红鲫与翘嘴红鲌不同倍性水平杂交鱼的形成及其生物学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多倍化是指基因组中额外一套或多套染色体的渗入现象,他在植物和动物中是一种流行的物种形成机制。导致多倍化的途径有多种,包括体细胞加倍、非减数配子的融合、多精受精或“三倍体桥”。现在普遍认为杂交在引发多倍化过程中起着重要的作用。多倍体物种在植物中相当常见,然而在动物中则相对较少。即便如此,多倍化现象在许多鱼类中却广泛存在着。并且,许多人工诱导的多倍体鱼已经用来制备不育的鱼类品种和促进生产。另外,鱼类中的多倍体还可以作为一种有用的模式系统用来检验基于植物研究得出的关于多倍化起源和结果的理论。在本研究中,通过远缘杂交和遗传选育的生物学方法与技术,将鲤科鱼类中的红鲫(Carassius auratus red var,, RCC♀$,2n=100)与翘嘴红鱼鲌(Erythroculter ilishaeformis Bleeker, TC♂2n=48)杂交在脊椎动物中首次获得了存活的二倍体鲫鲌(2nRT)、三倍体鲫鲌(3nRT)和四倍体鲫鲌(4nRT)杂交鱼。并且,对这些不同倍性水平杂交鱼的倍性、染色体数目、核型、DNA含量、外形特征、Sox基因、5S rDNA的结构组成与变异以及他们在染色体上的定位情况等生物学特征进行了系统研究,主要研究内容如下:
     1)通过远缘杂交技术将雌性红鲫与雄性翘嘴红鲌杂交获得了二倍体鲫鲌、三倍体鲫鲌和四倍体鲫鲌三种不同倍性水平的杂交鱼后代。并利用染色体计数、核型分析和血细胞平均DNA含量测定方法对这些杂交鱼后代及其亲本的倍性水平和染色体组成情况进行了鉴定。二倍体红鲫含有100条染色体,核型公式为22m+34sm+22st+22t:二倍体翘嘴红鲌含有48条染色体,核型公式为16m+26sm+6st.在杂交鱼后代中,二倍体鲫鲌的染色体数目为74,核型公式为19m+30sm+14st+11t,其中一套来自于红鲫,一套来自于翘嘴红鲌;三倍体鲫鲌的染色体数目为124,核型公式为30m+47sm+25st+22t,其中两套来自于红鲫,一套来自于翘嘴红鲌;四倍体鲫鲌的染色体数目为148,核型公式为38m+60sm+28st+22t,其中两套来自于红鲫,两套来自于翘嘴红鲌。另外,对不同倍性水平杂交鱼及其亲本的早期胚胎发育过程进行了系统观察,并对他们的受精率、孵化率和成活率进行了统计分析。
     2)对两年龄的三种不同倍性水平杂交鱼后代的可数性状和可比性状进行了系统分析。结果表明杂交鱼后代中许多性状均介于红鲫与翘嘴红鲌之间,体现出杂交特征。以相同时期的红鲫与翘嘴红鲌作为对照,对二倍体鲫鲌和三倍体鲫鲌的性腺显微结构和超微结构进行了检测,并在繁殖季节对二倍体鲫鲌和三倍体鲫鲌进行了人工催产繁殖,结果表明二倍体鲫鲌与三倍体鲫鲌均不可育。由于群体数量过少的缘故,未对四倍体鲫鲌性腺的显微结构和超微结构进行观察,也未对其进行人工催产,其育性有待进一步研究。
     3)参照Sox基因保守的HMG框序列,设计合成一对简并引物对不同倍性水平杂交鱼后代及其亲本的全基因组DNA进行了PCR扩增和测序分析,并通过对比不同倍性水平杂交鱼后代与他们亲本的同源性,对他们的分子遗传关系进行了系统分析。在红鲫中扩增出了215bp、617bp和1958bp三种大小的DNA条带;在翘嘴红鲌只扩增出了215bp大小的DNA条带;在二倍体鲫鲌中扩增出了215bp.628bp和1959bp三种大小的DNA条带;在三倍体鲫鲌中扩增出了215bp、616bp和1957bp三种大小的DNA条带;在四倍体鲫鲌中除了扩增出215bp、628bp和1957bp大小的三种DNA条带外,还衍生出了一条大小为918bp的DNA条带。
     4)对红鲫、翘嘴红鲌及其不同倍性水平杂交鱼后代的5S rDNA的结构与变异情况进行了系统分析。在红鲫中含有三种大小分别为203bp、340bp和477bp的5S rDNA结构单元,分别命名为结构单元Ⅰ、结构单元Ⅱ和结构单元Ⅲ;在翘嘴红鲌中含有两种大小分别为188bp和286bp的5S rDNA结构单元,分别命名为结构单元Ⅳ和结构单元Ⅴ。在杂交鱼后代中,二倍体鲫鲌从母本红鲫遗传获得了结构单元Ⅰ、结构单元Ⅱ和结构单元Ⅲ,从父本翘嘴红鲌部分遗传了结构单元Ⅳ;三倍体鲫鲌从红鲫只部分遗传了结构单元Ⅱ和结构单元Ⅲ,从翘嘴红鲌只遗传获得了结构单元Ⅳ;四倍体鲫鲌只从红鲫部分遗传获得了结构单元Ⅱ和结构单元Ⅲ,另外还衍生了一种新的5S rDNA序列,命名为结构单元Ⅰ-N。父本特异的5S rDNA结构单元Ⅴ在三种不同倍性水平杂交鱼后代中均未发现。
     5)通过荧光原位杂交(FISH)技术,以红鲫与翘嘴红鲌特异的5S rDNA片段(RCC-340bp, TC-188bp, TC-286bp)质粒为模板、PCR法扩增制备的5S rDNA荧光探针分别与红鲫和翘嘴红鲌及其不同倍性水平杂交鱼后代的染色体中期分裂相进行杂交,对红鲫和翘嘴红鲌及其不同倍性水平杂交鱼后代5S rDNA的染色体定位情况进行了研究分析。研究结果表明杂交和多倍化对杂交鱼后代基因组中5S rDNA结构单元位点产生了较大的影响,不仅有新5S rDNA结构单元位点的出现,也有位点的丢失。
Polyploidization, the addition of an extra set (or sets) of chromosomes to the genome, is a predominant mechanism for speciation in plants and animals. Polyploidization can occur via somatic doubling, the fusion of unreduced gametes, and by means of a triploid bridge or polyspermy. The current prevailing opinion is that hybridization plays an important role in triggering polyploidization. Polyploid species are particularly frequent in the plant kingdom. However, while it is generally relatively rare in animals, polyploidy has occurred extensively, independently, and is often repeated in many groups of fish. Furthermore, artificially induced polyploidy has been used in aquaculture to produce sterility and to improve production. Polyploidy in fish represents a useful model system with which to test theories about the origin and consequences of polyploidy that have been derived from work on plants. Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (Carassius auratus red var., RCC♀, Cyprininae,2n=100)×topmouth culter (Erythroculter ilishaeformis Bleeker, TC♂,Cultrinae,2n=48) were successfully produced. This is the first report on the formation of these viable diploid, triploid and tetraploid hybrids by crossing different parents with a different chromosome number in vertebrates. In addition, studies of these different ploidy-level hybrid offspring on ploidy-level, chromosomal number, karyotype, mean DNA content, appearance, Sox genes, the organization and variation of5S rDNA and location of5S rDNA on the chromosomes were conducted, and the major contents are as follows:
     1) Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (RCC♀) x topmouth culter (TC♂) were successfully produced. The different ploidy-level and chromosome constitution of these hybrid offspring were determined with chromosome counting and detection of mean DNA content of blood cells. The distribution of chromosome number in RCC, TC,2nRT,3nRT and4nRT hybrids are as follows:For diploid RCC, the chromosomal metaphases had100chromosomes with the karyotype formula of22m+34sm+22st+22t; For diploid TC, the chromosomal metaphases possessed48chromosomes with the karyotype formula of16m+26sm+6st. In2nRT hybrid offspring of RCC♀±TC♂, the chromosomal metaphases had74chromosomes with the karyotype formula of19m+30sm+14st+11t, indicating diploid hybrids possessed74chromosomes with one set from RCC and one set from TC1In3nRT hybrid offspring of RCC♀×TC♂, the chromosomal metaphases had124chromosomes with the karyotype formula of30m+47sm+25st+22t, suggesting triploid hybrids harbored124chromosomes with two sets from RCC and one set from TC; In4nRT hybrid offspring of RCC♀×TC♂, the chromosomal metaphases had148chromosomes with the karyotype formula of38m+60sm+28st+22t, showing tetraploid hybrids had148chromosomes with two sets from RCC and two sets from TC. In addition, the earlier embryonic development of RCC, TC and their hybrid offsrping were detected, and the fertilization rate, hatching rate and adulthood rate were also involved.
