ZrO_2基固体酸碱催化水解低浓度氟利昂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟利昂是一类温室气体,对人类健康、地球生态环境造成了严重破坏。氟利昂无害化和资源化处理已成为当今环保技术研究的热点之一,将低浓度氟利昂在排放到大气之前彻底分解技术开发有重要现实意义。本文利用ZrO2负载金属氧化物制备固体酸、固体碱催化剂催化水解低浓度氟利昂CFCs(以CFC-12为例),重点研究了固体酸、固体碱催化剂的制备条件,低浓度氟利昂催化水解工艺条件,水解机理,水解反应的热力学和动力学。
     催化剂制备优化实验:浸渍法制备固体酸MoO3/ZrO2的单因素最佳制备条件为:1次过饱和浸渍,浸渍液(NH4)6Mo7O24·4H2O浓度为0.5 mol.L-1,液固比1.5,浸渍温度80℃,浸渍时间4 h,ZrO2的质量分数为20-40%,焙烧温度为450℃。湿混法制备固体碱Na2O/ZrO2为:Zr:Na的摩尔比为1:0.35,焙烧温度为600℃;溶胶-凝胶法制备的固体碱CaO/ZrO2为:Zr:Ca的摩尔比为1:0.35,焙烧温度为650℃。
     低浓度CFC-12在固体酸碱催化剂水解工艺条件考察:固体酸MoO3/ZrO2为:水解温度250℃,反应气体组成(mol%):1.0 CFC-12,40.0 H2O(g),10.0 O2,其余为N2,具有较强的稳定性和选择性,可采用加热与浸渍联合再生。固体碱Na2O/ZrO2和CaO/ZrO2为:水解温度260℃,反应气体组成(mol%):1.0 CFC-12,50.0 H2O(g),8.0 O2,其余为N2,空速小于1000 h-1,或者气体流量小于10.0 cm3min-1, CFC-12的转化率达到90.0%以上,空气中的水分易导致催化剂失活,可采用加热再生。
     低浓度CFC-12在固体酸碱催化剂水解机理分析:在实验研究并借助BET、TEM、TPD、XRD、FT-IR等方法表征催化剂的基础上提出了低浓度CFC-12水解机理。(1)固体酸MoO3/ZrO2水解低浓度CFC-12。催化剂孔径分布在1.5-6.0nm,主要集中和起主要催化作用的孔径为3.90 nm;晶粒大小随着焙烧温度的升高而增大,晶相随着焙烧温度的升高而增加;弱酸位强度相当,而中等强度酸位和强酸位随焙烧温度的增加而增加,NH。脱附峰从低温向高温发生位移;CFC-12水解是弱酸位、中强酸位和强酸位协同催化的共同结果,CFC-12水解产生的Cl-进入到催化剂表面或内部,导致催化剂在开始使用的10 h内活性降低;催化剂中MoO3。与ZrO2骨架以一种较强的相互作用力结合在一起形成强酸位。提出了固体酸酸中心形成模型和CFC-12水解机理模型。(2)固体碱Na2O/ZrO2和CaO/ZrO2水解低浓度CFC-12。催化剂总孔体积和平均孔径随着焙烧温度升高而增加,而比表面积随着温度升高是先增加后降低;ZrO2晶粒与Na2O或CaO纳米颗粒相互嵌合,堆积成孔径为15-35 nm的一种类似海绵状的介孔复合物,具有较高的比表面积和活性;Na2O/Zr0。在75-425℃温度范围内存在脱附峰,而CaO/ZrO2在425-635℃温度范围内存在脱附峰,且随着焙烧温度的升高,脱附峰的位置向高温方向漂移;Na2O/ZrO2(600℃)主要物相为四方和单斜氧化锆晶相,而CaO/ZrO2(650℃)为四方氧化锆晶相和少量的单斜氧化锆晶相,起主要催化作用的物相是单斜相ZrO2(m-ZrO2)。提出了固体碱碱中心形成模型和CFC-12水解反应机理模型。
     热力学分析:利用弗伦德里希等温方程和克劳修斯-克拉佩龙方程对CFC-12吸附等温线和吸附等容线进行拟合,计算了固体酸MoO3/ZrO2对CFC-12的反应吸附热-⊿HAM在56.30~73.22 kJ.mol-1内,为放热反应,属于化学吸附。计算了固体碱Na2O/ZrO2和CaO/ZrO2对CFC-12的反应吸附热和在水解温度260℃时标准摩尔反应吉布斯函数和平衡常数。
     动力学分析:利用班厄姆吸附速率公式和阿累尼乌斯方程,由吸附容量曲线计算了固体酸MoO3/ZrO2和固体碱Na2O/ZrO2催化水解CFC-12的反应活化能、反应速率方程和反应级数。结果表明固体酸MoO3/ZrO2反应级数n随水解温度的升高而降低,反应速率常数K随水解温度的升高而升高,反应活化能为123.12 kJ.mol-1;固体碱Na2O/ZrO2在催化反应初期阶段,反应级数n随水解温度的升高而降低,反应速率常数K随水解温度的升高而升高,反应活化能为51.18 kJ.mol-1。在催化反应后期阶段,n随水解温度的升高而降低,而K随水解温度升高而升高,随反应时间延长而降低,反应活化能为312.74 kJ.mol-1。
Chlorofluorocarbons (CFCs) have been brought about many destroys on humanity health, ecological and globosity environment because CFCs are green house gases. The harmless and resources disposition of CFCs has been a hot topic in recent years, and it is significantly important to develop low concentration CFCs decomposition technique before being liberated into the atmosphere. Low concentration CFCs, dichlorodifluorocarbons (CFC-12), as an example, were catalytic hydrolyzed over solid acid and alkali catalysts, which were prepared by metal oxide supported ZrO2. Factors of catalyst preparation, techniques of catalytic hydrolysis, mechanism, thermodynamics and dynamics were emphasis studied in this paper.
