水基湿化学法合成硒化镉和钛酸钡盐材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料合成与制备的发展趋势是实现从源物质到目标材料的全过程控制,以调控材料的组成、结构和性能。本文选择水基湿化学合成方法,分别以沉淀和溶液燃烧方式合成了以硒化镉和钛酸钡盐为代表的非氧化物和氧化物材料,并针对合成条件控制、产物组分控制、过程中间相形成及其对目标材料合成的影响等问题,开展了深入的研究。主要研究内容如下:
     (1)为了克服传统非水体系合成CdSe纳米晶需采用复杂的有机先驱体、高反应温度和复杂的反应装置等缺陷,本文采用水溶性先驱体,在水溶液中合成了不含氧化物杂质的CdSe和CdSeS纳米晶。CdSe的形成过程中温度、酸碱度和反应时间起到了重要作用:在pH=12,T=80℃,t=5h时,最有利于高纯的CdSe的形成;其中OH~-控制了含Se前驱体向溶液中释放Se~(2-),在CdSe形成中起到了决定性的作用。
     (2)为了改善CdSe纳米晶的可分散性并增强其发光性能,本文采用有机聚合物(PVA)和双官能团巯基酸类化合物分别在水基体系中直接对CdSe纳米晶进行表面修饰改性,以改善纳米晶粒分散性,提高其荧光性能。经巯基丙酸表面修饰改性后,CdSe纳米晶可通过巯基丙酸的羧基端与牛血清白蛋白V(BSA)的氨基端发生脱水缩合形成肽键,从而与BSA结合,并显示出对蛋白质分子良好的荧光标识性能。
     (3)为了采用水基湿化学方式合成纯相Ba_2Ti_9O_(20),本文研究了溶液干燥方式对所得干胶的均匀性及相组成等的影响,发现平板快速干燥有利于获得高度均一的干胶,进而有利于合成纯相Ba_2Ti_9O_(20)。在此基础上采用溶液直接均匀加热、燃烧的方式获得了高度均一的前驱体粉末。并通过调节初始溶液中硝酸根/柠檬酸(n/c)比的变化,对其燃烧产物、中间相产物以及最终陶瓷相的影响分别进行了研究:结果表明在n/c=6.33的条件下,中间产物中存在较高含量的BaTi_5O_(11)相,进而有利于Ba_2Ti_9O_(20)相的形成。
     (4)为了研究水基溶液燃烧法合成Ba_2Ti_9O_(20)相时制备条件对中间相、最终产物及其性能的影响,本文首先通过调节初始溶液助燃剂硝酸铵(AN)的不同加入量,研究了燃烧程度对Ba_2Ti_9O_(20)相形成的影响:不完全燃烧形成的残余有机物将引起产物中非晶态Ti氧化物量增加,不利于中间相BaTi_5O_(11)的形成,最终影响了Ba_2Ti_9O_(20)相的纯度;此外,本文通过燃烧产物预烧温度、时间等条件的调节研究了Ba_2Ti_9O_(20)陶瓷热处理制度与其性能的关系:结果表明燃烧产物经过900℃热处理4小时得到的陶瓷先驱体粉末再经1200℃烧结4小时后能得到性能较好的Ba_2Ti_9O_(20)陶瓷材料,其相对致密度达到了96%(4.26g/cm~3),介电常数也达到了42左右。
     (5)为了进一步研究以水基溶液燃烧法制备复杂氧化物陶瓷,本文在制备Ba_2Ti_9O_(20)的基础上,开展了制备组分、结构更为复杂的钨青铜结构多元氧化物介电陶瓷的研究:以水基溶液燃烧法成功制备出Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)钨青铜结构陶瓷材料,并可通过先驱体溶液中的Sm含量控制最终陶瓷中的Sm含量(x=0.5,0.67,0.75)的;同时,研究发现先驱体溶液中柠檬酸/金属离子(CA/M)摩尔比变化对其燃烧产物,中间相产物以及最终陶瓷相的形成有着显著的影响:当CA/M=1.2的条件下,所制得的Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)(x=0.67)陶瓷材料具有较好的陶瓷性能及介电性能:其中密度和相对致密对分别都达到了较大值(5.73g/cm~3,97.7%),而介电常数也达到了相对较大值(82.1)。
In synthesis or preparation of advanced materials,the whole process from the very original resources to the final products should be well controlled,thus the compositions,structures and even performances of the final materials can be well tailored.In this thesis,cadmium selenide(CdSe) and barium titanates,which were selected as typical materials for non-oxide and multicomponent oxide,were prepared through different aqueous wet chemical synthesis,i.e.,aqueous coprecipitation and aqueous solution combustion.The influences of aqueous wet chemical synthesis on the formation of these materials were investigated.The research results are summarized as:
     (1)Aqueous coprecipitation was adopted to synthesize CdSe and CdSeS nanocrystals in order to overcome the shortcomings of conventional organic-based methods,such as complex precursors,high reaction temperature,sophisticated equipment and etc.It was found the optimized conditions for CdSe formation were 12 for pH value,80℃for reaction temperature and 5 hours for reaction time.The suitable alkalinity could restrain the fast release of Se~(2-) and subsequently facilitate CdSe nanocrystal nanocrystal.
     (2)Organic polymer(PVA) and mercapto compound with two functional groups were used to modify the surface of CdSe nanocrystals respectively.The results showed that the dispersibility and the stability of both modified nanocrystals in aqueous solution were improved,and their photoluminescence was also enhanced.It was found that the amide of the BSA could conjugate to CdSe nanocrystals through carboxyl in mercaptopropionic acid,and the corresponding conjugates exhibited good photoluminescence performance,thus good potential for protein labelling.
     (3)In synthesizing pure Ba_2Ti_9O_(20) phase through aqueous wet chemical route,the influences of drying methods on the homogeneity and phase composition of dry product were first investigated.It was found fast plate drying favored the formation of homogeneous dry gel powders,and eventually pure Ba_2Ti_9O(20).Hence,a solution direct combustion method was developed to prepare homogeneous barium titanate precursor powders.It was found that the nitrate/citrate(n/c) ratio in starting solution, greatly affected the phase formation in as-combusted precursor powder,re-calcined powder and the final product.In all the ratios tested,n/c ratio of 6.33 was optimal. More intermediate BaTi_5O_(11) phase,which is beneficial for final Ba_2Ti_9O_(20) formation, was found in the re-calcined powder.Then the citrate solution combustion process was also analyzed and discussed.Since Ba_2Ti_9O_(20) phase was obtained after 900℃calcination and 1200℃re-calcination,the relations between intermediate BaTi_5O_(11) and the purity of Ba_2Ti_9O_(20) were investigated.The results showed that the purity of Ba_2Ti_9O_(20) phase in re-calcined product was affected by the n/c ratio due to different amount of intermediate BaTi_5O_(11) phase in the calcined products.
     (4)The influences of processing parameters on intermediate phase content,final Ba_2Ti_9O_(20) phase formation as well as dielectric performance were studied.Different precursor solutions were designed and prepared to control the combustion.The results showed that the complete combustion facilitated Ba_2Ti_9O_(20) formation through increasing the content of intermediate BaTi_5O_(11) in re-calcined product,while incomplete combustion showed opposite effect through segregation of Ti-rich amorphous phase.Also,re-calcination temperature affected the final dielectric performance through a sintering activity manner although the phases were exactly the same.900℃re-calcination favored the densification of final bulk ceramic.As a result, Ba_2Ti_9O_(20) ceramics from the precursor powders calicined at 900℃for 4 hours had a relative density of 96%(4.26g/cm~3) and dielectric constant of 42.