     2) At2years of age, the measurable and countable traits in2nRT,3nRT and4nRT hybrids were examined, which showed the hybrid characteristics. Using RCC and TC as controls, the observation of microstructure and ultrastructure in2nRT and3nRT hybrids was conducted. An artificial propagation of2nRT and3nRT hybrids was also involved during the reproductive season, but neither egg nor sperm were able to be squeezed out from2nRT or3nRT hybrids. Results obtained here indicated that2nRT and3nRT hybrids were sterile. Due to the few number of4nRT hybrids, neither the detection of microstructure and ultrastructure nor an artificial propagation of4nRT hybrids was conducted. The confirmation of fertility in4nRT hybrids needs further study.
     3) Against the conserved HMG-box of Sox genes, one pair of degenerate primers were designed and synthesized to amplify the genomic DNA of RCC, TC and their different ploidy-level hybrid offspring. There were three DNA fragments of Sox genes (with the length of215bp,617bp and1958bp) in RCC, only one (with the length of215bp) in TC. In the hybrid offspring, there were three DNA fragments (with the length of215bp,628bp and1959bp) in2nRT hybrids, three DNA fragments (with the length of215bp,616bp and1957bp) in3nRT hybrids, four DNA fragments (with the length of215bp,628bp,918bp and1959bp) in4nRT hybrids. A novel918bp DNA fragment was observed in4nRT hybrids.
     4) The5S rDNA of the three different ploidy-level hybrids and their parents were sequenced and analyzed. There were three monomeric5S rDNA classes (designated class I:203bp; class II:340bp; and class III:477bp) in RCC and two monomeric5S rDNA classes (designated class IV:188bp, and class V:286bp) in TC. In the hybrid offspring,2nRT hybrids inherited three5S rDNA classes from their female parent (RCC) and only class IV from their male parent (TC).3nRT hybrids inherited class II and class III from their female parent (RCC) and class IV from their male parent (TC).4nRT hybrids gained class II and class III from their female parent (RCC), and generated a new5S rDNA sequence (designated class I-N). The specific paternal5S rDNA sequence of class V was not found in the hybrid offspring.
     5) Through fluorescence in situ hybridization (FISH), the fluorescence probes amplified from the parental-special5S rDNA fragments of RCC and TC (RCC-340bp, TC-188bp and TC-286bp) were hybridized to the mitotic metaphase chromosomes of RCC, TC,2nRT,3nRT and4nRT hybrids, respectively, and the location of5S rDNA loci on the chromosomes were also involved. The results obtained here indicated that hybridization and polyploidization had a huge impact on the5S rDNA loci, including the appearance of novel5S rDNA loci and lose of5S rDNA loci.
引文
[1]Ohno S., U. Wolf, N.B. Atkin. Evolution from fish to mammals by gene duplication [J]. Hereditas,1968,59:169-187.
    [2]Masterson J.. Stomatal size in fossil plants:evidence for polyploidy in majority of angiosperms [J]. Science,1994,264:421-424.
    [3]Wolfe K.H., D.C. Shields. Molecular evidence for an ancient duplication of the entire yeast genome [J]. Nature.1997,387:708-713.
    [4]Comai L. Genetic and epigenetic interactions in allopolyploid plants [J]. Plant Mol Biol.,2000,43:387-399.
    [5]Liu S.J., Y. Liu, G.J. Zhou, X.J. Zhang, C. Luo. et al.. The formation of tetraploid stocks of red crucian carp x common carp hybrids as an effect of interspecic hybridization [J].Aquaculture,2001,192:171-186.
    [6]Mallet J.. Hybrid speciation [J]. Nature,2007,446:279-283.
    [7]Loren H., J.H. Rieseberg. Plant Speciation [J]. Science,2007,317:5.
    [8]Otto S.P.. The Evolutionary Consequences of Polyploidy [J]. Cell,2007,131:11.
    [9]Sarah P., J. Otto. Polyploid incidence and evolution [J]. Annu Rev Genet,2000, 34:37.
    [10]Alves M.J., M.M. Coelho, M.I. Prospero, M.J. Collares-Pereira.. Production of fertile unreduced sperm by hybrid males of the Rutilus alburnoides complex (Teleostei, Cyprinidae). An alternative route to genome tetraploidization in unisexuals [J]. Genetics,1999,151:277-83.
    [11]Uchida I.A.. V.C. Freeman. Triploidy and chromosomes [J]. Am. J. Obst. Gynecol,1985,151:65-69.
    [12]Husband B.C.. Constraints on polyploid evolution:a test of the minority cytotype exclusion principle [J]. Proc. R. Soc. Lond. B,2000,267,217-223.
    [13]Ramsey J., D.W. Schemske. Neopolyploidy in flowering plants [J]. Annu. Rev. Ecol. Syst,2002.33.589-639.
    [14]Grant V.. Plant Speciation [M] (Columbia Univ. Press,1981, New York,2nd edtition).
    [15]Bullini L.. Origin and evolution of animal hybrid species [J]. Trends Ecol Evol, 1994,9:422-426.
    [16]Arnold M.. Natural Hybridization and Introgression [J]. Princeton University Press,1996, Princeton.
    [17]Rieseberg L.H.. Hybrid Origins of Plant Species [J]. Annual Review of Ecology and Systematics,1997,28:359-389.
    [18]Mallet Y., Y.M. Robin, S.E. Bedoui, C. Fournier, N. Penel, et al.. Survival prognostic factors for lateral bucco-pharyngeal junction squamous cell carcinoma [J]. Eur Arch Otorhinolaryngol 265 Suppl,2008,1:S25-28.
    [19]Dobzhansky T.. Speciation as a stage in evolutionary divergence [J]. American Naturalist,1940,74,312-321.
    [20]Mayr E.. Systematics and the Origin of Species [M]. Columbia University Press, 1942, New York.
    [21]Grant V.. Plant Speciation [M]. Columbia University Press,1971, New York.
    [22]Stebbins GL.. The role of hybridisation in evolution [J]. Proceedings of the American Philosophical Society,1959,103,231-251.
    [23]Anderson E.. Hybridization of the habitat [J]. Evolution,1948,2.1-9.
    [24]Anderson E (1949) Introgressive Hybridization [R]. Chapman& Hall, London.