     From the optimization experimentation, the catalysts prepared by optimum conditions of solid acid MoO3/ZrO2 are, one times superaturation dipping, the concentration of (NH4)6Mo7O24·4H2O 0.5 mol.L-1, the ratio of liquid to solid 1.5, the dipping temperature 80℃and 4 hours, the quality percent of ZrO2 20-40%, and the calcination temperature 450℃. Solid base Na2O/ZrO2 were, Zr:Na=1:0.35, the calcination temperature 600℃. Solid base CaO/ZrO2 were, Zr:Ca=1:0.35, the calcination temperature 650℃.
     Catalytic hydrolyzed of low concentration CFC-12 was investigated over solid acid-base catalysts. The optimum hydrolytic conditions of solid acid MoO3/ZrO2 were, the hydrolytic temperature 250℃, the composition of reaction gases (mol%),1.0 CFC-12,40.0 H2O(g),10.0 O2, others N2, high stability and selectivity, and regenerated by heat or dipping. The optimum hydrolytic conditions of solid base Na2O/ZrO2 and CaO/ZrO2 were, the hydrolytic temperature 260℃, the composition of reaction gases 1.0 CFC-12,50.0 H2O(g),8.0 O2, others N2, the space velocity 1000 h-1, and the humidity in air brought on catalyst poisoning and regenerated by heat.
     Catalytic hydrolysis mechanisms for low concentration CFC-12 were studied. Catalysts were characterized by BET, TEM, TPD, XRD and FT-IR. (1) Solid acid MoO3/ZrO2. Distribution of pore size was narrowly range from 1.5 to 6.0 nm, mainly in and the main active pore size was 3.90 nm. Crystalline size increased with the calcination temperature rise and it was in the main form of crystalline phase. Calcination temperature affected acid species of MoO3/ZrO2, which has corresponded weak acid sites, and middle intensity and strong acid sites increased with the calcination temperature. The weak, middle intensity and strong acid sites jointly catalyzed the CFC-12 hydrolysis. MoO3 and ZrO2 framework in catalysts formed strong acids in the form of strong interaction. (2) Solid base Na2O/ZrO2 and CaO/ZrO2.The total pore volume and average pore size were raised with calcination temperature rising, and the specific area was raised and declined with calcination temperature. Mesoporous complex substance was mutual chimeras by ZrO2 crystalline grain, and Na2O or CaO nanometer grain, which has bore diameter 15-35 nm, high specific area and activation. Solid base Na2O/ZrO2 had desorption peaks in the temperature range from 75 to 425℃and solid alkali CaO/ZrO2 in the temperature range from 425 to 625℃. These peaks drift to high temperature with the calcination temperature rise. Solid alkali Na2O/ZrO2 (calcinated at 600℃) had much t-ZrO2 and m-ZrO2, however CaO/ZrO2 (calcinated at 650℃) had much t-ZrO2 and little m-ZrO2. Absorption peaks of solid alkalis decreased with the calcination time prolonged and temperature rise, and the m-ZrO2 was the main active ingredient. The formation model of acid-base center and the reaction mechanism model of low concentration CFC-12 catalytic hydrolysis over acid-base catalysts were brought forward.
     Adsorption isotherm of CFC-12 was imitated by Freundich isothermal equation, and adsorption isochore was imitated by Clausius-Clapeyron equation. The adsorption heat-(?)HAM of CFC-12 over solid acid was calculated as 56.30-73.22 kJ.mol-1, belong to chemical adsorption. The adsorption heat of CFC-12 over solid base Na2O/ZrO2 and CaO/ZrO2 were calculated. The equilibrium constant and the activation energy were calculated under reaction temperature 260℃.
     The activation energy, reaction rate equation and reaction order were calculated from the adsorption capacity curve of low concentration CFC-12 by Bangham adsorption rate formula and Arrhenius equation. The reaction order declined and the reaction rate constant K has gone up with reaction temperature rising, the activation energy 123.12 kJ.mol-1 over solid acid MoO3/ZrO2. The activation energy, reaction rate equation and reaction order were calculated of CFC-12 over solid base Na2O/ZrO2. The reaction order declined and the reaction rate constant K has gone up with reaction temperature rising, the activation energy 51.18 kJ.mol-1 in the primary stage. The reaction order declined and the reaction rate constant K has gone up with reaction temperature and declined with the reaction time, the activation energy reached to 312.74 kJ.mol-1 in later stage.
引文
[1]冯永恭.有机氟工业[M].上海:上海科技出版社,1992.
    [2]A.McCulloch. Fluorocarbons in the global environment:a review of the important interaction s with atmospheric chemistry and physics [J]. J.Fluorine Chemistry,2003(123):21-29.
    [3]F.S.Rowland, M.J.Molina. Stratospheric sink of chlorofluoromethanes:chlorine atomic-analyze d destruction of ozone [J]. Nature,1974(249):810.
    [4]F.S.Rowland, M.J.Molina. Ozone depletion:20 years after the alarm [J]. Chemical & Engine ering News,1994(15):8.
    [5]游英,周道生.环境保护与CFCs禁用问题[J].扬州工学院学报.1991(12):63-69.
    [6]张永贵译.氟利昂问题的现状和未来[J].国外油田工程.1996(2):40-43.
    [7]J.Mizeraczyk, Z.Zakrzewski, L.Chang. Decomposition of C2F6 in atmospheric-pressure nitroge n microwave torch discharge JasinskiM [J]. JSCZECHOSLOVAKJ.Phy,2002(s52):743-749.
    [8]马臻,华明伟,高滋.氟利昂催化分解研究进展[J].化学通报,2001(6):339-344.
    [9]钟兴厚.无机化学丛书第六卷·卤素[M].北京:科学出版社,1995.
    [10]黄伟贞.氟利昂回收净化技术在生产中的应用[J].中国设备工程,2003(1):48-49.
    [11]陆友来译.利用高频等离子体分解氟利昂的装置[J].渔业机械仪器.1995(2):26-27.
    [12]林春生.微波等离子体技术分解氟利昂[J].化学装置.2001(1):41-42.
    [13]张之龙.氟利昂的应用前景与对策[J].北京化工.1990(3):19-23.
    [14]朱文江,吴卫,顾准等.氟里昂生产厂对农田生态系统的污染[J].上海环境科学.1989(7):38-40.
