国农业出版社,1995.
    40.赵宗胜,李大全,杨晶等.不同类型肉羊体尺的聚类与主成分分析.石河子大学学报(自然科学版),1999,3(2): 111~118.
    41.叶选怡,陈海燕,钟仙花等.杂种猪肉质性状的聚类分析.安微农业科学,2002,30(5):725,729.
    42.戴国俊,王金玉,王志跃等.种公鸡体形外貌及精液品质性状的聚类分析,中国家禽,2003,25(7):7~8,14.
    43.常洪主编.中国家畜遗传资源研究.西安:陕西人民教育出版社,1998.
    44.耿社民,常洪,秦国庆等.亚洲49个牛群体体尺性状的多元统计分析.黄牛杂志,1997,23(4):17~20.
    45. Chang H., Nozawa K., Liu X. L. et al. On Phylogenetic Relationships among Native Goat Populations along the Middle and Lower Yellow River Valley. Asian-Aust. J. Aninz Sci., 2000,13(2): 137~148.
    46. Chang G. B., Chang H., Zhen H. L. et al.Study on Phylogenetic Relationship between Wild Japanese Quails in the Weisham Lake Area and Domestic Quails. Asian-Aust. J. Anim. Sci., 2001, 14 (5): 603~607.
    47. Sun W., Chang H., Yang Z. P. et al. Studies on the Genetic Relationships of Sheep Populations from East and South of Central Asian. Asian-Aust. J. Anim. Sci., 2002, 15 (10): 1398~1402.
    48. Geng R. Q., Chang H., Yang Z. P.et al. Study on Origin and Phylogeny Status of Hu Sheep. Asian-Aust. J. Anita. Sci., 2003, 16 (5): 743~747.
    49.刘小林.张惠林.主成份分析在猪育种上的应用.畜牧兽医杂志,1995,(3):42~44.
    50.Kendall M.多元分析.中国科学院计算中心概率统计组译.北京:科学出版社,1983,16~36.
    51.阚远征.奶牛体型主要性状的主成份分析.甘肃畜牧兽医,1993,23(4):1~3.
    52.储明星.师守坤.奶牛体型线性性状的遗传因子分析.畜牧兽医学报,1995,26(4):294~300.
    53.吴照民,苟兴能,荷健等.平武黄牛体尺性状的主成份分析.四川畜牧兽医,2000,27(8):21~22.
    54.文利勇,钟光辉,字向东等.力龙牦牛体型线性性状研究.四川畜牧兽医,2002,29(5):30~31,34.
    
    
    55.郭万正,徐子清.湖北白猪活体测定性状的主成份分析.中国畜牧兽医杂志,1997,33(6):9~10.
    56.张周平,周继平,刘强.互助猪肉质性状的主成份分析.青海畜牧兽医杂志,1997,(6):15~17.
    57.谢保胜,徐宁迎.金华猪屠宰测定性状的主成份分析.青海畜牧兽医杂志,2002,32(5):16~17.
    58.宋九州,刘荫武,袁志发.多元分析在奶山羊育种中的应用.西北农业大学学报,1989,17(2):56~63.
    59.耿补民.绒山羊经济性状标记选择的遗传学研究.西北农业大学博士学位论文,1998,73~86.
    60.王昕,沈伟,耿社民.绒山羊血液同刀晦与产绒量的主成份分析.莱阳农学院学报,2001,18(1):71~73.
    61. Tsunoda K. & Sato K. Specific Frequency Distribution of Erythrocytic X-protein Alleles in Indigenous Sheep Populations in East Asia. Biochemical Genetics, 2001,39 (11/12):407~416.
    62.耿荣庆.湖羊、同羊起源及系统地位的研究.扬州大学硕士毕业论文,2002.
    63. Trcker E. M., Suzuki Y. & Storrnont C. Three New Phenotypic Systems in the Blood of Sheep. Vox Sang, 1967, 13: 246~262.
    64. Gahne B., Juneja R. K. & Grolmus J. Horizontal Polyacrylamide Gradient Gel Electrophoresis for the Simultaneous Phenotyping of Transferrin, Post-transferrin, Albumin and Post-albumin in the Blood Plasma of Cattle. Anim.Blood Grps biochem. Genet., 1977, 8: 127~137.
    65. Yokohama, M., Watanabe Y., Gawahara H. et al. Horizontal Polyacrylamide Gradient Gel Electrophoresis for Equine Serum Protein Types. ABRI, 1987, 15: 22~27.
    66. Tsunoda K., Amano T., Nozawa K. et al. Morphological Characters and Blood Protein Polymorphism of Sheep in Bangladesh and Genetic Relationship with European Sheep Breeds. Rep. Soc. Res. Native Livestock, 1988, 12: 161~185.
    67. Tsunoda K., Amano T., Nozawa K. et al. Genetic Characteristics of Bangladeshi Sheep as Based on Biochemical Variations. Jpn .J. Zootech. Sci., 1990, 61(1): 54~66.
    68. Tstmoda K., Doge K., Yamamoto Y. et al. Morphological Traits and Blood Protein Variation of the Native Nepalese Sheep. Rep. Soc. Res. Native Livestock, 1992, 14: 155~183.
    69. Tstmoda K. & Doge K. Distribution of Ovine Hemoglobine β-Chain Alleles in Nepal and its Neighboring Coutries. Jpn. J. Sheep Sci., 1994, 31: 28~33.