    [25]Stebbins GL.. Processes of Organic Evolution [R] (Prentice-Hall, Englewood Cliffs,1971,NewJersey).
    [26]Mable B.K..'Why polyploidy is rarer in animals than in plants'-myths and mechanisms [J]. BiologicalJournal of the Linnean Society,2004,82:453-466.
    [27]Gallardo M.H., J.W. Bickham, R.L. Honeycutt, R.A. Ojeda. N. Kohler. Discovery of tetraploidy in a mammal [J]. Nature,1999,401:341.
    [28]Abdel-Hameed F., R.N. Shoffner. Intersexes and sex determination in chickens [J]. Science,1971,172:962-964.
    [29]Allendorf F.W., G.H. Thorgaard. Tetraploidy and the evolution of salmonid fishes [M]. In Evolutionary Genetics of Fishes, ed. BJ Turner, pp.1-53. New York:Plennum Press,1984.
    [30]Alves M.J., M.M. Coelho, M.J. Collares-Pereira. Diversity in the reproductive modes of females of the Rutilus alburnoides complex (Teleostei, Cyprinidae):A way to avoid the genetic constraints of uniparentalism [J]. Molecular Biology& Evolution,1998,15:1233-1242.
    [31]Amores A., A. Force, Y.L. Yan, Joly L, C. Amemiya, et al. Zebrafish hox clusters and vertebrate genome evolution [J]. Science,1998,282:1711-4.
    [32]Arai K., K. Matsubara, R. Suzuki. Production of polyploids and viable gynogens using spontaneously occurring tetraploid loach, Misgurnus anguillicaudatus [J]. Aquaculture,1993,117:227-235.
    [33]Basrur V.R., K.H. Rothfels. Triploidy in natural populations of the black fly Cnephia mutata (Malloch) [J]. Canadian Journal of Zoology,1959, 37:571-589.
    [34]Becak M.L., W. Becak. Diploidization in Eleutherodactylus (Leptodactylidae-Amphibia) [J]. Experientia,1974,30:624-625.
    [35]Bell G. The Masterpiece of "Nature:The Evolution and Genetics of Sexuality [M]. Berkeley:University of California Press,1982.
    [36]Bickham J.W.. B.G. Hanks, D.W. Hale, E.E. Martin. Ploidy diversity and the production of balanced gametes in male twist-necked turtles Platemys platycephala) [J]. Copeia,1993,3:723-727.
    [37]Block K.. Chromosomal variation in Agromyzidae. II. Phytomyza cassiseta Zetterstedt -- A parthenogenetic species [J]. Hereditas,1969,62:357-381.
    [38]Bloom SE.. Chromosome abnormalities in chicken (Gallus domesticus) embryos:types, frequencies and phenotypic effects [J]. Chromosoma,1972, 37:309-326.
    [39]Bogart J.P.. Evolutionary implications of polyploidy in amphibians and reptiles [M]. In Polyploidy:Biological Relevance, ed. WH Lewis, pp.341-78. New York:Plenum Press,1980.
    [40]Bogart J.P., R.P. Elinson, L.E. Licht. Temperature and sperm incorporation in polyploid salamanders [J]. Science,1989,246:1032-1034.
    [41]Book J.A.. Triploidy in Triton taeniatus Laur [J]. Hereditas.,1940,26:107-114.
    [42]Bull J.J.. Evolution of sex determining mechanisms [M]. Reading. MA: Benjamin/Cummings Pub. Co.,1983.
    [43]Cannatella D.C., R.O. De Sa. Xenopus laevis as a model organism [J]. Systematic Biology,1993,42:476-507.
    [44]Chenuil A., GaltierN., Berrebi P. A test of the hypothesis of an autopolyploid vs. allopolyploid origin for a tetraploid lineage:application to the genus barbus (Cyprinidae) [J]. Heredity,1999,82 Pt 4:373-80.
    [45]Cohen S., L.M. Roth. Chromosome numbers in Blattaria [J]. Ann. Entom. Soc. Amer.,1970,63:1520-1547.
    [46]Cole C.J.. Specific status of the North American fence lizards, Sceloporus undulatus and Sceloporus occidentalis, with comments on chromosome variation [J]. American Museum Novitates,1983,2768:1-13.
    [47]Collares-Pereira M.J., J.M. Madeira, P. Rab. Spontaneous triploidy in the stone loach Noemacheilus barbatulus (Balitoridae) [J]. Copeia,1995,2:483-484.
    [48]Darevsky I.S., F.D. Danielyan, T.M. Sokolova, Y.M. Rozanov. Intraclonal mating in the parthenogenetic lizard species Lacerta unisexualis Darevsky [M]. In Evolution and Cytology of Unisexual Vertebrates,1989, ed. RM Dawley, Bogart JP, pp.228-235. New York:The University of the State of New York.
    [49]Darevsky I.S., L.A. Kupriyanova, V.V. Rashchin. A new all-female triploid species of gecko and karyological data on the bisexual Hemidactylus frenatus from Vietnam [J].J. Herp.,1984,18:277-284.
    [50]Dawley R.M., R.J. Schultz, K.A. Goddard. Clonal reproduction and polyploidy in unisexual hybrids of Phoxinus eos and Phoxinus neogaeus (Pisces; Cyprinidae) [J]. Copeia,1987,:275-283.
    [51]Echelle A.A., D.T. Mosier. All-female fish:A cryptic species of Menidia (Atherinidae) [J]. Science,1981,212:1411-1413.
    [52]Ewing R.R., S.C. G., E.D. P.. Flow Cytometric Identification of Larval Triploid Walleyes [J]. Progressive Fish Culturist,1991,53:177-180.
    [53]Feder J.H.. Natural hybridization and genetic divergence between the toads Bufo boreas and Bufo punctatus [J]. Evolution,1979,33:1089-1097.
    [54]Formas J.R.. A triploid individual of the Chilean leptodactylid frog Eupsophus vertebralis [J]. J. Herp.,1994,28:394-395.
    [55]Gade B., E.D., Jr. Parker. The effect of life cycle stage and genotype on desiccation tolerance in the colonizing parthenogenetic cockroach Pycnoscelus surinamensis and its sexual ancestor P. indicus [J]. Journal of Evolutionary Biology,1997,10:479-493.
    [56]Gibson T.J., J. Spring. Evidence in favour of ancient octaploidy in the vertebrate genome [J]. Biochem. Soc. Trans,2000,28:259-264.
    [57]Goddard K.A., R.J. Schultz. Aclonal reproduction by polyploid members of the clonal hybrid species Phoxinus eos-neogaeus (Cyprinidae) [J]. Copeia, 1993,:650660.
    [58]Green D., D. Delisle. Allotriploidy in natural hybrid frogs, Rana chiricahuensis x R. pipiens, from Arizona:Chromosomes and electrophoretic evidence [J]. J. Herp.,1985,19:385-390.
    [59]Green D.M., J. Kezer, R.A. Nussbaum. Triploidy in Hochstetter's frog, Leiopelma hochstetteri, from New Zealand [J]. New Zealand Journal of Zoology,1984.11:457-460.
    [60]Gui J., Y. Li, K. Li, Y. Hong, T. Zhou. Studies on the karyotypes of Chinese cyprinid fishes.6. Karyotypes of three tetraploid species in Barbinae and one tetraploid species in Cyprininae [J].Acta Genet. Sin.,1985,12:302-308.
    [61]Haddad C.F.B., J.P., Jr. Pombal, R.F. Batistic. Natural hybridization between diploid and tetraploid species of leaf-frogs, genus Phyllomedusa (Amphibia) [J]. J. Herp.,1994,28:425-430.
