用户名: 密码: 验证码:
无溴型环氧树脂电路板热解特性及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子电器行业的飞速发展,电子电器产品的更新换代频率日益加快,我国的电子废弃物数量也迅猛增加。电路板作为电子电器产品的核心部件,已经成为电子废弃物的重要来源。由于欧盟WEEE.RoHS.EuP三大绿色指令的推行,以及我国《电子信息产品污染防治管理办法》颁布实施,无溴型环氧树脂电路板的产量越来越大,报废量也与日俱增。因此,探索废旧无溴型环氧树脂电路板资源化利用技术具有重要的意义。
     本文在国家科技支撑计划子课题“园区中再生利用技术集成与产业链链接技术研究”的支持下,研究电路板的热解回收技术。将电路板的热解回收技术作为电路板中非金属回收的单项技术与金属回收技术进行技术集成,作为废旧电路板再利用的集成技术模式,能够很好地实现电路板的资源化回收再利用。本文重点研究了无溴型环氧树脂电路板热解影响因素,热解产物组成,热解动力学三个方面的内容。
     首先,研究了在氮气氛围下热解温度(300℃-900℃)、升温速率(10℃/min-40℃/min).保温时间(30 min-60min)对无溴型环氧树脂电路板热解产物产率的影响。结果表明:在300℃-900℃之间热解产物中热解残渣占61.74%-71.08%,热解油占22.52%-28.44%,热解气体占5.86%-12.81%。在热解温度700℃、升温速率20℃/min、保温时间40min时热解油产率最大。
     其次,分别采用红外光谱、气质联用(GC/MS)分析官能团的变化和热解油成分。分别应用红外光谱、元素分析和扫描电子显微镜(SEM)分析了热解残渣的官能团、元素组成和微观外貌随热解温度的变化。结果表明:热解油中主要成分为苯酚、2-甲酚、对2,6-二异丙基苯酚以及双酚A等。热解过程中玻璃纤维外貌基本没有变化。
     最后,采用热重分析法对无溴型环氧树脂电路板在氩气(Ar)条件下的热解反应进行动力学研究,并且研究了无溴型环氧树脂电路板的热解过程。通过TG曲线和DTG曲线分析了不同升温速率下的热稳定性及升温速率对热解反应的影响。利用Kissinger微分法和Flynn-Wall-Ozawa积分法研究其活化能E以相关动力学参数;采用Coats-Redfern方法研究得其反应动力学方程最为接近Valensi方程,推导出其反应级数n=2,并得到无澳型环氧树脂电路板的热分解机理函数为α+(1-α)·1n(1-α)。
As the rapid development of electrical and electronic equipment industry, the frequency of replacement electronic products is accelerated, the amount of waste Electrical and Electronic Equipment (WEEE) is rapidly increasing in China. As the key component of WEEE, waste printed circuit board (wPCB) has become an important kind of WEEE. Because of instruction of WEEE, ROHS, EUP and Regulation on contamination control and management of IT products, issued by the Ministry of Information Industry coming into effect, the amount of Anti-Br type epoxy resin printed circuit boards becomes larger. Therefore, it is of great significant to explore comprehensive utilization techniques of waste Anti-Br type epoxy resin printed circuit boards.
     Based on the National Science and Technology Support Program sub-project, "recycling technology technology and industry chain linking technology", Pyrolysis recycling technology of wPCB was researched in the paper. As the single nonmetal recycling technology, pyrolysis recycling technology was integrated with many metal recycling technology. This can achieve good results. The anti-Br type epoxy resin printed circuit boards were investigated by pyrolysis experiment. This paper focuses on three aspects, including the influencing factors of pyrolysis, the analysing of the pyrolysis product and the pyrolysis kinetics.
     Firstly, the effects of pyrolysis temperature (300℃-900℃), heating rate(10℃/min-40℃/min) and holding time (30 min-60min) on the yield of pyrolysis products in nitrogen were analyzed. Results show that solid residues account for about 61.74-71.08wt.%, liquid yields about 22.52-28.44wt.%and gas yields about 5.86-12.81wt.%. To get more pyrolysis oil, the optimal condition was obtained as follows:pyrolysis temperature at 700℃, heating rate of 20℃/min, holding time of 40 min.