    [15]化学危险品知识连载(30)一氯二氟甲烷与氟利昂22[J].化工开发与设计.2001(4):29.
    [16]裘玉平.氟里昂—12的特点与使用[J].汽车运输.1991(5):16.
    [17]陆轶釜.浅谈CFCs替代品代码命名.浙江化工[J].2002(4):55-57.
    [18]S.l.Tian. Characterization of sorption Mechanisms of VOCs with organobentonites Using a LSER Approach [J].Environ.Sci.Technol,2004(38):489-495.
    [19]徐向东.特定氟利昂(CFC)对环境的影响及对策[J].冷藏技术.1993(1):36-44.
    [20]A. L.Ronan. Investigation of an acute Chemical incident [J]. Occup.Encoron.Med,2000(57): 577-587.
    [21]陈立民,吴力波.臭氧层耗损研究的进展评述[J].上海环境科学.1999(5):197-200.
    [22]王若禹.臭氧洞的形成、危害及对策[J].河南大学学报(自然科学版)2001(2):90-94.
    [23][美]诺埃尔·德·内韦尔著.胡敏,谢绍东等译.大气污染控制工程[M].北京:化学工业出版社,2005.
    [24]田小英.臭氧层受损害对地球上生命的影响[J].甘肃科技.1999(6):59-60.
    [25]姜言丽译.臭氧层破坏与紫外线增加的影响[J].国外科技动态.1997(5):29-30
    [26]于洪兰.大气臭氧层的破坏和保护[J].潍坊学院学报.2003(11):15-16.
    [27]吴越.催化化学(增补重印)[M].北京:科学出版社,1998.
    [28]B.Coq, F.Medina, D.Tichit, A.Morato. The catalytic transformation of chlorofluorocarbons in hydrogen on metal-based catalysts supported on inorganic fluorides [J]. Catal.Today,2004(8 8):127-137.
    [29]胡建信,赵丽娟,张世秋,张剑波,唐孝炎.中国未来氟氯化碳(CFC)的生产和消费变化趋势[J].环境保护.2005(7):22-24.
    [30]吴泽球.全封闭制冷设备中制冷剂的回收[J].化工环保.2004(1):75.
    [31]遂功.取代氟利昂保护臭氧层[J].工程设计与研究.2001(2/3):42-45.
    [32]潭铁鹏.以氟里昂作制冷剂的回收再利用技术[J].污染防治技术.1997(4):235-237.
    [33]成广兴,邵军.臭氧层的化学破坏及其对策[J].化学通报.1999(9):44-47.
    [34]潘雨顺.国内外氟里昂替代物研制现状与应用问题的探讨[J].四川制冷.1998(2):1-5.
    [35]林永达,陈庆云.大气臭氧层破坏和CFCs替代物[J].化学进展.1998(2):228-235.
    [36]刘永增,刘诚华,史莲芳.氟利昂危机与制冷技术革命[J].天津师范大学报(自然科学版).1995(4):34-39.
    [37]涂平,姚普明.非氟利昂制冷分析[J].天津商学院学报.1994(3):41-45.
    [38]徐湘波.氟里昂与环境保护[J].长沙铁道学院学报.2000(3):53-57.
    [39]张早校.氯氟烃的再生分解与破坏技术分析[J].环境保护.2002(3):22-24.
    [40]United Nations Environment Programme(UNEP),1992 Report, United Nations Headquarters, Ozone Secretariat:P.O.Box 30552,Nairobi, Kenya,1992.
    [41]傅学起,王诤.氟氢烃破坏技术研究进展[J].环境科学动态.1999(4):17-19.
    [42]郝郑平,程代云,梁一红.氟利昂12(CCl2F2)燃烧分解催化剂性能的研究[J].环境化学.2000(3):204-208.
    [43]倪玉霞.氟利昂燃烧前预混合水解资源化初步实验研究[M].昆明理工大学硕士学位论文.2006.
    [44]缪培碧译.在水泥窑中销毁氟利昂[J].西南工学院《国外建译丛》.1997(1):49-52.
    [45]胡春华译.国外利用水泥窑的氟里昂分解装置概略[J].湖北林业科技.2001(3):50-51.
    [46]穆焕文译.用等离子体化学对氟利昂及含氟废料等进行无害化处理[J].有机氟工业.2003(3):56-58.
    [47]陆友来摘.利用高频等离子体分解氟利昂的装置[J].渔业机械仪器.1995(2):26-27.
    [48]水野光一.用等离子法分解氟利昂.低温与特气[J].1990(3):53-54.
    [49]GH.Deng, Y.Zhang, Y. Yu et al. Decomposition of gaseous CF2ClBr by cold plasma metho d[J]. J.Enviro.Sci.1997(1):11-19.
    [50]Z.C.Liu, X.X.Pan, W.B.Dong et al. Decomposition of CF3C1 by corona discharge[J]. J.Envir o. Sci.1997(1):95-99.
    [51]A. Gal, A. Ogata, S. Futamura, K. Mizuno. Mechanism of the Dissociation of Chlorofluoro carbons during Nonthermal Plasma Processing in Nitrogen at Atmospheric Pressure[J]. J.phy s.Chem.A.2003(107):8859-8866.
    [52]Y.F.Wang, W.J.Lee, C.Y.Hsien. Decomposition of dichlorodifluoromethane by adding hydroge n in a cold plasma system [J]. Environ. Sci. Technol.1999(33):2234-2240.
    [53]陈登云,孙大海,应海,杨芃原,王小如.用Hα线研究Freon12 (CF2CC12)对电感耦合等离子体(ICP)电子密度的影响[J].光谱学与光谱分析.1998(2):199-204.
    [54]陈登云,王小如,陈薇,杨芃原.氟利昂(CF2CC12)对电感耦合等离子体(ICP)放电特性的影响[J].光谱学与光谱分析.1998(3):319-324.
    [55]陈登云,王小如,贺红军.应用ICP消解氟利昂的优越性及其处理效率的初步研究[J].化学学报.1999(57):1136-1141.
    [56]侯健,韩功元,张正满,潘循皙,侯惠奇.氟利昂-12的常压DBD降解[J].复旦学报(自然科学版).1999(12):627-630.