    70. Tsunoda K. Nozawa K., Okamoto S. et al.Blood Protein Variation of Native Sheep Populations in Lufeng and Lunan in Yunnan Province of China. Rep.Soc.Res.Native Livestock, 1995, 15:119~129.
    71. Tsunoda K, Okabayashi H, Amano T. et al. Morphologic and Genetic Characteristic of Sheep Raised by the Cham Tribe in Vietnam. Rep.Soc.Res.Native Livestock, 1998, 16: 63~73.
    72. Tsunoda K., Nozawa K., Hasnath M. A. et al. Genetic Polymorphism of Plasma Vitamin D-Binding Protein (Gc)in Some Asian Sheep. AJAS, 1998, 11(3): 318~322.
    73. Tsunoda K., Nozawa K., Maeda Y. et al. External Morphological Characters and Blood Protein and Non-protein Polymorphisms of Native Sheep in Central Mongolia. Rep. Soc. Res. Native Livestock, 1999. 17: 63~82.
    74.汪家政.范明主编.蛋白质技术手册.北京:科学出版社,2000,111~144,166~188.
    75. Nei M. Estimation of Average Hetorozygosity and Genetic Distance from a Small Number of Individuals. Genetics, 1978, 89: 583~590.
    76. Botstein D., White R. L., Skolnick M. et al. Construction of a Genetic Linkage Maps in Man Using Restriction Fragment Length Polymorphisms. Amer. J. Hum. Genet., 1980, 32:314~331.
    77. Kimura M. & Crow J. E The Number of Alleles that Can Be Maintained in a Finite Population.
    
    Genetics, 1964, 49: 725~738.
    78. Ota T. DISPAN: Genetic Distance and Phylogenetic Analysis. Pennsylvania State University, University Park, PA. 1993.
    79.根井正利著.分子群体遗传学与进化论.王家玉译.北京:农业出版社,1983,143~148,169~196.
    80. Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987, 149~253.
    81.山东省畜牧局《山东省畜禽品种志》编写委员会.山东省畜禽品种志.深圳:海天出版社,1999.51~53.
    82.李志农主编.中国养羊学.北京:农业出版社,1993,44~55.
    83.《宁夏畜禽品种志》编委会编.宁夏回族自治区畜禽品种志、图谱.宁夏回族自治区农牧厅畜牧局印,1984,1~5.
    84.甘肃省畜牧厅主编.甘肃省畜禽品种志.兰州:甘肃人民出版社,1986,69~71.
    85.谢成侠编著.中国养牛羊史(附养鹿简史).北京:农业出版社,1985,144~150,173~179.
    86.李群.湖羊来源及历史再谈.中国农史,1997,16(2):91~95.
    87.《中国羊品种志》编写组.中国羊品种志.上海:上海科学技术出版社,1989,15-19,27~58.
    88.杨章平.绵羊群体间亲缘关系评价及其分析方法的研究.南京农业大学博士毕业论文,2002.
    89.雷兆勤.陕西同羊.畜牧兽医杂志,1999,18(3):35~36.
    90.郑丕留主编.中国家畜品种及其生态特征.北京:农来出版社.1985:60~66.
    91.辞海编辑委员会编.辞海.上海:上海辞书出版社,1989,4358,4795,5014~5015.
    92.毛佩琦.李泽奉主编.岁月山河.上海:上海古籍出版社,1989,269~297.
    93.邹介华,王铭农.牛家藩等编著.中国古代畜牧兽医史.北京:中国农业科技出版社,1994,113~118.
    94.张建中,张沅.叶其铿.滩羊、寒羊、蒙古羊品种间遗传距离的研究.畜牧兽医学报,1991,22(4):289~295.
    95.庞有志.邹继业,徐廷生等.河南小尾寒羊的染色体组型分析.中国畜牧杂志,1998,34(2):29~30.
    96.李祥龙.田庆义,刘铮铸等.几个绵羊品种线粒体DNA限制性片段长度多态性比较研究.畜牧兽医学报,2001,32(4):295~298.
    97.曹顶国,杜立新,李淑青.4个绵羊品种随机扩增多态DNA分析.中国畜牧杂志,2002,38(2):12~14.
    98.萨姆布鲁克J.,费时奇E.F.,罗尼阿蒂斯T.著.分子克隆实验指南(第二版).金冬雁,黎孟枫译.北京:科学出版社,1995,24~25,463~473.
    99.熊远著主编.猪生化及分子遗传实验导论.北京:中国农业出版社,1999,39~44.
    100.姜泊.张亚历.周殿云主编.分子生物学常用实验方法.北京:人民军医出版社,1996,66.
    101. Crawford A. M., Dodds K. G., Ede A. J. et al. An Autosomal Genetic Linkage Map of the Sheep Genome. Genetics, 1995, 140: 703~724.
    102.奥斯伯F.,布伦特R.,金斯顿R.E.等著.精编分子生物学实验指南.颜子颖,王海林译.北京:科学出版社,1998,29~69,587~592.
    103. Hines H. C., Zikakis J. P., Haenlein G. E et al. Linkage Relationships among Loci of Polymorphism in Blood and Milk of Cattle. Dairy Sci., 1981, 64(1): 71~76.
    104.巩元芳,李祥龙,刘铮铸等.我国主要地方绵羊品种随机扩增多态DNA研究.遗传,2002,24(4):423~426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700