     (5)Aqueous solution solution combustion method was also adopted to prepare Ba_(6.3x)Sm_(8+2x)Ti_(18)O_(54) tungsten bronze type dielectric materials.Ba_(6.3x)Sm_(8+2x)Ti_(18)O_(54) materials with tailorable x value(x=0.5,0.67,0.75) were prepared.It was also found citrate/metal ion(CA/M) molar ratio of the precursor solution is one of the key factor in Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54) phase formation.When CA/M value was 1.2,the corresponding Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)(x=0.67) ceramics showed a relative density of 97.7%(5.73g/cm~3) and a dielectric constant of 82.1.
引文
[1]徐慢,袁启华,张亮明,液相原料制备PTC粉体及其性能研究,中国陶瓷,1998,34(1),3-5。
    [2]汤清华,王筱珍,张绪礼等,化学共沉淀法制备Ba_2Ti_9O_(20)超微粉的研究,功能材料,1996,27(6),525-527。
    [3]M.L.Li,M.X.Xu,Preparation of cauliflower-like shaped Ba_(0.6)Sr_(0.4)TiO_3 powders by modified oxalate co-precipitation method,J.Alloy Compd.,2009,474(1-2),311-315.
    [4]J.Q.Huang,M.C.Hong,F.L.Jiang,Y.G.Cao,Synthesis of nanosized perovskite(Ba,Sr)TiO_3 powder via a PVA modified sol-precipitation process,Mater.Lett.,2008,62(15),2304-2306.
    [5]R.Radha,U.N.Gupta,V.Samuel,H.Muthurajan,H.H.Kumar,V.Ravi,A co-precipitation technique to prepare BiNbO_4 powders,Ceram.Int.,2008,34(6),1565-1567.
    [6]Y.K.Sharma,M.Kharkwal,S.Uma,R.Nagarajan,Synthesis and characterization of titanates of the formula MTiO_3(M=Mn,Fe,Co,Ni and Cd) by co-precipitation of mixed metal oxalates,Polyhedron,2009,28(3),579-585.
    [7]K.Okuyama,IW.Lenggoro,Preparation of nanoparticles via spray route,Chem.Eng.Sci.,2003,58(3-6),537-547.
    [8]Y.C.Kang,H.S.Roh,S.B.Park,Preparation of Y_2O_3:Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis,Adv.Mater.,2000,12(6),451-453.
    [9]G.R.Hu,X.R.Deng,Z.D.Peng,Y.B.Cao,K.Du,Morphology and lumine -scence of(Y,Gd)BO_3:Eu phosphor particles prepared by urea-assisted spray pyrolysis,J.Alloy Compd.,2008,452(2),462-466.
    [10]C.R.Michel,E.R.Lopez,H.R.Zea,Synthesis of GdCo_(1-x)Cu_xO_(3-δ)(x=0,0.15,0.30) perovskites by ultrasonic spray pyrolysis,Mater.Res.Bul.,2006,41(1),209-216.
    [11]B.K.Gupta,O.N.Srivastava,WITHDRAWN:High yield synthesis and characterization of graphitic carbon nanofibers by spray pyrolysis,New Carb.Mater,2008,23(2),116-120.
    [12]C.J.Brinker,G.W.Scherer,Sol-gel Science:the physics and chemistry of sol-gel processing,Academic Press,1990.
    [13]T.Sato,M.Misawa,K.Maruyama,K.Itoh,Preparation of TiO_2-Na_2O glass by sol-gel method and structural characterization,J.Non-Cryst.Sol.,2007,353(30-31),2832-2836.
    [14]L.H.Zhou,D.Q.Chen,W.Q.Luo,Y.S.Wang,Y.L.Yu,F.Liu,Transparent glass ceramic containing Er~(3+):CaF_2 nano-crystals prepared by sol-gel method,Mater Lett.,2007,61(18),3988-3990.
    [15]S.Cai,W.J.Zhang,G.H.Xu,J.Y.Li,D.M.Wang,W.Jiang,Microstructural characteristics and crystallization of CaO-P_2O_5-Na_2O-ZnO glass ceramics prepared by sol-gel method,J.Non-Cryst.Sol.,2009,355(4-5),273-279.
    [16]Q.Feng,X.H.Ma,Q.Z.Yan,C.C.Ge,Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process,Mater.Sci.Eng.B,2009,162(1),53-58.
    [17]I.Bogdanoviciene,A.Beganskiene,K.T(o|¨)nsuaadu,J.Glaser,H.J.Meyer,A.Kareiva,Calcium hydroxyapatite,Ca_(10)(PO_4)_6(OH)_2 ceramics prepared by aqueous sol-gel processing,Mater.Res.Bul.,2006,41(9),1754-1762.
    [18]L.Shapiro,S.Marx,D.Mandler,Preparation and characterization of ultra-thin sol-gel films,Thin Solid Films,2007,515(11),4624-4628.
    [19]R.E.Marotti,C.D.Bojorge,E.Broitman,H.R.Canepa,J.A.Badan,E.A.Dalchiele,A.J.Gellman,Characterization of ZnO and ZnO:Al thin films deposited by the sol-gel dip-coating technique,Thin Solid Films,2008,517(3),1077-1080.
    [20]J.Chandradass,M.Balasubramanian,Sol-gel processing of alumina fibres,J.Mater.Proc.Tech.,2006,173(3),275-280.
    [21]G.Yu,X.Q.Wang,L.Y.Zhu,D.Xu,Q.Ren,G.H.Zhang,X.J.Liu,Z.H.Sun,H.L.Fan,Crystallization process and microstructure of sol-gel derived Pb_(0.9)La_(0.1)Ti_(0.875)O_3 fine fibers with a novel heat-treatment process,Solid State Sci.,2008,10(7),859-863.
    [22]M.K.Naskar,K.Basu,M.Chatterjee,Sol-gel approach to near-net-shape oxide -oxide composites reinforced with short alumina fibres-The effect of crystallization, Ceram.Int.,2009,35(8),3073-3079.
    [23]J.S.Li,Y.X.Hao,H.J.Li,M.Y.Xia,X.Y.Sun,L.J.Wang,Direct synthesis of CeO_2/SiO_2 mesostructured composite materials via sol-gel process,Micro.Meso.Mater.,2009,120(3),421-425.
    [24]Y.Z.Li,Z.Zhou,M.M.Ren,X.P.Gao,J.Yan,Improved electrochemical Li insertion performances of Li_3V_2(PO_4)_3/carbon composite materials prepared by a sol-gel route,Mater.Lett.,2007,61(23-24),4562-4564.
    [25]S.J.Darzi,A.R.Mahjoub,Investigation of phase transformations and photo -catalytic properties of sol-gel prepared nanostructured ZnO/TiO_2 composites,J.Alloy Compd.,2009,486(1-2),805-808.
    [26]J.Livage,M.Henry,C.Sanchez,Sol-gel chemistry of transition metal oxides,Prog.Solid State Chem.,1988,18(4),259-341.
    [27]J.Livage,C.Sanchez,Sol-gel chemistry,J.Non-cryst.Solids,1992,145(1-3),11-19.
    [28]庞文琴,徐如人,无机合成与制备化学,高等教育出版社(北京),2001。
    [29]K.Byrappa,T.Adschiri,Hydrothermal technology for nanotechnology,Prog.Cryst.Growth Charact.Mater.,2007,53(2),117-166.
    [30]F.Sediri,F.Touati,N.Gharbi,A one-step hydrothermal way for the synthesis of vanadium oxide nanotubes containing the phenylpropylamine as template obtained via non-alkoxide route,Mater.Lett.,2007,61(8-9),1946-1950.
    [31]S.Yoon,J.Dornseiffer,T.Schneller,D.Hennings,S.Iwaya,C.Pithan,R.Waser,Percolative BaTiO_3-Ni composite nanopowders from alkoxide-mediated synthesis,J.Eur.Ceram.Soc.,(to be published) 2010,30(2),561-567.
    [32]R.M.Feng,X.J.Yang,,W.J.Ji,C.T.Au,Hydrothermal synthesis of stable mesoporous ZrO_2-Y_2O_3 and CeO_2-ZrO_2-Y_2O_3 from simple inorganic salts and CTAB template in aqueous medium,Mater.Chem.Phys.,2008,107(1),132-136.
    [33]R.Wendelbo,D.E.Akporiaye,A.Karlsson,M.Plassen,A.Olafsen,Combinatorial hydrothermal synthesis and characterisation of perovskites,J.Eur.Ceram.Soc.,2006,26(6),849-859.
    [34]I.Maclaren,C.B.Ponton,Low Temperature Hydrothermal Synthesis of Ba(Mg_(1/3) Ta_(2/3))O_3 Sol-derived Powders, J. Mater. Sci., 1998, 33(1), 17-22.
    