    [57]B.Eliasson, U.Kogelschatz. Nonequilibrium volume plasma chemical processing [J]. IEEE Tr anscation on Plasma Science,1991(16):1063-1077.
    [58]V.S.Zakharenko, V. N.Parmon. Photoadsorption and Photocatalytic Processes Affecting the C omposition of the Earth's Atmosphere:Ⅱ. Dark and Photostimulated Adsorptionof Freon 22 (CHF2C1) on MgO [J]. Kinetics and Catalysis.2000(6):756-759.
    [59]M.Y.Melnikov, D.V. Baskakov, V.I.Feldman. Spectral Characteristics and Transformations of Intermediates in Irradiated Freon 11, Freon 113, and Freon 113a [J]. High Energy Chemistr y.2002(5):309-315.
    [60]K.Hirai, Y.Nagata, Y.Maeda. Decomposition of chlorofluorocarbons and hydrofluorocarbons i n water by ultrasonic irradiation [J]. Ultrasonics Sonnochemistry.1996(3):s205-s207.
    [61]N.Sonoyama, T.Sakata. Electrochemical Decomposition of CFC-12 Using Gas Diffusion Elec trodes [J]. Environ.Sci.Technol.1998(32):375-378.
    [62]GL.Li, H.Nishiguchi, T.Ishihara, Y.Moro-oka,YTakita. Catalytic dehydrofluorination of CF3C H3 (HFC143a) into CF2CH2 (HFC1132a) [J]. Appl.Catal.B:Environ.1998(16):309-317.
    [63]张建君,许茂乾.CFC-12的催化加氢研究[J].宁夏大学学报(自然科学版).2001(2):211-212.
    [64]湛雪辉,黄艳,湛含辉,姜涛,胡岳华,张晓琪.五氟氯乙烷的钯催化法加氢脱氯反应研究[J].环境科学研究.2003(2):61-64.
    [65]小仓兴太郎,郭健,矢野润.氟利昂12和氯仿在德瓦达合金上的氢分解[J].环境化学.1993(1):66-70.
    [66]张呈平,何飞,张伟,吕剑.CFCs加氢脱氯合成HFCs反应动力学研究进展[J].应用化工.2006(1):10-16.
    [67]B.Coq, J.M.Cognion, F.Figueras. Conversion of dichlorodifluoromethane under hydrogen over supported palladium catalysts [J]. J.Catal,1993(141):21-27.
    [68]B.Coq, F.Figueras, S.Hub. Effect of the metal support interaction on the catalytic properties of palladium for the conversion of dichlorodifluoromethane with hydrogen:comparison of oxides and fluorides as supports [J]. J.Phys Chem.1995(99):11159-11167.
    [69]M.Makkee, E.J.A.X.van de Sandt, A.Wiersma, J.A.Moulijn. Development of a satisfactory p alladium on activated carbon catalyst for the selective hydrogenolysis of CC12F2(CFC-12) int o CH2F2(HFC-32) [J]. J.Mole.Catal.A.1998(134):191-200.
    [70]D.H.Cho, Y.G.Kim, J.S.Chung. Catalytic fluorination of 1,1,1-trifluoro-2-chloroethane (FCFC-133a) over chromium catalysts [J]. Catal.lett.1998(53):199-203.
    [71]H.Yu, E.M.Kennedy, M.A.Uddin, B.Z.Dlugogorski. Catalytic hydrodehalogenation of halon 1 211 (CBrClF2) over carbon-supported palladium catalysts [J]. Appl.Catal.B.2003(44):253-261.
    [72]H.Yu, E.M.Kennedy, M.A.Uddin, B.Z.Dlugogorski. Catalytic hydrodehalogenation of halon 1 211 (CBrClF2) overγ-alumina-supported Ni, Pd and Pt catalysts [J]. Catal.Today.2004(88):18 3-194.
    [73]H.Yu, E.M.Kennedy, M.A.Uddin, A.A.Adesina, B.Z.Dlugogorski. Conversion of halon 1211 (CBrClF2) over supported Pd catalysts [J]. Catal.Today,2004(97):205-215.
    [74]R.F.Howe, S.Thomson, Y.Yang, K.Lee, E.M.Kennedy, B.Z.Dlugogorski. Zeolite Catalysts for Halon conversion [J]. J.Mole.Catal.A,2001(181):63-72.
    [75]M.Bonarowska, J.Pielaszek, V.A.Semikolenov, Z.Karpinski. Pd-Au/Sibunit carbon catalysts:c haracterization and catalytic activity in hydrodechlorination of dichlorodifluoromethane (CFC-12) [J]. J.Catal.A,2002(209):528-538.
    [76]J.K.Murthy, S.C.Shekar, V.S.Kumar, B.D.Raju, B.Sreedhar, P.S.S.Prasad, P.K.Rao, K.S.R.Rao, F.J.Berry, L.E.Smart. Effect of tungsten addition to Pd/Zro2 system in the hydrodechlorinati on activity of CC12F2 [J]. J.Mole.Catal.A,2004(223):347-351.
    [77]A.Sisak, O.B.Simon, K.Nyiri. Homogeneous catalytic hydrodechlorination of CFC and HCF C compounds [J]. J.Mole.Catal.A.2004(213):163-168.
    [78]M.Tajima, M.Niwa, Y.Fujii, Y.Koinuma, R.Aizawa, S.Kuahiyama, S.Kobayashi, K.Mizuno, H. Ohuchi. Decomposition of chlorofluorocarbons in the presence of water over zeolite catalyst [J]. Appl. Catal. B,1996(9):167-177.
    [79]Y.Takita, T.Ishihara. Catalytic decomposition of CFCs [J]. Catal Surveys Jpa,1998 (2):165-173.
    [80]GL.Li, I.Tatsumi, M.Yoshihiko, T.Yusaku. Catalytic decomposition of HCFC22(CHClF2) [J]. Appl. Catal. B,1996 (9):239-249.