    [62]Hayes T.B.. Sex determination and primary sex differentiation in amphibians: Genetic and developmental mechanisms [J]. Journal of Experimental Zoology, 1998.281:373-399.
    [63]Kasahara S., C.F.B. Haddad. Karyotypes of two Brazilian microhylid frogs of the genus Chiasmocleis, including a new case of polyploidy [J]. J. Herp.,1997, 31:139-142.
    [64]Kobel H.R., L. Du Pasquier. Genetics of polyploid Xenopus [J]. Trends Genet, 1986,2:310-315.
    [65]Kupriyanova L.A.. Cytogenetic evidence for genome interaction in hybrid lacertid lizards [M]. In Evolution and Cytology of Unisexual Vertebrates,1989, ed. RM Dawley, Bogart JP, pp.236-240. New York:The University of the State of New York.
    [66]Kuramoto M., A. Allison. Karyotypes of microhylid frogs of Papua New Guinea and their systematic implications [J]. Herpetologica,1989,45:250-259.
    [67]Larhammar D., C. Risinger. Molecular genetic aspects of tetraploidy in the common carp Cyprinus carpio [J]. Molecular Phylogenetics& Evolution,1994, 3:5968.
    [68]Lokki J., A. Saura. Polyploidy in insect evolution [M]. In Polyploidy: Biological Relevance, ed. WH Lewis, pp.277-312. New York:Plenum Press, 1980.
    [69]Lokki J., E. Suomalainen, A. Saura, P. Lankinen. Genetic polymorphism and evolution in parthenogenetic animals. II. Diploid and polyploid Solenobia triquetrella (Lepidoptera:Psychidae) [J]. Genetics,1975,79:513-25.
    [70]Lowcock L.A., L.E. Licht. Natural autotriploidy in salamanders [J]. Genome, 1990,33:674-678.
    [71]Mahony M.J., E.S. Robinson. Polyploidy in the Australian leptodactylid frog genus Neobatrachus [J]. Chromosoma,1980,81:199-212.
    [72]Mazik E.J., T.A. T., R. P.. Karyotype Study of Four Species of the Genus Diptychus Pisces Cyprinidae With Remarks On Polyploidy of Schizothoracine Fishes [J]. Folia Zoologica,1989,38:325-332.
    [73]Mezhzherin S.V., P.E. M. Genetic Structure and Origin of Asian Polyploid Toads Bufo-Danatensis Pisanetz 1978 [J]. Doklady Akademii Nauk Ukrainskoi Ssr Seriya B Geologicheskie Khimicheskie i Biologicheskie Nauki,1990, 8:71-73.
    [74]Mezhzherin S.V., P.E. M.. Genetic Divergence in the Bufo-Viridis Complex in the Ussr Fauna [J]. Doklady Akademii Nauk SSSR,1991,317:222-226.
    [75]Morescalchi A., E. Olmo. Sirenids:a family of polyploid urodeles? [J] Experientia,1974,30:491-2.
    [76]Moritz C. Evolutionary dynamics of mitochondrial DNA duplications in parthenogenetic geckos, Heteronotia binoei [J]. Genetics,1991,129:221-30.
    [77]Moritz C, T.J. Case, D.T. Bolger, S. Donnellan. Genetic diversity and the history of Pacific island house geckos (Hemidactylus and Lepidodactylus) [J]. BiologicalJournal of the Linnean Society,1993,48:113-133.
    [78]Normark B.B.. Polyploidy of parthenogenetic Aramigus tessellatus (Say) (Coleoptera:Curculionidae) [J]. Coleopterists Bulletin,1996,50:73-79.
    [79]Ohno S.. Evolution by Gene Duplication [M]. New York:Springer-Verlag, 1970.
    [80]Oliveira C., L.F. Almeida-Toledo, L. Mori, S.A. Toledo-Filho. Extensive chromosomal rearrangements and nuclear DNA content changes in the evolution of the armoured catfishes genus Corydoras (Pisces, Siluriformes, Callichthyidae) [J]. Journal of Fish Biology,1992,40:4190431.
    [81]Oliveira C., L.F. Almeida-Toledo, L. Mori, S.A. Toledo-Filho. Cytogenetic and DNA content in six genera of the family Callichthyidae (Pisces, Siluriformes) [J]. Caryologia,1993,46:171-188.
    [82]Pandey N., W.S.Lakra. Evidence of female heterogamety, B-chromosome and natural tetraploidy in the Asian catfish, Clarias batrachus, used in aquaculture [J].Aquaculture,1997,149:1-2.
    [83]Pandian T.J., R. Koteeswaran. Natural occurrence of monoploids and polyploids in the Indian catfish, Heteropneustes fossilis [J]. Curr. Sci.,1999, 76:1134-1137.
    [84]Post A.. Vergleichende Untersuchungen der Chromosomenzahlen bei susswasser Teleosteern [J]. Ztschr. zool. Syst. u. Evol.-Forsch.,1965,3:47-93.
    [85]Postlethwait J.H., Y.L. Yan, M.A. Gates, S. Horne, A. Amores, et al.. Vertebrate genome evolution and the zebrafish gene map [J]. Nature Genet., 1998,18:345-9.
    [86]Raicu P., E. Taisescu. Misgurnus fossilis, a tetraploid fish species [J]. Journal of Heredity.1972,63:92-94.
    [87]Ralin D.B., M.A. Romano, C.W. Kilpatrick. The tetraploid treefrog Hyla versicolor:Evidence for a single origin from the diploid Hyla chrysoscelis [J]. Herpetologica,1983,39:212-225.
    [88]Rishi K.K., R.S. Shashikala. Karyotype study on six Indian hill-stream fishes [J]. Chromosome Science,1998,2:9-13.
    [89]Ruiz I.R.G., M.F. Bonaldo, W. Becak. In situ localization of ribosomal genes in a natural triploid of Odontophrynus [J]. Journal of Heredity,1980,71:55-57.
    [90]Saura A., J. Lokki, P. Lankinen, E. Suomalainen. Genetic polymorphism and evolution in parthenogenetic animals. III. Tetraploid Otiorrhynchus scaber (Coleoptera:Curculionidae) [J]. Hereditas,1976,82:79-99.
    [91]Schmid M., T. Haaf, W. Schemp. Chromosome banding in Amphibia. IX. The polyploid karyotypes of Odontophrynus americanus and Ceratophrys ornata (Anura, Leptodactylidae) [J]. Chromosoma,1985,91:172-184.
    [92]Schultz R.J.. Role of polyploidy in the evolution of fishes [M]. In Polyploidy: Biological Relevance, ed. WH Lewis, pp.313-40. New York:Plenum Press, 1980.
    [93]Shimizu Y., T. Oshiro, M. Sakaizumi. Electrophoretic studies of diploid, triploid, and tetraploid forms of the Japanese silver crucian carp, Carassius auratus langsdorfii [J]. Jap. J. Ichth.,1993,40:65-75.
    [94]Skrabanek L., K.H. Wolfe. Eukaryote genome duplication-where's the evidence? [J]. Curr. Opin. Genet. Dev.,1998,8:694-700.
    [95]Smith S.G.. Parthenogenesis and polyploidy in beetles [J]. American Zoologist, 1971,11:341-349.
    [96]Suzuki A., Y. Taki. Karyotype of tetraploid origin in a tropical Asian cyprinid, Acrossocheilus sumatranus [J]. Jap. J. Ichth.,1981,28:173-176.
    [97]Tiersch T.R., B.M. L., D. M.. Zzw Autotriploidy in a Blue-and-Yellow Macaw [J]. Genetica,1991,84:209-212.