    [35] W. Dawson, Hydrothermal Synthesis of Advanced Ceramic Powders, Am. Ceram. Soc. Bull., 1988, 67(10), 1673-1678.
    
    [36]S. Somiya, Handbook of Advanced Ceramics, Amsterdam: Elsevier Academic Press, 2003, 471-513.
    
    [37]K. A. Razak, A. Asadov, W. Gao, Properties of BST ceramics prepared by high temperature hydrothermal process, Ceram. Int., 2007, 33(8), 1495-1502.
    
    [38]X. Wang, J. Zhuang, Q. Peng, Y. D. Li, A general strategy for nanocrystal synthesis, Nature, 2005, 437(7055), 121-124.
    
    [39]J. Xu, J. P. Ge, Y. D. Li, Solvothermal synthesis of monodisperse PbSe nanocrystals, J. Phys. Chem. B, 2006, 110(6), 2497-2501.
    
    [40]Y. Wu, H. Liu, B. Xu, Solvothermal synthesis of TiO_2: anatase nanocrystals and rutile nanofibers from TiCl_4 in acetone, Appl. Organomet. Chem., 2007, 21(3), 146-149.
    
    [41]M. Boutonnet, J. Kizling, P. Stenivs, G. Maire, The preparation of mono-disperse colloidal metal particles from microemulsions, Colloid. Surf., 1982, 5(3), 209-225.
    
    [42] J. Huang, X.L. Wang, H. Zeng, Z. Z. Xu, A test device for isotopic y-ray imaging with CdZnTe detector, Nuclear Sci. Tech., 2007, 18(2), 107-110.
    
    [43]Z. P. Qiao, Y. Xie, Y. T. Qian, Y. J. Zhu, Z. C. Zhang, γ-Irradiation Preparation and characterization of nanocrystalline ZnS, Mater. Chem. Phys., 2000, 62(1), 88-90.
    
    [44]B. Cheng, W. Q. Jiang, Y. R. Zhu, Z. Y. Chen, Preparation and characterization of MS(M=Cd, Zn) semiconductor nanofibrils by a γ-irradiation technique, J. Mater. Sci. Lett., 2000, 19(6), 503-505.
    
    [45]C. Marcilly, P. Courty, B. Delmon, Preparetion of Highly Dispersed Mixed Oxides and Oxide Solid Solutions by Pyrolysis of Amorphous Organic Precursors, J. Am. Ceram. Soc, 1970, 53(1), 56-57.
    
    [46]M. P. Pechini, Method of Preparing Lead and Alkaline-earth Titanates and Niobatesand Coating Method Using the Same to Form Aca Pacitor, US Patent 3330697, July 11, 1967.
    