     Secondly, pyrolysis oil and residue were analyzed by Infrared spectroscopy, gas chromatography and mass spectroscopy (GC/MS), element analysis and scanning electron microscope. The main components of pyrolysis oil are phenol, 2-methylphenol,2,6-diisopropyl phenol, and bisphenol A,etc. In the process of pyrolysis, fibreglass appears unchanged.
     In the end, pyrolysis kinetics of anti-Br type epoxy resin printed circuit boards was investigated with thermo gravimetric (TG) analysis in atmosphere of argon. The pyrolysis characteristics, stability analyses of anti-Br type epoxy resin printed circuit boards and the influence on pyrolysis were researched under various hearting rates(5,10,20,30℃·min-1). The pyrolysis activation energy E and other kinetic parameters were determined by Kissinger differentiation and Flynn-Wall-Ozawa integration. The reaction kinetics equation and the thermal decomposition mechanism function were investigated by Coats-Redfern method, the study shows that the proximal reaction kinetic equation is Valensi equation, and the reaction order is 2, and the thermal decomposition mechanism function isα+(1-α)·ln(1-α).
引文
[1]国家环境保护总局.电子废物污染环境防治管理办法[z].2007
    [2]陈伟.加强电子垃圾污染防治工作的思考[J].环境经济,2005,7:35-37
    [3]Rolf W, Heidi O, Deepali S, etal. Global perspectives on e-waste[J]. Environmental Impact Assessment Review,2005,25(5):436-458
    [4]Huang K, Guo J, Xu Z M. Recycling of waste printed circuit boards:A review of current technologies and treatment status in China[J]. Journal of Hazardous Materials,2009,164(2): 399-408
    [5]周刚.中国印制电路板市场分析[J].印制电路信息.2010,2:15-21
    [6]印制电路咨询.2010,3:36-37
    [7]Barontini F., Cozzani V. Formati on of hydrogen bromide and organic brominated compounds in the thermal degradation of electronic boards[J]. Journal of Analytical and Applied Pyrolysis, 2006,77 (1):41-55
    [8]安子怡,王亚平,许春雪,等.欧盟RoHS指令与中国的对策[J].2008,27(6):441-450
    [9]国家信息产业部.《电子信息产品污染防治管理办法》.2004
    [10]李芝华,谢科予,任冬燕.电路板用无卤阻燃环氧树脂材料研究进展[J].中国塑料.2005,19(12):1-6
    [11]欧育湘,李建军.阻燃剂:性能、制造及应用[M].北京:化学工业出版社,2006
    [12]周全.破碎废旧电路板高压静电分选系统的在线监测与控制[D].上海交通大学.2009
    [13]郑智和.印刷电路板废板边料资源化技术及设备[J].台湾环保产业.2002,23-30
    [14]顾克非.全球电子垃圾70%抛弃在中国[N].市场报.2006,12,04
    [15]沈志刚.废印刷电路板回收处理技术进展[J].新材料产业.2006,10:43-46
    [16]Lu M X, Zhou C H. Recover metals from electronic scrap by dry separation[J]. Proceedings of the 1st International Symposium on Dry Coal Cleaning, Clean Coal Technology, Xuzhou, China, 2002.259-262
    [17]Lehner T. Integrated recycling of non-ferrous metals at Boliden Ltd.Ronnskar Smelter[J]. IEEE international symposium on electronics&the environment,4-6 May,1998,42-47
    [18]李金惠,温雪峰.电子废物处理技术[M].中国环境科学出版社.北京:2006.83-84
    [19]Zhao G F, Wang Z J, Michael H D. PBBs, PBDEs, and PCBs levels in hair of residents around e-waste disassembly sites in Zhejiang Province, China, and their potential sources [J]. Science of The Total Environment,2009,407(8):2565-2575
    [20]Leung A, Cai Z W, Wong M H. Environmental contamination from electronic waste recycling at Guiyu, southeast China[J]. Journal of Material Cycles and Waste Management,2006,8:21-33
    [21]Yu X Z, Gao Y, Wu S C, etal. Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China, afected by recycling of electronic waste using primitive technologies[J]. Chemosphere.2006,65(9):1500-1509
    [22]Li Y, Xu X J, Liu J X, etal. The hazard of chromium exposure to neonates in Guiyu of China[J]. Science of The Total Environment.2008,403(1-3):99-104
    [23]吴江.破碎废旧电路板高压静电分选的理论模型与优化设计[D].上海:上海交通大学,2009
    [24]李斌.废旧家电污染现状及回收治理对策的中日比较[J].嘉兴学院学报.2007(2):34-39.