    [81]M.Tajima, M.Niwa, Y.Fujii, Y.Koinuma, R.Aizawa, S.Kushiyama, S.Kobayashi, K.Mizuno, H. Ohuchi. Decomposition of chlorofluorocarbons on TiO2-ZrO2 [J]. Appl. Catal. B,1997 (12): 263-276.
    [82]M.Tajima, M.Niwa, Y.Fujii, Y.Koinuma, R.Aizawa, S.Kushiyama, S. Kobayashi, K.Mizuno, H.Ohuchi. Decomposition of chlorofluorocarbons on W/TiO2-ZrO2 [J]. Appl. Catal. B,1997 (14):97-103.
    [83]H.Zhang, C.F.Ng, S.Y.Lai. Catalytic decomposition of chlorodifluoromethane (HCFC-22) ove r platinum supported on TiO2-ZrO2 mixed oxides [J]. Appl. Catal, B.2005 (55):301-307.
    [84]S.Karmakar, H.L.Greene. An investigation of CFC-12(CC12F2) decomposition on TiO2 cataly st [J]. J. Catalysis,1995 (151):394-406.
    [85]Z.Ma, W.Hua, Y.Tang, Z.Gao. Catalytic decomposition of CFC-12 over solid acids WO3/MX Oy(M=Ti, Sn, Fe) [J]. J. Mol. Catal. A,2000 (159):335-345.
    [86]W.Hua, F.Zheng, z.Ma, Y.Tang, Z.Gao. WO3/ZrO2 strong acid as a catalyst for the decomp osition of chlorofluorocarbon(CFC-12) [J]. Chemical research in chinese universities,2000 (2):185-187.
    [87]Y.Takita, M.Ninomiya, R.Matsuzaki, H.Wakamatsu, H.Nishiguchi, T.Ishihara. Decomposition of chlorofluorocarbons over metal phosphate catalysts part Ⅰ. Decomposition of CCl2F2 over phosphate catalysts [J]. Phys.Chem.Chem.Phys.,1999(1):2367-2372.
    [88]Y.Takita, M.Ninomiya, H.Miyake, H.Wakamatsu, Y.Yoshinaga, T.Ishihara. Catalytic decompos ition of perfluorocarbons Part Ⅱ. Decomposition of CF4 over AlPO4-rare earth phosphate cat alysts [J]. Phys.Chem.Chem.Phys.,1999(1):4501-4504.
    [89]Y.Takita, H.Wakamatsu, M.Tokumaru H.Nishiguchi, M.Ito, T.Ishihara. Decomposition of chlo rofluorocarbons over metal phosphate catalysts Part III. Reaction path of CCl2F2 decompositi on over AlPO4 [J]. Appl.Catal.A,2000(194-195):55-61.
    [90]B.M.Choudary,M.L.Kantam,P.L.Santhi. New and ecofriendly options for the production of sp eciality and fine chemicals [J]. Catal.Today,2000(57):17-32.
    [91]D.Brunel. Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals [J]. Microporous and Mesoporous Material,1999(27):329-344.
    [92]R.Bal. B.B.Tope, S.Sivasanker. Vapour phase O-methy-lation of dihydroxy benzenes with m ethanol over cesium-loaded silica, a solid base [J]. J.Mol.Catal A:Chemical,2002(181):167-1 71.
    [93]Y.Ono. Solid base catalysts for the synthesis of fine chemicals [J]. J.Catal,2003(216):406-4 15.
    [94]R.Bal,B.B.Tope,T.K.Das. Alkali-Loaded silica, a solid Base:Investigation by FTIR spectrosc opy of. adsorbed CO2 and its catalytic acitivity[J]. J.Catal,2001 (204):358-363.
    [95]E.Lim,M.Lasperas. Characterization of basic catalysts by the use of Nitromethane as NMR Probe Molecule and reactant [J]. J.Catal,2004(223):28-35.
    [96]M.A.Aramendia,V.Borau. Magnesium-containing mixed oxides as basic catalysts:Base charac terization by carbon dioxide TPD-MS and Test reactions[J]. J.Mol.Catal A:Chem,2004(218): 81-90.
    [97]V.K.Srivastava,H.C.Bajaj,R.V.Jasra. Solid base catalysts for isomerization of 1-methoxy-4-(1-p ropen-1-Yl)benzene[J].Benzene Catal Commum,2003(4):543-548.
    [98]D.Kishore.S.Kannan. Environmentally benign route for erization of safrole-hydrotalcite as sol id base catalyst [J].J.Mol.Catal A:Chem,2004(223):225-230.
    [99]M.A.Aramendia,V.Borau,C Jimenez. Isomerization of 3-phenyl-l-propene (Allylbenzene) over base catalysts [J].J.Catal,2002(211):556-559.
    [100]H.Hattori. Solid base catalysts:generation of basic sites and application to organic synthesis [J]. Appl.Catal A:General,2001(222):247-259.
    [101]K.Akutu,H.Kabashima,T.Seki. Nitroaldol reaction over solid base catalysts [J]. Appl.Catal A: General,2003(247):65-74.
    [102]H.Zhang,R.Qi,D.GEvans. Synthesis and characterization of a novel nano-scale magnetic sol id base catalyst involving a layered double hydroxide supported on a ferrite core [J]. J.Soli d State Chemistry,2004(177):772-780.
    [103]S.E.Lee,J.S.Kim,I.R.Kennedy. Biotransformation of an organochlorine insecticide, endosulfan by anabaena species[J]. J.Agric.Food.Chem,2003(51):1336-1340.
    [104]M.Park, C.I.Lee,E.J.Lee. Layered doubed hydroxides as potential solid base for beneficial r emediation of endosulfan contamimated soils [J]. J.Phy.Chem.Solids,2004(65):513-516.
    [105]M.J.Climent,A.Corma,S.Iborra. Activated hydrotalcites as catalysts for the synthesis of chal contes of pharmaceutical interest [J]. J.Catal,2004(221):474-482.
    [106]J.Weikamp,M.Hunger,U.Rymsa. Base catalysis on microporous and mesoporous materials:re cent progress and perspectives [J]. Microporous and mesoporous Materials,2001(48):255-27 0.