    [47]N. G. Error, H. U. Anderson, Polymeric Precursor Synthesis of Ceramics Materials, in Better Ceramics, through Chemistry. II. Proceedings of the Materials Research Society Symposium. Pittsburgh: Mater. Res. Soc, 1986, 571-577.
    [48]A.Gaki,O.Anagnostaki,D.Kioupis,T.Perraki,D.Gakis,G.Kakali,Optimization of LaMO_3(M:Mn,Co,Fe) synthesis through the polymeric precursor route,J.Alloy Compd.,2008,451(1-2),305-308.
    [49]I.H.Mutlu,H.Acun,E.Celik,H.Turkmen,Preparation of YBa_2Cu_3O_(7-x)superconducting solutions and films from alkoxide-based precursors using sol-gel method and investigation of their chemical reaction mechanisms,Physica.C,2007,451(2),98-106.
    [50]T.K.Mandal,Characterization of tetragonal BaTiO_3 nanopowders prepared with a new soft chemistry route,Mater Lett.,2007,61(3),850-854.
    [51]Y.B.Khollam,S.B.Deshpande,H.S.Potdar,S.V.Bhoraskar,S.R.Sainkar,S.K.Date,Simple oxalate precursor route for the preparation of barium-strontium titanate:Ba_(1-x)Sr_xTiO_3 powders,Mater.Character,2005,54(1),63-74.
    [52]M.G.Weng,T.J.Liang,C.L.Huang,Lowering of sintering temperature and microwave dielectric properties of ceramics prepared by the polymeric precursor method,J.Eur.Ceram.Soc.,2002,22(9-10),1693-1698.
    [53]Y.B.Xu,X.Yuan,P.X.Lu,G.H.Huang,Effects of pH and citric acid contents on the synthesis of BaTi_4O_9 via polymeric precursor,Mater.Chem.Phys.,2006,96(2-3),427-432.
    [54]Y.B.Xu,Y.He,Synthesis of Ba_2Ti_9O_(20) via ethylenediaminetetraacetic acid precursor,J.Mater Res.,2001,16(4),1195-1199.
    [55]Y.B.Xu,X.Yuan,P.X.Lu,G.H.Huang,Polymeric precursor synthesis of Ba_2Ti_9O_(20),Mater.Chem.Phys.,2005,90(2-3),333-338.
    [56]Y.B.Xu,X.M.Chen,Y.J.Wu,Preparation of Ba_(6-3x)Nd_(8+2x)Ti_(18)O_(54) via EDTA Precursor,J.Am.Ceram.Soc.,2000,83(11),2893-2895.
    [57]A.Douy,P.Odier,The Polyacrylamide Gel:a Novel Route to Ceramic and Glassy Oxide Powders,Mater.Res.Bull.,1989,24(9),1119-1126.
    [58]A.Douy,Polyacrylamide Gel:an Efficient Tool for Easy Synthesis of Multicom -ponent Oxide Precursors of Ceramics and Glasses,Int.J.of Inorg.Mater,2001,3(7),699-707.
    [59]C.J.Liu,R.M.Yu,Z.W.Xu,J.Cai,X.H.Yan,X.T.Luo,Crystallization,morphology and luminescent properties of YAG:Ce~(3+) phosphor powder prepared by polyacrylamide gel method,Trans.Nonferr.Met.Soc.China,2007,17(5),1093-1099
    [60]M.Tahmasebpour,A.A.Babaluo,S.Shafiei,E.Pipelzadeh,Studies on the synthesis of α-Al_2O_3 nanopowders by the polyacrylamide gel method,Powder Technol.,2009,191(1-2),91-97.
    [61]N.O.Dantas,A.F.G.Monte,W.A.Cardoso,A.G.Brito-Madurro,J.M.Madurro,P.C.Morais,Growth and characterisation of ZnO quantum dots in polyacrylamide,Microelectron.J.,2005,36(3-6),234-236.
    [62]张树格,燃烧合成技术的起源及其在我国的发展,粉末冶金技术,1997,5(4),295-298。
    [63]Z.M.Zhong,P.K.Gallagher,Combustion synthesis and characterization of BaTiO_3,J.Mater.Res.,1995,10(4),945-952.
    [64]T.V.Anuradha,S.Ranganathan,T.Mimant,Combustion synthesis of nano -structured barium titanate,Scripta.Mater.,2001,44(8-9),2237-2241.
    [65]A.Saberi,F.Golestani-Fard,H.Sarpoolaky,M.Willert-Porada,T.Gerdes,R.Simon,Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route,J.Alloy Compd.,2008,462(1-2),142-146.
    [66]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001年2月。
    [67]C.B.Murray,C.R.Kagan,M.G.Bawendi,Synthesis and characterisation of mono-disperse nanocrystals and close packed nanocrystal assemblies.Annu Rev Mater Sci.,2000,30(1),545-610.
    [68]J.M.Bruchez,M.Moronne,P.Gin,S.Weiss,A.P.Alivisatos,Semiconductor nanocrystals as fluorescent biological labels,Science,1998,281(5385),2013-2016.
    [69]W.C.W.Chan,S.Nie,Quantum dot bioconjugates for ultrasensitive nonisotopic detection,Science,1998,281(5385),2016-2018.
    [70]向正华,刘厚奇,核酸探针与原位杂交技术,第二军医大学出版社,2001年12月。