    [25]魏金秀,汪永辉,李登新.国内外电子废弃物现状及其资源化技术[J].东华大学学报,2005,31(3):133-138
    [26]Reddy R G, Mishra R K. Recovery of precious metals by pyrometallurgical processing electronic scrap[J]. Precious Metals.1987,135-146
    [27]吴德东,赵光楠.酸碱处理溶剂萃取法提取废旧电脑线路板中的金[J].环境科学与管理.2008,33(5):121-124
    [28]顾卫星,黄晨,杨义晨,等.废印刷线路板中贵金属金的浸取研究[J].环境科学与技术.2008,31(4):98-100
    [29]姚洪,林桂燕,王洪涛.拆解电路板中铜的回收及其化工产品的制备[J].中国物资综合利用.1998,12:17
    [30]Scott K, Chen X, Atkinson J W, etal, Armstrong R.D. Electrochemical recycling of tin, lead and copper from stripping solution in the manufacture of circuit boards [J]. Resources Conservation and Recycling.1997,20(1):43-55
    [31]Sokirko A V, Kharkats Y I. A possible mechanism for the increase in limiting current of copper electrodeposition from nitrate solutions[J]. Soviet Electrochem.1990,26(1):36-40
    [32]Madkour L H. Electrideposition of lead and its dioxide from Egyptial carbonate ore residuum. Bulletin of Electrochemistry.1996,12(2):234-236
    [33]王卓雅,温雪峰,赵跃民.电子废弃物资源化现状及处理技术[J].能源与环境保护,2004,18(5):19-22
    [34]沈志刚.废印刷电路板回收处理技术进展[J].新材料产业.2004,14(6):1037-1040
    [35]Yokoyama S, Ikuta Y, Iji M. Recycling System for Printed Wiring Boards with Mounted Parts[A]. Proceedings of 1995 IEEE International Symposium on Elect ronics & the Environment [C] IEEE,1995.132-137
    [36]沈志刚.废印刷电路板回收处理技术进展[J].新材料产业.2004,14(6):1037-1040
    [37]邓杰,张德华.微波技术在废物处理中的应用[J].再生资源研究.2005,4:30-40
    [38]洪大剑,张德华,邓杰.废印刷电路板的回收处理技术[J].云南化工,2006,33(1):34
    [39]谭瑞淀,王同华,谭素霞,等.微波辐照热解废印刷电路板产物的分析研究[J].环境污染与防治.2006,28(8):599-601
    [40]郑艳红,沈志刚,蔡楚江,等.废印刷电路板非金属粉资源化再利用技术研究[J].过程工程学报.2009,9(增刊2):85-88
    [41]向东,段广洪,王劲松,等.一种利用废弃线路板非金属粉末制作玻璃钢制品的方法[P].中国:20061001117.5,2006
    [42]Ban B, Song J. Studies on the reuse of waste printed circuit board as an additive for cement mortar[J]. Environment Science and Health.2005,40:65-656
    [43]罗林,黄志雄,赵颖.SMC/BMC的回收与再利用[J].功能材料.2007,38(S1):3470-3472
    [44]孙路石.废弃印刷线路板的热解机理及产物回收利用的试验研究[D].武汉:华中科技大学,2004
    [45]Luda M P, Balabanovich A I, Camino G. Pyrolysis of fire retardant anhydride-cured epoxy resins[J]. Journal of analytical and applied pyrolysis[J].2002,65(1):25-40
    [46]吴倩,丘克强,湛志华.废弃电路板中环氧树脂真空热解规律的研究[J].环境污染与防治.2008,30(1):17-19
    [47]彭绍洪,陈烈强,甘舸,等.废旧电路板真空热解[J].化工学报.2006,57(11):2720-2725