    [107]F.Figueras,J.Lopez,J.V.Sanchez. Isophprone isomerization as model reaction for the character ization of solid bases:Application to the determination of the number of sites [J]. J.Catl,2 002(211):144-149.
    [108]J.M.Fraile,J.I.Garcia,J.S.Mayoral. Basic solids in the oxidation of organic compounds[J]. Ca tal.Today,2000(57):3-16.
    [109]J.T.Jothi,T.Raja,K.Sreekumar. Influence of acid-base properties in the transfer hydrogenation of propiophenone [J]. J.Mol.Catal A:Chem,2000(157):193-198.
    [110]J.M.Fraile,J.I.Garcia,D.Marco. Epoxidation of chiral electro-deficient alkenes with basic hete rogeneous catalysts [J].Appl.Catal.A,2001(207):239-246.
    [111]J.Palomeque,J.Lopez,F.Figueras. Epoxydation of activated olefins by solid bases [J].J.Catal., 2002(211):150-156.
    [112]T.Honma,M.Nakajo,T.Mizugaki. Highly efficient epoxidation of a,p-unsaturated ketones by hydrogen peroxide with a base hydrotalcite catalyst prepared from metal oxides[J].Tetrahedro n Lett.,2002(43):6229-6232.
    [113]D.Jiang,G.Pan,B.Zhao. Preparation of ZrO2 supported MgO with high surface area and its use in mercaptan oxidation of jet fuel [J]. Appl.Catal.A:General,2000(201):169-176.
    [114]蒋绍亮,章福祥,关乃佳.固体碱催化剂在催化反应中的应用进展.石油化工,2006(1):1-10.
    [115]B.M.Choudary,C.V.Reddy,B.V.Prakash. Oxidation of secondary and tertiary amines by a soli d base catalyst [J]. J.Mol.Catal A:Chem,2004(217):81-85.
    [116]P.Kovacheva,K.Arishtirova,S.Vassilev. MgO/NaX Zeolite as a basic catalyst for oxidative m ethylation of toluene with methane [J]. Appl.Catal.A,2001(210):391-395.
    [117]L.Krarc,M.Pater,L.Cerveny. Activity of basic catalysts in oxidation of 2-ethyl-5,6,7,8-tetrahy dro-9,10-anthrahydroquinone [J]. J.Mol.Catal.A:Chem,2003(202):327-332.
    [118]K.Arishtirova,P.Kovacheva,S.Vassilev. BaO/NaX zeolite as a basic catalyst for oxidative met hylation of toluene with methane [J]. Appl.Catal,A,2001(213):197-202.
    [119]J.Palomeque,J.Clacens,F.Figueras. Oxidation of dibenzothiophene by hydrogen peroxide catal yzed by solid bases [J]. J.Catal,2002(211):103-108.
    [120]H.Negata, T.Takakura, S.Tashiro, M.Kishida, K.Mizuno, I.Tamori, K.Wakabayashi. Catalytic oxidative decomposition of chlorofluorocarbons (CFCs) in the presence of hydrocarbons [J]. Appl. Catal. B,1994 (5):23-31.
    [121]Jacob E. US:4935212,1990.
    [122]Y.Takita, J.Moriyama, Y.Yoshinaga, H.Nishiguchi, T.Ishihara, S.Yasuda, Y.Ueda, M.Kubo, A. Miyamoto. Adsorption of water vapor on the AlPO4-based catalysts and reaction mechanism for CFCs decomposition [J]. Appl. Catal.A,2004(271):55-60.
    [123]M.Tajima, M.Niwa, Y.Fujii, Y.Koinuma, R.Aizawa, S.Kushiyama, S. Kobayashi, K.Mizuno, H.Ohuchi. Decomposition of chlorofluorocarbons on W/TiO2-ZrO2 [J]. Appl. Catal. B,1997 (14):97-103.
    [124]S.Karmakar, H.L.Greene. An Investigation of CFC-12 (CC12F2) Decomposition on TiO2 Cat alyst [J]. J. catal,1995 (151):394-406.
    [125]T.Lei,J.S.Xu,Z.Gao. Acidity enhancement of H-mordenite by sulfation[J]. Materials chemistr y and physics.1999 (60):177-181.
    [126]邹金宝.熔融碱(盐)分解CFC-12研究[D].昆明:昆明理工大学,2009.
    [127]张继光.催化剂制备过程技术[M].北京:中国石化出版社,2004.
    [128]L.Martnsr, M.Schmal. Methane activation on super acidic catalysts based on oxoanion mod ified zirconium oxide [J]. Appl.Catal.A:General,2006 (308):143-152.
    [129]B.M.Reddy, P.M.Sreekanth, A.Lakshmanan. Sulfated zirconia as an efficient catalyst for org anic synthesis and transformation reactions [J]. J.Mol.Catal.A:Chemical,2005 (237):93-100.
    [130]H.Yang, R.Lu, L.Wang. Study of preparation and properties on solid super acid sulfated tit ania-silica nanomaterials [J]. Material Letters,2003(57):1190-1196.
    [131]J.R.Sohn, S.H.Lee, J.S.Lim. New solid super acid catalysts prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis [J]. Catal.Today,2 006 (116):1-7.
    [132]S.Vijay, E.E.Wolf. A high active and stable platinum modified sulfated zirconia catalyst Pa rt 2:Exafs studies of the effect of pretreatment on the state of platinum [J]. Appl.Catal.A: General,2004 (264):117-124.
    [133]B.M.Reddy, P.M.Sreekanth, V.R.Reddy. Modified zirconia solid acid catalysts for organic s ynthesis and transformations [J]. J.Mol.Catal.A:Chemical,2005 (225):71-78.
    [134]王亚明,刘天成,周梅村,唐辉.固体超强酸MoO3/ZrO2催化松节油合成松油醇的研究[J].林产化学与工业,2004(24):57-60.
    [135]刘天成,宁平,王亚明,高红.MoO3/ZrO2固体超强酸催化松节油合成龙脑的研究[J].生物质化学工程,2007(41):27-30.
    [136]刘天成,宁平,王亚明,高红.固体超强酸MoO3/ZrO2结构的初步表征[J].昆明理工大学学报(理工版),2007(32):102-104,111.