    [71]C.Y.Zhang,H.Ma,S.M.Nie,Y.Ding,L.Jin,D.Y.Chen,Quantum dot -labeled trichosanthin,Analyst,2000,125(6),1029-1031.
    [72]M.Han,X.Gao,J.Z.Su,S.Nie,Quantum-dot-tagged microbeads for multi -plexed optical coding of biomolecules,Nat.Biotechnol.,2001,19(7),631-635.
    [73]H.B.Mao,J.Chen,J.Q.Wang,Z.F.Li,N.Dai,Z.Q.Zhu,Photoluminescence investigation of CdSe quantum dots and the surface state effect,Physica.E,2005,27(1-2),124-128.
    [74]X.Peng,J.Wickham,A.P.Alivisatos,Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth:'focusing' of size distributions,J.Am.Chem.Soc 1998,120(21),5343-5344.
    [75]R.Freer,Microwave dielectric ceramic-an overview,Silic.Ind.,1993,9(3),191-196.
    [76]R.Ubic,I.M.Reaney,W.E.Lee,Microwave dielectric solid-solution phase in system BaO-Ln_2O_3-TiO_2(Ln=Lanthanide cation),Inter.Mater.Rev.,1998,43(5),205-219.
    [77]Mailadil T.Sebastian,A(B'_(1/3)B"_(2/3))O_3 Complex Perovskites,Dielectric Materials for Wireless Communication,2008,261-334.
    [78]L.C.Tien,C.Chou,K.S.Tsai,Ordered structure and dielectric properties of lanthanum-substituted Ba(Mg_(1/3)Ta_(2/3))O,J.Am.Ceram.Soc.,2000,83(8),2074-2078.
    [79]B.J.Kim,M.H.Kim,S.Nahm,H.T.Kim,J.H.Kim,J.H.Paik,H.Ryu,H.J.Lee,Effect of B_2O_3 on the microstructure and microwave dielectric properties of Ba(Mg_(1/3)Ta_(2/3))O_3 ceramics,J.Eur.Ceram.Soc.,2007,27(2-3),1065-1069.
    [80]G.Q.Wang,S.H.Wu,H.Su,Microwave dielectric ceramics in the BaO-TiO_2-ZnO system doped with MnCO_3 and SnO_2,Mater.Lett.,2005,59(17),2229-2231.
    [81]吴顺华,陈力颖,陈小娟等,Mn掺杂BaTi_4O_9陶瓷结构和介电性能,磋酸盐学报,2001,29(1),80-83。
    [82]姚尧,赵梅瑜,王依琳等,固相合成制备单相Ba_2Ti_9O_(20)粉体及陶瓷,硅酸盐学报,1998,26(6),797-801。
    [83]A.Ioachim,M.G.Banciu,M.I.Toacsen,L.Nedelcu,D.Ghetu,H.V.Alexandru,C.Berbecaru,A.Dutu,G.Stoica,High-k Mg-doped ZST for microwave applications,Appl.Surf.Sci.,2006,253(1),335-338.
    [84]I.Kagomiya,M.Suzuki,K.Kakimoto,H.Ohsato,Microwave dielectric properties of tungstenbronze type like(Ba_(1-α)Sr_α)_(6-3x)R_(8+2x)Ti_(18)O_(54)(R=Sm,Nd) solid solutions,J.Eur.Ceram.Soc.,2007,27(8-9),3059-3062.
    [85]Y.Li,X.M.Chen,Effects of sintering conditions on microstructures and microwave dielectric properties of Ba_(6-3x)(Sm_(1-y)Nd_y)_(8+2x)Ti_(18)O_(54) ceramics(x=2/3),J.Eur.Soc.,2002,22(5),715-719.
    [86]N.Ichinose,H.Amada,Preparation and microwave dielectric properties of the BaO-(Sm_(1-x)La_x)_2O_3-5TiO_2 ceramics system,J.Am.Eur.Soc.,2001,21(15),2751-2753
    [87]Y.C.Chen,P.S.Cheng,Substitiution of CaO by BaO to improve the microwave dielectric properties of CaO-Li_2O-Sm_2O_3-TiO_2 cermaics,Ceram.Inter.,2001,27(7),809-813.
    [88]C.L.Huang,J.T.Tsai,Y.B.Chen,Dielectric properties of(1-y)Ca_(1-x)La_(2x/3)TiO_3-y(Li,Nd)_(1/2)TiO_3 ceramics system at microwave frequency,Mater.Res.Bull.,2001,36(3-4),547-551.
    [89]M.S.Fu,X.Q.Liu,X.M.Chen,Structure and microwave dielectric characteristics of Ca_(1-x)Nd_(2x/3)TiO_3 ceramics,J.Eur.Ceram.Soc.,2008,28(3),585-590.
    [90]X.M.Chen,X.J.Lu,Characterization of CaTiO_3-modified Pb(Mg_(1/3)Nb_(2/3))O_3dielectrics,J.Appl.Phys.,2000,87(5),2516-2519.
    [91]杨秋红,金应秀,徐军,固溶率因子对(Pb,Ca,La)(Fe,Nb)O_3陶瓷微波介电性能的影响,硅酸盐学报,2002,30(5),554-558。
    [92]李志强,李三喜,超细钛酸钡粉体湿化学合成技术,山东陶瓷,2004,27(5),14-17。
    [93]栾伟玲,高濂,郭景坤,溶胶-凝胶法制备纳米BaTiO_3粉体的影响因素,无机材料学报,1999,14(6),861-865。
    [94]黎先财,罗来涛,刘康强,纳米BaTiO_3的制备及其负载Ni基催化剂的应用研究,无机材料学报,2003,18(3),686-690。
    [95]A.Suarez-Gomez,R.Sato-Berru,R.A.Toscano,J.M.Saniger-Blesa,F.Calderon-Pinar,On the synthesis and crystallization process of nanocrystalline PZT powders obtained by a hybrid sol-gel alkoxides route,J.Alloy Compd.,2008,450(1-2),380-386.
    [96]J.Javadpour,N.G.Eror,Raman spectroscopy of higher titanate phases in the BaTiO_3-TiO_2 system,J.Am.Ceram.Soc.,1988,71(4),206-213.