    [48]Thallada B, Toshiki M, Azhar U, etal. Effect of Sb2O3 in brominated heating impact polystyrene(HIPS-Br) on thermal degradation and debromination byiron oxide carbon composite catalyst (Fe-C)[J]. Applied Catalysis B:Environmental.2003,43:229-241
    [49]Toshiki M, Tomoko O, Yasuhiko F, etal. Preparation, characterization and reactivity of calcium-carbon, iron-calcium-carbon composites for dechlorination[J]. Applied Catalysis A: General.2004,261:135-141
    [50]Mihai B, Thallada B, Kazuya M, etal. Removal of nitrogen, bromine, and chlorine from PP/PE/PS/PVC/ABS-Br pyrolysis liquid products using Fe-and Ca-based catalysts [J]. Polymer Degradation and Stability.2005,87:225-230
    [51]Uddin M A, Bhaskar T, Kaneko J, etal. Dehydrohalogenation during pyrolysis of brominated flame retardant containing high impact polystyrene (HIPS-Br) mixed with polyvinylchloride (PVC) [J]. Fuel,2002,81 (14):1819-1825
    [52]郭小汾,杨雪莲,李海滨.钙化合物的种类对脱氯特性的影响[J].环境科学学报,2000,20(6):776-780.
    [53]Luda M P, Gamino G, Balabanovich A I, etal. Scavenging of hal ogen in recycling of halogen-based polymer materials [J]. Macrol Symp.2002,180 (1):141-152
    [54]周文贤,陈烈强,关国强,等.废旧电路板与碳酸钙共热解脱卤的研究[J].环境工程学报.2009,3(1):169-174
    [55]关国强,周文贤,陈烈强,等.碳酸钙强化酚醛型线路板热解脱溴[J].化工学报.2009,60(1):216-222
    [56]陈烈强,周文贤,黄华杰,等.废旧电路板热解特性的研究[J].化学工程.2009,37(5):18-21
    [57]丘克强,吴倩,湛志华.废弃电路板真空热解产物特性分析[J].功能材料.2009,3(40):515-518
    [58]王清,王绪科,王伯勇,等.从电路板废料中回收苯酚及异丙基苯酚[J].山东科学,2000,13(3):57-60.
    [59]彭科,奚波,姚强.印刷电路板基材的热解实验研究[J].环境污染治理技术与设备.2004,5(5):34-37
    [60]Chen K S, Yeh R Z. Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere[J]. Journal of Hazardous Materials.1996(49):104-114
    [61]Guo Q J, Yue X H, Wang M H, Liu Y Z. Pyrolysis of scrap printed circuit board plastic particles in a fluidized bed[J]. Powder Technology.2010,198(3):422-428
    [62]徐晓楠,王芳,张晴.溴化环氧树脂协同三氧化二锑阻燃PBT热分解动力学研究[J].塑料科技.2009,37(10):34-39
    [63]刘玉卿,海热提.防溴型环氧树脂电路板热解[J].化工学报.2011,62(3):823-828
    [64]朱卫宏,杨雪艳,李晶.有机波普及性能解析法[M].北京:化学工业出版社,2007:55-77
    [65]苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东科技大学出版社,2002:88-100
    [66]张齐,蔡明招,彭绍洪,等.气相色谱-质谱法测定废旧印刷线路板真空热解油的组分[J].理化检验(化学分册).2009,2:201-203
    [67]胡荣组,高胜利,赵凤起,等.热分析动力学(第二版)[M].北京:科学出版社.2008
    [68]曾宪诚,张元勤.化学反应热动力学理论与方法研究[M].北京:化学工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700