    [137]S.Y.Lai, W.X.Pan, C.F.Ng. Catalytic hydrolysis of dichlorodifluoromethane (CFC-12) on un promoted and sulfated TiO2-ZrO2 mixed oxide catalysts [J]. Appl.Catal.B:Enbironmental,200 0 (24):207-217.
    [138]王幸宜.催化剂表征[M].上海:华东理工大学出版社,2008.
    [139]A.I.Biahlow, R.J.Gorte, D.White. A probe of bronsted site acidity in zeolites:13C chemical shift of acetone [J]. J.Catal.,1994(148)779-786.
    [140]A.Calafat L.Avilan, J.Aldana. The influence of preparation conditions on the surface area a nd phase formation of MoO3/ZrO2 [J]. Appl.Catal.A.,2000(201)215-223.
    [141]C.Morterra, G.Cerrato, V.Bolis. on the strength of lexis and Bronsted-acid sites at the surf ace of sulfated zirconia catalysts [J]. J.Chem.Soc.,FatadayTrans.,1997(63):1179-1184.
    [142]D.Ganapati, Yadav, J.Jayesh. Sulfated zirconia and its modified versions as promising catal ysts fo rindustrial process [J]. Micro and Meso Mater,1999(33):1-48.
    [143]W.D.Sun, L.P.Xu, W.Shi. Controllable synthesis, characterization and catalytic peoperties of WO3/ZrO2 mixed oxides nanoparticles [J]. J.Colloid.Interf.Sci.,2003(266):99-106.
    [144]T.Bhaskar, R.K.Redy, P.C.Kumar. Characterization and reactivity of molybdenum oxide cata lysts supported on zirconia [J]. Appl.CatalA,2001(211):189-201.
    [145]N.Essayem. Comparative study of n-pentane isomerization over solid acid catalysts, sulfate d zirconia, and mordenite:dependence on hydrogen and platinum addition [J]. J.Catal,2003 (219):97-106.
    [146]M.A.Ecormier, K.Wilson, A.F.Lee. Structure-reactivity correlation in sulphated-zirconia catal ysts for the isomerisation of a-pinene [J]. J.Catal,2003(215):57-65.
    [147]J.Sauer, F.Marlow, B.Spliethoff. Rare earth oxide coating of the walls of SBA215 [J]. Che m.Mater.,2002(14):217-224.
    [148]D.Y.Zhao, J.Y.Sun, Q.Z.Li. Morphological control of highly ordered mesoporous silica SB A215 [J]. Chem.Mater.,2000(12):275-279.
    [149]M.Hartmann, C.Bischof, Z.H.Luan. Preparation and characterization of ruthenium clusters o n mesoporous supports [J]. Micropor.Mesopor.Mater.,2001(44):385-394.
    [150]赵国良,张武阳,林文勇.新型固体超强酸催化剂的制备与裂解性能研究[J].分子催化,2002(6):294-297.
    [151]H.Yang, R.Lu, S.L.Chen. Preparation, characterization and catalytic activity of sulfated zirc onia-silica nanocrystalline catalysts [J]. Mater.Lett.,2003(57):2572-2579.
    [152]H.Ohtsuka. Effect of iron addition on the durability of Pd-Pt-loaded sulfated zirconia for t he selective of nitrogen oxides by methane [J]. Catal.Lett.,2003(87):179-186.
    [153]E.A.Garcia, E.H.Rueda, A.J.Rouco. Sulfated zirconia catalysts promoted with Fe and Mn: Mn effect in the Fe dispersion [J]. Appl.Catal.A.,2001(210):363-370.
    [154]G.Pacheco, J.J.Fripiat. Physical chemistry of the thermal transformation of mesoporous and microporous zirconia [J]. J.Phys.Chem.B.,2000(104):11906-11911.
    [155]F.Schuth. Non—siliceous mesostructured and mesoporous materials [J]. Chem.Mater.,2001 (13):3184-3190.
    [156]H.Chen, J.Gu, J.Shi. A composite surfactant route for the synthesis of thermally stable and hierarchically porous zirconia with a nanocrystallized framework [J]. Adv.Mater.,2005(17):2 010-2014.
    [157]马中义,徐润,杨成,魏伟,李文怀,孙予罕.不同形态ZrO2的制备及其表面性质研究[J].物理化学学报,.2004(20):1221-1225.
    [158]B.M.Reddy, Y.Yamad, T.Kobayashi. Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3-ZrO2 solid acid catalysts [J]. J.MOl.Catal.A.,2005 (227):81-89.
    [159]Y.Liu, J.Chen, Y.Sun. Preparation of tailored pore size mesoporous zirconia with enhanced thermal stability via controlled sol-gel process [J]. Stud.Surf.Sci.Catal.,2005(156):249-256.
    [160]刘水刚,马瑶,李军平,赵宁,魏伟,孙予罕.高热稳定性介孔ZrO2的制备及其稳定性研究[J].精细化工,2008(25):421-423,427.
    [161]K.Imre, J.B.Nagy. Surface intermediates in the decomposition of Cl chlorofluorocarbons ov er oxides and zeolites of acid-base and redox character[J]. Appl.Catal.A.,2004(271):27-38.
    [162]Y.Takita, J.Moriyama, H.Nishiguchi, T.Ishihara, F.Hayano, T.Nkajo. Decomposition of CC12 F2 over metal sulfate catalysts [J]. Catal.Today,2004(88):103-109.
    [163]王英,朱建华,淳远,吴振,何永刚.氧化锆负载含氧酸盐研制固体超强碱[J].石油学报(石油加工),2000,16(1):1-6.
    [164]刘水刚,黄世勇,魏伟,孙予罕.新型固体碱介孔MgO-ZrO2的制备及催化性能研究[J].现代化工,2007(9):35-37.
    [165]V.K.Dez,C.R.Apestegu,J.I.Cosimo. Effect of the chemical composition on the catalytic perfo rmance of MgyAlOx catalysts for alcohol elimination reactions [J].2003(215):220-233.