    [97]J.H.Choy,Y.S.Han,J.H.Sohn,M.Itoh,Microwave characteristics of BaO-TiO_2 ceramics prepared via a citrate route,J.Am.Ceram.Soc.,1995,78(5),1169-1172.
    [98]S.Kumar,V.S.Raju,T.R.N.Kutty,Preparation of BaTi_4O_9 and Ba_2Ti_9O_(20)ceramics by the wet chemical gel-carbonate method and their dielectric properties,Mater.Sci.Eng.:B,2007,142(2-3),78-85.
    [99]G.Pfaff,Peroxide route to synthesize Ba_2Ti_9O_(20),J.Mater.Sci.Lett.,1993,12(1),32-34.
    [100]李蔚,赵梅瑜,沉淀混合法合成Ba_2Ti_9O_(20)粉体,硅酸盐学报,2003,31(7),659-662。
    [101]J.R.Huang,Z.X.Xiong,C.Fang,B.L.Feng,Hydrothermal synthesis of Ba_2Ti_9O_(20) nano-powder for microwave ceramics,Mater.Sci.Eng.B,2003,99(1-3),226-229.
    [102]周东样,徐建梅,陈晓平,肖红君,水热法合成Ba_2Ti_9O_(20)陶瓷粉,华中科技大学报(自然科学版),2003,31(10),26-28。
    [103]T.Sahoo,S.K.Tripathy,M.Mohapatra,S.Anand,R.P.Das,X-ray diffraction and microstructural studies on hydrothermally synthesized cubic barium titanate from TiO_2-Ba(OH)_2-H_2O system,Mater.Lett.,2007,61(6),1323-1327.
    [104]罗绍华,唐子龙,尧巍华等,低温燃烧合成钛酸钡及其陶瓷介电性能研究,磋酸盐学报,2003,31(6),560-565。
    [105]Z.M.Zhong,P.K.Gallagher,Combustion synthesis for BaTi_4O_9 and PbxBa_(1-x)Ti_4O_9,J.Mater.Res.,1996,11(1),162-168.
    [106]V.Ischenko,E.Pippel,R.K(o|¨)ferstein,H.P.Abicht,J.Woltersdorf,Barium titanate via thermal decomposition of Ba,Ti-precursor complexes:The nature of the intermediate phases,Solid State Sci.,2007,9(1),21-26.
    [107]王永康,王立,纳米材料科学与技术,浙江大学出版社(杭州),2002。
    [108]张立德,纳米材料,化学工业出版社(北京),2002。
    [109]Z.Adam Peng,X.G.Peng,Formation of High-Quality CdTe,CdSe,and CdS Nanocrystals Using CdO as Precursor,J.Am.Chem.Soc.,2001,123(1),183-184.
    [110]T.Trindade,P.O'Brien,N.L.Pickett,Nanocystalline Semiconductors Properties,and Perspectives,Chem.Mater.,2001,13(11),3843-3858.
    [111]H.Zhang,Z.Zhou,B.Yang,M.Y.Gao,The Influence of Carboxyl Groups on the Photo-luminescence of Mercaptocarboxylic Acid-Stabilized CdTe anoparticles,J.Phys.Chem.B,2003,107(1),8-13.
    [112]D.V.Talapin,E.V.Shevchenko,C.B.Murray,A.Kornowski,S.Forste,H.Weller,CdSe and CdSe/CdS Nanorod Solids,J.Am.Chem.Soc.,2004,126(40),12984-12988.
    [113]L.E.Brus,Electronic wave functions in semiconductor clusters:experiment and theory,J.Phys.Chem.,1986,90(12),2555-2560.
    [114]J.Rodrigez-Viejo,Evidence of photo- and elecrodarkening of(CdSe)ZnS quantum dot composites,J.Appl.Phys.,2000,87(12),8526-8534.
    [115]J.S.Andrew,Quantum dots as luminescent probes in biological systems,Curr.Opin.Solid State Mater.Sci.,2002,6(4),365-370.
    [116]林章碧,苏星光,张皓,牟颖,孙哗,胡海,杨柏,闫岗林,罗贵民,金钦汉,用水溶液中合成的量子点作为生物荧光标记物的研究,高等学校化学学报,2001,24(2),216-220。
    [117]H.M.O'Bryan,J.Thomson,J.K.Plourde,D.F.Linn,A New BaO-TiO_2Compound with Temperature-Stable High Permittivity and Low Microwave Loss,J.Am.Chem.Soc.,1974,57(10),450-453.
    [118]J.K.Plourde,D.F.Linn,H.M.O'Bryan,J.Thomson,Ba_2Ti_9O_(20) as a microwave Dielectric Resonator,J.Am.Chem.Soc.,1975,58(9-10),418-420.
    [119]A.Feteira,D.C.Sinclair,I.M.Reaney,Y.Somiya,M.T.Lanagan,BaTiO_3-Based Ceramics for Tunable Microwave Applications,J.Am.Chem.Soc.,2004,87(6),1082-1087.
    [120]C.Pithan,D.Hennings,R.Waser,Progress in the Synthesis of Nanocrystalline BaTiO_3 Powders for MLCC,Inter J.Appl.Ceram.Tec.,2005,2(1),1-14.
    [121]X.R.Xing,J.X.Deng,J.Chen,G..R.Liu,Phase evolution of barium titanate from alkoxide gel-derived precursor,J.Alloy Compd.,2004,384(1-2),312-317.
    [122]A.V.Komarov,I.P.Parkin,New routes in the self-propagating high-tempera -ture sntheses of barium titanium oxide,Polyhedron,1996,15(8),1349-1353.
    [123]W.Li,N.Wang,W.J.Wu,Y.L.Wang,M.Y.Zhao,Synthesis of Ba_2Ti_9O_(20)powder via precipitation-mixing route,Mater.Lett.,2005,59(2-3),162-165.
    [124]Y. B. Xu, X. Yuan, G. H. Huang, H. Long, Polymeric precursor synthesis of Ba_2Ti_9O_(20), Mater. Chem. Phys., 2005, 90(2-3), 333-338.
    