    [98]Tucic B., G. Mesaros. Chromosome counts in some high altitude Otiorhynchus Germ, species from Yugoslavia [J]. Caryologia,1992,45:213-219.
    [99]Vasil'yev V.P.. Chromosome numbers in fish-like vertebrates and fish [J]. Journal of Ichthyology,1980,20:1-38.
    [100]Vervoort A.. Tetraploidy in Protopterus (Dipnoi) [J]. Experientia,1980, 36:294-296.
    [101]Vrijenhoek R.C., R.M. Dawley, C.J. Cole, J.P. Bogart. A list of known unisexual vertebrates [M]. In Evolution and Cytology of Unisexual Vertebrates, ed. RM Dawley, Bogart JP,1989, pp.19-23. New York:The University of the State of New York.
    [102]White M.J.D.. Animal Cytology and Evolution [M]. Cambridge:University of Cambridge Press 3 ed,1973.
    [103]Wiley J.E., A. Braswell. A triploid male of Rana palustris [J]. Copeia,1986, 1986:531-533.
    [104]Wittbrodt J., A. Meyer, M. Schartl. More genes in fish? [J]. BioEssays,1998, 20:511-515.
    [105]Witten G.J.. A triploid male individual Amphibolurus nobbi nobbi (Witten) (Lacertidae:Agamidae) [J]. Australian Zoologist,1978,19:305-308.
    [106]Wynn A.L., C.J. Cole, A.L. Gardner. Apparent triploidy in the unisexual Brahminy blind snake, Ramphotyphlops braminus [J]. American Museum Novitates,1987,2868:1-7.
    [107]Yu X, T. Zhou, K. Li, Y. Li, M. Zhou. On the karyosystematics of cyprinid fishes and a summary of fish chromosome studies in China [J]. Genetica,1987, 72:225-236.
    [108]Thorgaard G.H., et al. Polyploidy induced by heat shock in rainbow trout [J]. Trans. Am. Fish. Soc,1981,110:546.
    [109]Ueda T., et al. Triploid rainbow trouts induced by polyethylene glycol [J]. Proc. Jap.Acad..1986,62B:161.
    [110]Chourrout D., et al.. Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females-potential of tetraploid fish [J]. Theor.Appl.Genet,1986,72:193.
    [111]Benfey T.J.. A bibliography of triploid fish,1943 to 1988. Can. Tech. Rep [J]. Fish. Aquat. Sci.1989,1862:1-33.
    [112]Johnson K.R, et al.. Female brown trout×Atlantic salmon hrbrids produce gynogens and triploids when backcrossed to male Atlantic salmon [J]. Aquaculture,1986,57:345.
    [113]Ruiguang Z., et al.. Studies on karyotypes and nulear DNA contents of some cyprinoid fishes with notes on fish polyploids in China. In:Vyeno.T, Aria R, Taniuchi T and Matsuura K. Indo-pacific Fish Biology:Proceedings of the second international conference on indo-pacific fishes [J]. Ichthyological society of Japan, Tokyo,1986, pp.877-885.
    [114]ShimizuY., et al. Sloctrophoretic studies of diploid. Triploid and tetraploid forms of the Japanese silver crucican carp. Carassius auratus langsdorfii [J]. Jpn. J.Ichthyol,1993,40:65-75.
    [115]Zou S.M., et al. Establishment of fertile tetraploid population of blunt snout bream (Megalobrama amblycephala) [J]. Aquaculture,2004,238:155-164.
    [116]Berrebi P.. Speciation of the genus Barbus in the North Mediterrancan basin: Recent advances from biochemical genetics [J]. Boil.Conserv.,1995,72: 237-249.
    [117]Ollermann L.K., et al. Hexaploidy in yellowfish species (Barbus, Pisces, Cyprinidae) from Southern Africa [J]. J. Fish Biol.1990,37:105.
    [118]Agnese J.F, et al. Two lineages,2n and 4n, demonstrated in African species of Barbus (Osteichthyes, Cyprinidae):on the coding of differential gene expression [J]. Aquat. living Res,1990,3:305.
    [119]Ojima Y., et al. The occurrence of spontaneous ployploidy in the Japanese common loach, Misgumus anguillicaudatus Proc [J]. Japan Acad,1979,55B: 487.
    [120]Arai K., et al. Chromosomes and developmental potential of progeny of spontaneous tatraploid loach Misgumus anguillicaudatus [J]. Nippon Suisan Gakkaishi,1991b,57:2173.
    [121]Arai K., et al. Karyotype and erythrocyte size of spontaneous tetraploidy and triploidy in the loach Misgumus anguillicaudatus [J]. Nippon Suisan Gakkaishi,1991a,57:2167.
    [122]Matsubara K., et al. Survival potential and chromosomes of progeny of triploid and pentaploid females in the loach Misgurnus anguillicaudatus [J]. Aquacurture,1995,131:37.
    [123]Borin L.A, et al. A natural triploid in Trichomycterus davisii (Siluriformes, Trichomycteridae):Mitotic and meiotic characterization by chromosome banding and synaptonemal complex analyses [J]. Genetica,2002, 115:253-258.
    [124]Rab P.. Karotype of European catfish silurus glanis (Siluridae Pisces) with remarks on cytogenentics of siluroid fishes [J]. Folia Zool,1981,30:271-286.
    [125]Schultz R.J.. Origins and relationships of unisexual pociliids in:Meffe G K and Snelson F FJ Ecology and evolution of livebearing fishes (Poeciliidae) [M]. Prentice Hall Englewood Cliff N J,1989, PP 69-87.
    [126]Rishi K.K., M.S. Haobam. Karyotypes of three forms of fishes having high chromosome number [J]. Int J Acod Ichthyol,1984,5:139-144.
    [127]Maistro E.L., et al.. Natural tripoidy in Astyanax scabripinnis (Pisces, Characidae) and simultaneous accurrence of macro B-chromosomes [J]. Caryologia,1994,47:233-239.
    [128]Birstein V.J., et al. Phylogeny of the Acipenseriformes:Cytogenetic and molecular approaches [J]. Environ. Biol. Fishes,1997,48:127-155.
    [129]Leggatt R.A., G.K. Iwama. Occurrence of polyploidy in the fishes [J]. Reviews in Fish Biology and Fisheries,2003,13:237-246.
    [130]Liu S.J., Q.B. Qin, J. Xiao, W.T. Lu, J.M. Shen, et al.. The formation of the polyploid hybrids from different subfamily fish crossing and its evolutionary significance [J]. Genetics,2007.176:1023-1034.
    [131]Pennell W., B.A. Barton. Principles of salmonid culture [M]. Amsterdam New York:Elsevier. xxix.1039 p. p.,1996.
    [132]Comber S.C.L., C. Smith. Polyploidy in fishes:patterns and processes [J]. Biological Journal of the Linnean Society,2004,82:431-442.
    [133]范兆廷,沈俊宝.鱼类中的多倍体[J].动物学杂志,1985,24(3):52-57.
    [134]吴清江,叶玉珍,陈荣德.具有天然雌核发育特征的人工复合三倍体鲤鱼[J].自然科学进展,1997,7(3):340-344.
    [135]苏泽古.草鱼三倍体及其核型的研究[J].鱼类学论文集,1983,3:53.
    [136]洪云汉.热休克诱导鳙鱼四倍体的研究[J].动物学报,1990,36(1):70-75.
    [137]苏泽古.白鲢三倍体及其核型的研究[J].动物学研究(增刊),1984,5(3):15-20.
    [138]容寿柏,周泉涌,安艳芳.用热休克诱导罗非鱼四倍体[J].中国实验动物学杂志,1994,4(2):97-101.