    [166]M.A.Aramendia,V.Borau,C.Jimenez. Activity of basic catalysts in the meerwein-ponndorf-ver ley reaction of benzaldehyde with ethanol [J]. J.Colloid Interface Sci,2001(238):385-389.
    [167]M.A.Aramendia,V.Borau,C.Jimenez. Liquid-phase heterogeneous catalytic transfer hydrogenat ion of citral on basic catalysts [J]. J.Mol.Catal A:,2001(171):153-158.
    [168]M.A.Aramendia,V.Borau,C.Jimenez. Reduction of α,β-unsaturated aldehydes with basic MgO /M2O3 catalysts(M=Al,Ga,In) [J]. Appl.Catal.A,2003(249):1-9.
    [169]S.Bancquart,C.Vanhove,Y.Pouilloux. Glycerol transesterification with methylstearate over soli d basic catalysts [J]. Appl.Catal.A,2001(218):1-11.
    [170]A.Coma,S.B.A.Hamid,S.Iborra. Lewis and Bronsted basic active sites on solid catalysts and their role in the synthesis of monoglycrides [J]. J.Catal,2005(234):340-347.
    [171]M.Diserio,R.Tesser,A.Ferraraet. Heterogeneous basic catalysts for the ransesterification and t he polycondensation reactions in PET production from DMT [J]. J.Mol.Catal.A:Chem,2004(2 12):251-257.
    [172]J.H.Kim,S.B.Kang,J.M.Kin. Transesterification of vegetable oil to biodiesel using heterogene ous catalyst [J]. Catal.today,2004(93-95):315-320.
    [173]刘水刚,张学兰,李军平,赵宁,魏伟,孙予罕.高稳定性介孔CaO-ZrO2固体碱的结构及碱性研究[J].石油化工,2008,37(3):226-231.
    [174]董国君,王越,李婷.氧化锆负载硝酸盐固体碱催化剂的制备与表征[J].应用化工,2008,37(3):310-313,326.
    [175]B.M.Choudary,M.L.Kantam,P.L.Santhi. New and ecofriendly options for the production of s peciality and fine chemicals [J]. Catal.today,2000(57):17-32.
    [176]F.Figueras,J.Lopez,J.V.Sanchez. Isophorone isomerization as model reaction for the character ization of solid bases:Application to the determination of the number of sites [J]. J.Catal, 2002(211):144-149.
    [177]T.Seki,H.Tachikawa,T.Yamada. Synthesis of phthalide-skeleton using selective intramolecular tishchenko reaction over solid base catalysis [J]. J.Catal,2003(2171):117-126.
    [178]S.Grygwyleicz,F.A.Oko, GGrygwyleicz. Synthesis of modern synthetic oils based on dialky 1 carbonates [J]. Industrial & Engineering Chemistry Research,2003(42):5007-5010.
    [179]J.L.Blin, P.K.Flamant, B.L.Su. Synthesis of nano-structured mesoporous zireonia using CT MABr-ZrOCl2.8H20 systems:a kinetics study of synthesis mechanism [J].International Journ al of Inorganic Materials,2001(3):959-972.
    [180]H.R.Chen, J.L.Shi, Z.L.Hua, M.L.Ruan, D.S.Yan. Parameter control in the synthesis of ord ered porous zirconium oxide [J]. Materials Letters,2001(51):187-193.
    [181]J.Zhao, S.Wang, Y.Gong. Systhesis of mesoporous zirconia with crystalline framework in s uper-critical ethanol [J]. Chemical Journal of Chinese Universities,2000(21):1797-1800.
    [182]V.I.Parvulescu, H.Bonnemann, V.Parvulescu. Preparation and characterization o fmesopous z irconium oxide [J]. Microporous and Mesoprous Materials,2001(44-45):221-226.
    [183]Z.Y.Yang, A.Vantomme, A.Leonard. Surfactant-assisted synthesis of unprecedented hierarchi cal meso-macrostructured zirconia [J]. Chem.Commun.,2003:1558-1559.
    [184]Y.Zhu, S.Jaenicke, G.K.Chuah. Supported zirconium propoxide-a versatile heterogeneous cat alyst for the meerwein-ponndor-verley reduction [J]. J.Catal.,2003(218):396-404.
    [185]H.Wang, M.Wang, N.Zhao. CaO-ZrO2 solid solution:A highly stable catalyst for the synth esis of dimethyl carbonate from propylene carbonate and methanol [J]. Catal.Lett,2005(105): 253-259.
    [186]J.Y.Ying, C.P.Mehnert, M.S.Wong. Synthesis and application of supra molecular-templated mesoporous materials [J]. Angew.Chem.Inted,1999(38):56-77.
    [187]M.G.Femandez, A.A.Martinez, J.C.Hanson. Nano-structured oxides in chemistry characteriza tion and properties [J]. Chem.Rev.,2004(104)4063-4104.
    [188]E.Mustafa, W.Wilhelm, W.Wrusse. Microstructure and phase stability of Y-PSZ codoped wi th MgO or CaO prepared via polymeric [J]. Route Brit Ceram Trans,2002(101):78-83.
    [189]L.Yuliati, M.Tsubota, A.Satsuma, H.Itoh, H.Yoshida. Photoactive sites on pure silica materi als for nonoxidative direct methane coupling [J]. J.Catal.,2006(238):214-220.
    [190]S.H.LiU, S.Jaenicke, G.K.Chuah. Hydrous zirconia as a selective catalyst for the meerwein rponndorf-verley reduction of cinnamaldehyde [J]. J.Catal.,2002(206):321-329.
    [191]C.Chen, S.Cheng, H.Lin. Sulfated zirconia catalyst supported on MCMo41 mesoporous mol ecula rsieve [J]. Appl.Catal.A.,2001(215):21-30.
    [192]K.Jens, L.Christian, F.Wilhelm. Thermally stable, silica-based amorphous porous mixed oxi des prepared by sol-gelprocedures [J]. J.Non-crystalline Solides,2001(282):203-220.
    [193]北川浩,鹿政理译.吸附的基础与设计[M].北京:化学工业出版社,1983.
    [194]宋世谟,王正烈,李文斌.物理化学(上、下册)[M].北京:高等教育出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700