    [125]M. B. Park, N. H. Cho, C. D. Kim, S. K. Lee, Phase Transition and Physical Characteristics of Nanograined BaTiO_3 Ceramics Synthesized from Surface-Coated Nanopowders, J. Am. Ceram. Soc, 2004, 87(3), 510-512.
    
    [126]W. A. Sun, J. Q. Li, W. Liu, C. H. Li, Preparation of Fine Tetragonal Barium Titanate Powder by a Microwave-Hydrothermal Process, J. Am. Ceram. Soc, 2006, 89(1), 118-123.
    
    [127]D. L. West, D. A. Payne, Preparation of 0.95Bi_(1/2)Na_(1/2)TiO_3-0.05BaTiO_3 Ceramics by an Aqueous Citrate-Gel Route, J. Am. Ceram. Soc, 2003, 86(1), 192-194.
    
    [128]A. G. Merzhanov, In Combusiton and Plasma Synthesis of High-Temperature Synthesis: Twenty Years of Search and Findings, edited by Z.A. Munir and J. B. Holt (VCH, New York, 1990), pp1.
    
    [129]H. C. Yi, J. J. Moore, Review of self-propagating high-temperature synthesis (SHS) of powder-compacted materials,J. Mater. Sci., 1990, 25(2), 1159-1168.
    
    [130]J. B. Holt, in Engineered Materials Handbook: Self-Propagating, High Temperature synthesis, Vol.4, Ceramics and Glasses, edited by S.R. Lampman, M.S. Woods, and T. B. Zorc (ASM INTERNATIONAL, Materials Park, Oh, 1991), pp227.
    
    [131]J. S. Park, M. H. Yang, Y. H Han, Effects of MgO coating on the sintering behavior and dielectric properties of BaTiO_3, Mater. Chem. Phys., 2007, 104(2-3), 261-266.
    
    [132]Y. S. Zhang, G. C. Stangle, Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process, J. Mater. Res., 1994, 9(8), 1997-2004.
    
    [133]L. Cerchez, A. Ciupeiu, Preparation and sintering of Ba_2Ti_9O_(20)-based ceramics and their properties for dielectric resonators, Ceram. Int., 2000, 26(1), 99-103.
    
    [134]P. V. Bijumon, Y. M. M. Antar, A. P. Freundorfer, M. Sayer, Low-Temperature Synthesis and Growth of Bulk Ba_2Ti_9O_(20) Ceramics on Conducting Substrates for Applications in Integrated Dielectric Resonator Devices, Int. J. Appl. Ceram. Tec, 2008, 5(4), 382-393.
    
    [35]T. T. Fang, J. T. Shiue, S. C. Liou, Formation mechanism and Sintering Behavior of Ba_2Ti_9O_(20), J. Eur. Ceram. Soc, 2002, 22(1), 79-85.
    
    [36]Y. B. Xu, X.M. Chen, L.B. Wang, Sol-Gel Preparation of BaTi_4O_9 and Ba_2Ti_9O_(20) J. Am. Ceram. Soc, 2001, 84(3), 669-671.
    
    [137]H. W. Wang, M. R. Chung, Formation of Ba_2Ti_9O_(20) ceramics from EDTA-gel -derived powders, Mater. Chem. Phys., 2002, 77(3), 853-859.
    
    [138]X. Lou, W. J. Weng, K. Chen, C. L. Song, P. Y. Du, G. Shen, G. R. Han, The effect of incomplete combustion on Ba_2Ti_9O_(20) phase formation in a citrate solution combustion method, Ceram. Int., 2009, 35(5), 1725-1739.
    