    [139]吴玉萍,叶玉珍,吴清江.热休克诱导斑马鱼异源三倍体的研究[J].海洋与湖沼,2000.31(5):466-470.
    [140]尹洪滨,潘伟志,孙中武,等.静水压休克法诱导三倍体鲶鱼的研究[J].水产学杂志,1997,10(1):10-13.
    [141]马涛,朱才宝,朱秉仁.热休克诱导虹鳟四倍体[J].水生生物学报,1987,11(4):329-336.
    [142]林琪,吴建绍,曾志南.静水压休克诱导大黄鱼三倍体[J].海洋科学,2001,25(90):6-9.
    [143]蔡国雄.真鲷三倍体诱导初步研究[J].热带海洋,1997,16(4):95-98.
    [144]尤锋.海产鱼类多倍体育种的研究[J].海洋科学,1997,(1):33-36.
    [145]Liu S.J., Y.D. Sun, C. Zhang, et al. Production of gynogenetic progeny from allote-traploid hybrids red crucain carpx common carp [J]. Aquaculture,2004, 236:193-200.
    [146]Liu S.J., W. Duan, M. Tao, et al.. Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp × common carp [J]. Science in China Series C:Life Sciences,2007,50(2):186-193.
    [147]Chen S., J. Wang, Q.B. Qin, et al.. Biological characteristics of an improved triploid crucian carp [J]. Science in China Series C:Life Sciences,2009,52(8): 733-738.
    [148]Rasch E.M., R.M. Darnell, K.D. Kallman, et al.. Cytophotometric evidence for triploidy in hybrids of the gynogenetic fish Poecilia formoesa [J]. J.Exp.Zool, 1965,160(2):155-170.
    [149]Marian T., Z. Krasznai. Aquaclture Hungarica [M].1978,I:44-50.
    [150]刘思阳.三倍体草鱼鲂杂种与双亲性腺发育的比较观察[J].淡水渔业,1988,(4):27-28.
    [151]桂建芳等.人工复合四倍体异育银鲫雌核发育生殖方式的初步证明[J].科学通报,1992,37(9):836.
    [152]吴维新等.鲤和草鱼杂交四倍体及其回交四倍体草鱼杂种的研究[J].水生生物学报,1988,12(4):355.
    [153]Cherfas N.B., et al.. Induced diploid gynogenesis and polyploidy in crucian carp,Carassius auratus gibelio(Bloch) × common carp, Cyprinus carpio L. hybrids [J]. Aquacult.Fish.Mgmt,1994,25:943.
    [154]陈敏容,阎康,刘汉勤等.人工诱导白鲫(♀)×红鲫(♂)异源四倍体鱼的初步研究[J].水生生物学报,1987,11(1):96-98.
    [155]杨睿姣,李冰霞,冯浩等.彭泽鲫染色体数目及倍性的细胞遗传学分析[J]. 动物学报,2003,49(1):104-109.
    [156]张纯,孙远东,刘少军等.二倍体雌核发育鱼产生二倍体卵子的证据[J].遗传学报,2005,32(2):136-144.
    [157]刘少军,孙远东,黎双飞等.三倍体湘云鲫性腺指数分析[J].水产学报,2002,26(2):111-114.
    [158]桂建芳,孙建民,梁绍昌等.鱼类染色体组操作的研究.Ⅱ.静水压处理与冷休克结合处理诱导水晶彩鲫四倍体[J].水生生物学报,1991,15(4):333-341.
    [159]Richard A.K., P. Philippsen, R.W. Davis. Divergent transcription in the yeast ribosomal RNA coding region as shown by hybridization to separated strands and sequence analysis of cloned DNA [J]. Journal of Molecular Biology,1978, 123:405-416.
    [160]Cihlar R.L., P.S. Sypherd. The organization of the ribosomal RNA genes in the fungus Mucor racemosus [J]. Nucleic Acids Res,1980,8:793-804.
    [161]Tabata S.. Structure of the 5S ribosomal RNA gene and its adjacent regions in Torulopsis utilis [J]. Eur JBiochem,1980,110:107-114.
    [162]Cassidy J.R., P.J. Pukkila. Inversion of 5S ribosomal RNA genes within the genus Coprinus [J]. Curr Genet,1987,12:33-36.
    [163]Luc C., Duchesnea, J.B. Andersona. Location and direction of transcription of the 5S rRNA gene in Armillaria [J]. Mycological Research,1990,94: 266-269.
    [164]Amici A., F. Rollo. The nucleotide sequence of the 5S ribosomal RNA gene of Pyrenophora graminea [J]. Nucleic Acids Res,1991,19:50-73.
    [165]Rooney A.P., T.J. Ward. Evolution of a large ribosomal RNA multigene family in filamentous fungi:birth and death of a concerted evolution paradigm [J]. Proc Natl Acad Sci USA,2005,102:5084-5089.
    [166]Ganal M.W., N.L.V. Lapitan, S.D. Tanksley. A molecular and cytogenetic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum) [J]. Molecular and General Genetics MGG,1988,213:262-268.
    [167]Negi M.S., J. Rajagopal, N. Chauhan, R. Cronn, M. Lakshmikumaran. Length and sequence heterogeneity in 5S rDNA of Populus deltoides [J]. Genome, 2002,45:1181-1188.
    [168]Brown D.D., D. Carrol, R.D. Brown. The isolation and characterization of a second oocyte 5s DNA from Xenopus laevis [J]. Cell,1977,12:1045-1056.
    [169]Bogenhagen D.F., S. Sakonju, D.D. Brown. A control region in the center of the 5S RNA gene directs specific initiation of transcription:II. The 3'border of the region [J]. Cell,1980,19:27-35.
    [170]Bogenhagen D.F., D.D. Brown. Nucleotide sequences in Xenopus 5S DNA required for transcription termination [J]. Cell,1981,24:261-270.
    [171]Komiya H., M. Hasegawa, S. Takemura. Differentiation of oocyte-and somatic-type 5S rRNAs in animals [J]. J. Biochem,1986,100:369-374.
    [172]Sajdak S.L., K.M. Reed, R.B. Phillips. Intraindividual and interspecies variation in the 5S rDNA of coregonid fish [J]. J Mol Evol,1998,46:680-688.
    [173]Wasko A.P., C. Martins, J.M. Wright, P.M. Jr. Galetti. Molecular organization of 5S rDNA in fishes of the genus Brycon [J]. Genome,2001,44:893-902.
    [174]Pendas A.M., P. Moran, J.P. Freije, E. Garcia-Vazquez. Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA [J]. Cytogenet Cell Genet,1994,67:31-36.
    [175]Mora'n P., J.L. Martinez, E. Garcia-Vazquez, A.M. Pendas. Sex chromosome linkage of 5S rDNA in rainbow trout (Oncorhynchus mykiss) [J]. Cytogenet Cell Genet,1996,75:145-150.
    [176]Martins C, P.M. Jr. Galetti. Organization of 5S rDNA in species of the fish Leporinus:two different genomic locations are characterized by distinct nontranscribed spacers [J]. Genome,2001a,44:903-910.
    [177]Sola L., A.R. Rossi, F. Annesi, E. Gornung. Cytogenetic studies in Sparus auratus (Pisces, Perciformes):molecular organization of 5S rDNA and chromosomal mapping of 5S and 45S ribosomal genes and of telomeric repeats [J]. Hereditas,2003,139:232-236.
    [178]Robles F., R. de la Herran, A. Ludwig, C.R. Rejon, M.R. Rejon, et al. Genomic organization and evolution of the 5S ribosomal DNA in the ancient fish sturgeon [J]. Genome,2005,48:18-28.
    [179]Pasolini P., D. Costagliola, L.F.T. Rocco. Molecular organization of 5S rDNAs in Rajidae (Chondrichthyes):Structural features and evolution of piscine 5S rRNA genes and nontranscribed intergenic spacers [J]. J Mol Evol,2006,62: 564-574.
    [180]Gornung E., P. Colangelo. F. Annesi.5S ribosomal RNA genes in six species of Mediterranean grey mullets:genomic organization and phylogenetic inference [J]. Genome,2007,50:787-795.
    [181]Martins C, Jr. P.M. Galetti. Two 5S rDNA arrays in neotropical fish species: is it a general rule for fishes? [J]. Genetica.2001b,111:439-446.
    [182]Kramer A..5S ribosomal gene transcription during Xenopus oogenesis [J]. Dev Biol (N Y),1985,1:431-451.
    [183]Qin Q.B., W.G. He, S.J. Liu, J. Wang, J. Xiao, et al.. Analysis of 5S rDNA Organization and Variation in Polyploid Hybrids from Crosses of Different Fish Subfamilies [J]. J. Exp. Zool. (Part B:Mol. Dev. Evol.).2010, 314:403-411.
    [184]Nelson D.W., B.M. Honda. Genes coding for 5S ribosomal RNA of the nematode Caenorhabditis elegans [J]. Gene,1985,38:245-251.
    [185]Leah R.. S. Frederiksen, J. Engberg, P.D. Sorensen. Nucleotide sequence of a mouse 5S rRNA variant gene [J]. Nucleic Acids Res,1990,18:7441.
    [186]Suzuki H., K. Moriwaki, S. Sakurai. Sequences and evolutionary analysis of mouse 5S rDNAs [J]. Mol Biol Evol,1994,11:704-710.
    [187]Penda's A.M., P. Moran, J.L. Martinez, E. Garcia-Vazquez. Applications of 5S rDNA in Atlantic salmon, brown trout, and in Atlantic salmon x brown trout hybrid identification [J]. Mol Ecol,1995,4:275-276.
    [188]Campo D., G Machado-Schiaffino, J.L. Horreo, E. Garcia-Vazquez. Molecular Organization and Evolution of 5S rDNA in the Genus Merluccius and Their Phylogenetic Implications [J]. Journal of Molecular Evolution,2009,68: 208-216.
    [189]Fujiwara M., J. Inafuku. A. Takeda, A. Watanabe, A. Fujiwara, et al.. Molecular organization of 5S rDNA in bitterlings (Cyprinidae) [J]. Genetica, 2009,135:355-365.
    [190]Yi Q.M.. G.P. Liu. Spacer Length Varation in Rice 5S rRNA Genes Revealed by Polymerase Chain Reaction [J]. Wuhan J. (Natrual Science Edit),1997, 2(1):124-126.
    [191]Raap A.K.. Advances in fluorescence in situ hybridization [J]. Mutat Res,1998, 400:287-298.
    [192]Ekong R., J. Wolfe. Advances in fluorescence in situ hybridisation [J]. Curr Opin Biotech,1998,9:19-24.
    [193]Jiang J., B.S. Gill. Nonisotopic in situ hybridization and plant genome mapping:the first 10 years [J]. Genome,1994,37:717-725.
    [194]Kitamura S., A. Tanaka, I. Masayoshi. Genomic relationship among Nicotiana species with different ploidy levels revealed by 5s rDNA spacer sequences and F1SH/GISH [J]. Genes Genet.Syst,2005,80:251-260.
    [195]Bernard R., L. Baum, B. Grant, et al. The utility of the nontranscribed spacer of 5S rDNA units grouped into unit classes assigned to haplomes-a test on cultivated wheat andwheat progenitors [J]. Genome,2004,47:590-599.
    [196]Zhu H.P., D.M. Ma, J.F. Gui. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting [J]. Chromosome Research, 2006,14:767-776.
    [197]Phillips R.B., K.M. Reed. Application of fluorescence i n sit u hy2 bridization (FISH) techniques to fish genetics:a review [J], Aquaculture,1996, 140:197-216.
    [198]Sola L., O. Cipelli, E. Gornung, et al.. Cytogenetic characterization of the greater amberjack, Seriola dumerili (Pisces:Carangidae), by different staining techniques and fluorescence in situ hybridization [J]. Mar. Biol,1997, 128:573-577.
    [199]Rossi A.R., D. Crosetti, E. Gornung, et al.. Cytogenetic analysis of the global populations of Mugil cephal us (striped mullet) by different staining techniques and fluorescent in situ hybridization [J]. Heredity,1996,76:77-82.
    [200]Rossi A.R., E. Gornung, D. Crosetti, et al.. Cytogenetic analysis of Liza ramada (Pisces, Perciforms) by different staining techniques and fluorescence in situ hybridization [J]. Heredity,1997,79:83~89.
    [201]Pendas A.M., P. Moran, E. Garcia-Vazquez. Ribosomal RNA genes are interspersed throughout a heterochromatic chromosome arm in Atlantic salmon. Cytogenet [J]. Cell Genet.,1993a, 63:128-130.
    [202]刘少军,黎双飞,刘筠.异源四倍体鱼早期胚胎发育观察[J].湖南师范大学自然科学学报,2001,24:55-57
    [203]易念,张纯,王云,刘少军,刘筠.三倍体鲫鱼早期胚胎发育观察[J].湖南师范大学自然科学学报,2006,3:87-104
    [204]王云,刘少军, 易念,孙远东,张纯,王静.雌核发育鲫鲤早期胚胎发育观察[J].湖南师范大学自然科学学报,2005,28:58-61
    [205]Albert L., F. Karl, A.A. Sandberg. Nomenclature for centromeric position on chromosomes [J]. Hereditas,1964,52:201-220.
    [206]陈永,魏刚.瓦氏黄颡鱼胚胎发育的研究[J].西南农大学报,1995,17(5):4142418.
    [207]肖秀兰,张明,魏宏民等.鄱阳湖黄颡鱼胚胎发育观察[J].淡水渔业,,2003,33(3):36237.
    [208]王金秋,潘连德,梁天红等.松江鲈鱼(Trachidermus fasciatus)胚胎发育的初步观察[J].复旦学报(自然科学版),2004,43(2):2502254.
    [209]易祖盛,王春,陈湘遴.尖鳍鲤的早期发育[J].中国水产科学,2002,9(2):1202124.
    [210]海萨.丁鱼岁的胚胎发育[J].水利渔业,2004,24(2):426.
    [211]易祖盛,王春,陈湘遴等.倒刺鱼巴胚胎发育的研究[J].中国水产科学,2004,11(1):65268.
    [212]胡亚,华元渝.暗纹东方鱼屯胚胎发育的观察[J].南京师大学报(自然科学版),1995,18(4):1392144.
    [213]张春光,赵亚辉.胭脂鱼的早期发育[J].动物学报,2000,46(4):4382447.
    [214]杜伟,蒙子宁,薛志勇等.半滑舌鳎胚胎发育及其与水温的关系[J].中国水产科学,2004,11(1):48252.
    [215]Venkatesh B.. Evolution and diversity of fish genomes [J]. Curr Opin Genet Dev.,2003,13:588-592.
    [216]Xiao J., T.M. Zou, Y.B. Chen, L. Chen, S.J. Liu, et al.. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters [J]. BMC Genetics.2011,12:20.
    [217]Soltis D.E., P.S. Soltis, J.A. Tate. Advances in the study of polyploidy since Plant speciation [J]. New Phytol,2003,161:173-191.