    [139]J. M. Wu, H. W. Wang, Factors Affecting the Formation of Ba_2Ti_9O_(20), J. Am. Ceram. Soc, 1988, 71(10), 869-875.
    
    [140]X. Lou, W. J. Weng, K. Cheng, C. L. Song, P.Y. Du, G. Shen, G R. Han, A study on CSC-derived Ba_2Ti_9O_(20) phase formation and its dieclectric property, J. Mater. Sci.: Materials in Electronics, (08-July-2009) published online, doi: 10.1007/s10854-009-9935-y.
    
    [141]L. J. Zhou, W. J. Weng, P.Y. Du, G. Shen, G. R. Han, Citrate solution combus -tion derived Ba_2Ti_9O_(20) ceramics, J. Eur. Ceram. Soc, 2006,26(10-11), 1995-1998.
    
    [142]J. Poth, R. Haberkon, H. P. Beck, Combustion-synthesis of SrTiO_3: Part I. synthesis and properties of the ignition products, J. Eur. Ceram. Soc., 2000, 20(6), 707-713.
    
    [143]S. R. Jain, K. C. Adiga, V. R. P. Verneker, A new approach to thermochemical calculations of condensed fuel-oxidant mixtures, Combustion and Flame, 1981, 40(1), 71-79.
    
    [144]A. Ringbom, Complexation in Analytical Chemistry, Complexation in analytical chemistry: a guide for the critical selection of analytical methods based on comlexation reactions/ Anders Ringbom, Interscience, 1963.
    
    [145]T. Okawa, K. Kiuchi, H. Okabe, Microwave dielectric properties of series, Jpn. Appl. Phys., 2001, 40, 5779-5782.
    
    [146]A.G. Belous, Microwave dielectrics with enhanced permittivity, J. Eur. Ceram. Soc, 2006(26), 1821-1826.
    [147]H.Ohsato,Origins of high Q on microwave tungstenbronze-type like Ba_(6-3x)R_(8+2x)Ti_(18)O_(54)(R:rare earth) dielectrics based on the atomic arrangements,J.Eur.Ceram.Soc.,2007(8-9),2911-2915.
    [148]高濂,李蔚,纳米陶瓷,化学工业出版社,2002。
    [149]T.Negas,P.K.Davies,Influence of chemistry and processing on the electrical properties of Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54) solid solutions,Materials and processes for wireless communications(edited by T.Negas and H.Ling,Westerville,OH.American Ceramic Society),1995,53,179-196.
    [150]Y.H.Jeong,J.B.Lim,J.C.Kim,S.Nahm,H.J.Sun,H.J.Lee,Microstructure and dielectric properties of amorphous BaSm_2Ti_4O_(12) thin films for MIM capacitor,J.Eur.Ceram.Soc.,2007,27(8-9),2849-2853.
    [151]R.Ubic,I.M.Reaney,W.E.Lee,J.Samuels,Properties of the microwave dielectric phase Ba_(6-3x)Nd_(8+2x)Ti_(18)O_(54),Ferroelectrics,1999,228(1),271-282.
    [152]K.Wada,K.Kakimoto,H.Ohsato,Microstructure and microwave dielectric properties of Ba_4Sm_(9.33)Ti_(18)O_(54) ceramics containing columnar crystals,J.Eur.Ceram.Soc.,2003,23(14),2535-2539.
    [153]J.Takahashi,T.Ikegami,K.Kageyama,Occurrence of dielectric 1:1:4compound in the ternary system BaO-Ln_2O_3-TiO_2(Ln=La,Nd,Sm):Ⅰ An improve coprecipitation method for preparing a single-phase powder of ternary compound the BaO-Ln_2O_3-TiO_2 system,J.Am.Ceram.Soc.,1991,74(8),1862-1867.
    [154]J.Takahashi,T.Ikegami,K.Kageyama,Occurrence of dielectric 1:1:4compound in the ternary system BaO-Ln_2O_3-TiO_2(Ln=La,Nd,Sm):Ⅱ Reexamina -tion formation of isostructural ternary compounds in identical systems,J.Am.Ceram.Soc.1991,74(8),1873-1879.
    [155]R.Ubic,I.M.Reaney,W.E.Lee,Space group determination of Ba_(6-x)Nd_(8+2x/3)Ti_(18)O_(54),J.Am.Ceram.Soc.,1999,82(5),1336-1338.
    [156]G.B.Anatolii,V.O.Oleg,M.Valant,Solid-state reaction mechanism for the formation of Ba_(6-x)Ln_(8+2x/3)Ti_(18)O_(54)(Ln=Nd,Sm) solid solutions,J.Mater.Res.,2001,16(8),2350-2356.
    [157]Y.Otaa,K.I.Kakimotoa,H.Ohsato,Low-temperature sintering of Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54) microwave dieclectric ceramics by BO_3 and GeO_2 addition.,J.Eur.Ceram.Soc.,2004,24(6),1755-1760.
    [158]Y.B.Xu,X.M.Chen,Y.J.Wu,Synthesis of Ba_(6-x)Nd_(8+2x/3)Ti_(18)O_(54) ceramic powde via citric acid precursor,J.Mater.Sci.:Materials in Electronics,2000,11(8),633-636.
    [159]Y.P.Guo,K.I.Kakimoto,H.Ohsato,Microwave dielectric properties of Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)(x=2/3) ceramics produced by spark plasma sintering,Jap.J.Appl.Phys.,2003,42,7410-7413.
    [160]M.W.Zuo,W.Li,J.L.Shi,Q.Zeng,Influence of CuO addition to BaSm_2Ti_4O_(12)microwave ceramics on sintering behavior and dielectric properties,Mater Res.Bul.,2006,41(6),1127-1132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700