    [218]Comai L. The advantages and disadvantages of being polyploidy [J]. Nat. Rev. Genet.,2005,6:836-845.
    [219]Kassahn K.S., V.T. Dang, S.J. Wilkins, et al. Evolution of gene function and regulary control after whole-genome duplication:Comparative analysis in vertebrates [J]. Genome Res,2009,19:1404-1418.
    [220]Liu S.J.. Distant Hybridization Leads to Different Ploidy Fishes [J]. Science China Series C:Life Sciences,2010,53(4):416-425.
    [221]Sambrook J., E.F.& T.M. Fritsch. Molecular cloning:a laboratory manual [M]. 2nd edition. Plainsview, NY:Cold Spring Harbor Laboratory Press,1989.
    [222]Tierch T.R., M.J. Mitchell, S.S. Wachtel. Studies on the phylogenetic conservation of the SRY gene [J]. Human genetics,1991,87:571-3.
    [223]Spotile L.D., N.F. Kaufer, E. Theriot, et al. Sequence analysis of ZFY and Sox genes in the turtle, Chelydra serpentine [J]. Molecular Phylogenetics and Evolution,1994;3:1-9.
    [224]Graves J.A.. Evolution of the mammalian Y chromosome and sex-determining genes [J]. The Journal of Experimental Zoology,1998;28:472-81.
    [225]Hall, T.A.. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J], Nucleic Acids Symp Ser,1999, 41:95-98.
    [226]Julie D., D.G.H. Thompson, T.J. Gibson. CLUSTALW:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weigh [J]. Nucleic Acids Research,1994,22,4673-4680.
    [227]Chen L., Li W., Liu S.J., M. Tao, Y. Long, et al.. Novel genetic markers derived from the DNA fragments of Sox genes [J]. Molecular and Cellular Probes,2009,23:157-165.
    [228]Wegner M.. From head to toes:the multiple facets of Sox proteins [J]. Nucleic Acids Res.,1999,27(6):1409-1420.
    [229]Wilson M., P. Koopman. Matching Sox:partner proteins and co-factors of the SOX family of transcriptional regulators [J]. Curr Opin Genet Dev,2002, 12(4):441-446.
    [230]Schafer A.J., J.W. Foster, C. Kwok, et al.. Campomelic dysplasia with XY sex reversal:diverse phenotypes resulting from mutations in a single gene [J]. Ann N Y Acid Sci,1996,785:137-149.
    [231]Long E.O., I.B. Dawid. Repeated genes in eukaryotes [J]. Annu Rev Biochem., 1980.49,727-64.
    [232]Delseny M., M.M.J., P., A.M.This, C.F. Chevre. Quiros Ribosomal RNA genes in diploid and amphidiploid Brassica and related species:organization, polymorphism, and evolution [J]. Genome,1990,33:733-744.
    [233]Pamela S., Soltis& E.Soltis, D. Multiple origin of the allotetraploid Tragopogon mirus (Compositae):rDNA evidence [J]. Systematic Botany,1991, 16:407-413.
    [234]Volkov R.A., N.V. Borisjuk, I.I. Panchuk, D. Schweizer, V. Hemleben. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum [J]. Mol Biol Evol,1999,16:311-320.
    [235]Badaeva E.D., et al. Genome differentiation in Aegilops.3. Evolution of the D-genome cluster [J]. Plant Systematics and Evolution,2002,231,163-190.
    [236]Kashkush K., M. Feldman, A.A. Levy. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid [J]. Genetics,2002,160:1651-9.
    [237]Kotseruba V., D. Gernand, A. Meister, A. Houben. Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n=8) [J]. Genome,2003,46:156-63.
    [238]Han F., G. Fedak, W. Guo, L. B.. Rapid and repeatable elimination of a parental genome specific DNA repeat (pGc1Rla) in newly synthesized wheat allopolyploids [J]. Genetics,2005,170:1239-1245.
    [239]Baack E.J., L.H. Rieseberg. A genomic view of introgression and hybrid speciation [J]. Curr Opin Genet Dev,2007,17:513-8.
    [240]Inafuku J., M. Nabeyama. Y. Kikuma, J. Saitoh, S. Kubota, et al.. Chromosomal location and nucleotide sequences of 5S ribosomal DNA of two cyprinid species (Osteichthyes, Pisces) [J]. Chromosome Res.,2000.8: 193-199.
    [241]Rieseberg L.H.. Polyploid evolution:keeping the peace at genomic reunions [J]. Curr Biol,2001,11:925-928.
    [242]Ozkan H., A.A. Levy, M. Feldman. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group [J]. Plant Cell,2001,13: 1735-1747.
    [243]Pinhal D., T.S. Yoshimura, C.S. Araki, C. Martins. The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes:an example from freshwater stingrays [J]. BMC Evolutionary Biology,2011,11: 151.
    [244]孙梅,刘红林.原位杂交技术及其在动物基因定位上的应用进展[J].黄牛杂志,2000,26(6):39243.
    [245]黄梅,袁仕取,朱作言.原位杂交和原位技术在鱼类基因定位中的应用[J].水生生物学学报,2001,25(2):1952201.
    [246]Yi M.S., Y.Q. Li, J.D. Liu, L. Zhou, Q.X. Yu, et al.. Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch [J]. Chromosome Res,2003,11:665-671.
    [247]Affonso P.R., M.G Pedro. Chromosomal diversification of reef fishes from genus Centropyge (Perciformes, Pomacanthidae) [J]. Genetica,2005, 123:227-233.
    [248]Zhu H.P., J.F. Gui. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio [J]. Aquaculture,2007,265: 109-117.
    [249]Morescalchi M.A., I. Liguori, L. Rocco, A. Archimandritis, V. Stingo. Karyotypic characterization and genomic organization of the 5S rDNA in Polypterus senegalus (Osteichthyes, Polypteridae) [J]. Genetica,2008,132: 179-186.
    [250]Mazzuchelli J., C. Martins. Genomic organization of repetitive DNAs in the cichlid fish Astronotus ocellatus [J]. Genetica,2009,136:461-469.
    [251]Zhu H.P., M.X. Lu, F.Y. Gao, Z.H. Huang, L.P. Yang, et al.. Chromosomal localization of rDNA genes and genomic organization of 5S rDNA in Oreochromis mossambicus, O. urolepis hornorum and their hybrid [J]. Journal of Genetics,2010.89:163-171.
    [252]Suzuki H., S. Sakurai, Y. Matsuda. Rat 5S rDNA spacer sequences and chromosomal assignment of the genes to the extreme terminal region of chromosome 19. Cytogenet [J]. Cell Genet.,72:1-4,1996.
    [253]Baum B.R., L.G. Bailey. The 5S rRNA gene sequence variation in wheats and some polyploidy wheat progenitors (Poaceae:Triticeae) [J]. Genet. Resour. Crop Evol., 2001,48(1):35-51
    [254]Martins C, A.P. Wasko. Organization and evolution of 5S ribosomal DNA in the fish genome. In:Williams CR (ed) Focus on Genome Research [M]. Nova Science Publishers, Hauppauge,2004, pp 289-318.
    [255]Fujiwara A., Fujiwara M., Nishida-Umehara C, Abe S. and Masaoka T. Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers [J]. Genetica,2007, 131,267-274.
    [256]Yogeeswaran K.. A.,Frary, T.L.York, A. Amenta, A.H. Lesser, J.B. Nasrallah et al. Comparative genome analyses of Arabidopsis spp.:inferring chromosomal rearrangement events in the evolutionary history of A. thaliana [J]. Genome R., 2005,15,505-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700