稀土掺杂磁铅石型钡铁氧体超细粉末的制备及其磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是在前人工作的基础上,同时从制备方法和掺杂元素两方面着手,以保证制备的粉体材料具有优异的性能,即首次利用溶胶—凝胶湿化学合成法和低温燃烧合成法相结合的一种兼具二者优点的超细粉末新型合成技术——溶胶-凝胶燃烧合成法来完成稀土元素掺杂钡铁氧体BaRE_xFe_(12-x)O_(19)(RE为La、Nd、Sm、Gd)超细粉末的制备。在深入进行了理论分析和大量实验研究的基础上,以稀土La元素掺杂为代表,首次查明了各种工艺条件(包括溶胶组成、中间产物种类、溶液浓度、络合剂配比、阴离子种类、分散剂、自蔓延燃烧和热处理制度)对稀土掺杂钡铁氧体粉末物相结构、粒度、形貌及磁学性能影响的规律性,确定了最佳制备工艺。
     首次对溶胶-凝胶燃烧合成法热处理过程中稀土掺杂钡铁氧体的生成机理进行了深入研究,同时初步查明了过程中络合剂(柠檬酸)和分散剂(乙二醇)的作用机理。
     首次查明了钡铁氧体粉末的磁性能(包括比饱和磁化强度、比剩余磁化强度和内禀矫顽力)随稀土元素种类及其掺杂量的变化规律。
     利用X射线衍射仪(XRD)确定样品物相,振动样品磁强计(VSM)进行磁性测量,综合热分析仪研究凝胶的燃烧和析晶过程,扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察粉末的形貌与粒度。本研究的成果和结论如下:
     1)查明了稀土掺杂钡铁氧体的生成机制,即:
     有机前驱物(凝胶)→γ-Fe_2O_3+B~(2+)→BaFe_2O_4
     BaFe_2O_4+5γ-Fe_2O_3→BaFe_(12)O_(19)
     因此,制备性能优异、粒度均匀的稀土掺杂钡铁氧体超细粉末,其关键是反应过程中应尽量避免中间产物α-Fe_2O_3的生成。这一关键对稀土掺杂钡铁氧体的其他制备方法,如化学共沉淀法、气溶胶法、低温化学法和水热法等也同样适用。
     2)根据理论分析和实验研究,提出了选用柠檬酸作络合剂,乙二醇为分散剂,且将溶液起始PH值调至弱酸性(7.0左右)以及将凝胶预燃烧后再进行高温煅烧的两步热处理制度是保证γ-Fe_2O_3中间物相、避免α-Fe_2O_3中间物相生成的两个关键步骤,可保证在较低的煅烧温度下形成稀土掺杂磁铅石型钡铁氧体超细粉末。
     3)在查明了最佳工艺条件的基础上,制备了纯净单一、粒径细小(30~70nm左右)、粒度均匀且磁性能优良的稀土掺杂磁铅石型钡铁氧体超细粉末。其比饱和磁化强度达65.54A·m~2/Kg,接近Blirk和Buessem所报道的aaFe_(12)O_(19)单晶的理论值(72A·m~2/kg),矫顽力为437kA/m,接近根据Stoner和Wohlfarth理论所推算的无定向的单轴单畴BaFe_(12)O_(19)颗粒在室温的理论预期值(533kA/m),其作为永磁材料的磁学性能指标与前人合成的样品相比也有了较大的改善。
     4)查明了稀土掺杂对钡铁氧体微粒磁性能的影响规律。随着稀土掺杂量的增加,样品的比饱和磁化强度和比剩余磁化强度均随之下降,且掺杂各种不同稀土元素的下降幅度大体相同。样品的矫顽力在掺杂量较低的范围内出现一个极值(La和Sm掺杂时为极小值,Nd和Gd掺杂时为极大值);在掺杂量较高的范围内,矫顽力随掺杂量的增加而大幅度增大。
The hexagonal BaRExFe,2.xO,,(RE denote La^ Nd> Sm and Gd) ultrafine powders with M-type
    structure were firstly synthesized by a novel technique ------ sol-gel combustion synthesis method
    which combines sol-gel method with low temperature combustion synthesis method.
    Based on theoretical analysis and experimental study, the effects of the composition of the gel, the different kinds of intermediate, strength of solution, the amount of complexing agent, the different kinds of anions, the adding of dispersant, auto - propagating combustion and the condition in heat treatment of the gel on crystal phase, particle size, morphology and magnetic properties of BaRE^Fe^O,, ultrafine powders were firstly investigated systematically to clarify the optimum forming conditions.
    The formation mechanism of BaRExFe12_xOl9in heat treatment was firstly deeply discussed, and the action mechanism of complexing agent (citrate) and dispersant (glycol) during the formation of the gel was also firstly studied.
    The effects of the different kinds of rare earths and the doping amount of them on magnetic properties of BaFe,2O19 ultrafine powders (including the specific saturation magnetization, the specific remanent magnetization and coercive force) were firstly discussed systematically.
    The composition of sample was identified by means of X-ray diffractometer(XRD). Magnetic properties were measured by vibrating sample magnetometer (VSM). The combustion behavior and crystallization process of the gel were studied by means of differential thermal analysis-thermogravimetric analysis (DTA-TG). Scan electron microscope (SEM) and transmission electron microscope (TEM) were used to examine the morphology. Some important results are concluded as follows:
    1) This investigation presents the formation mechanism of BaREiFe^Oi,, that is,
    organic precursor (gel) - Y -Fe2O3+Ba2+-BaFe204
    BaFe2O4+5 y -Fe2O3-BaFe,2O19
    Therefore, only when the formation of a -Fe2O3 intermediate is prevented, can the pure BaRExFe,2.xOI9 particles be obtained at relatively lower calcining temperature. This conclusion can also be applied in other synthesis methods such as chemical co-precipitation, aerosol synthesis, cryochemical method and hydrothermal synthesis.
    2) The results show that controlling the pH value of starting precursor solution at 7.0 or so and preprocessing the gel (that is, igniting the gel) into y -Fe^ before calcining are two key steps which can prevent the formation of a -Fe2O3 intermediate, thus the pure BaRE^Fe^O,, particles can be obtained at lower calcining temperature (850 "C).
    3) The BaRExFel2.x019 ultrafine powders with single phase, small size (about 30~70nm), narrow size distribution and high magnetic properties with coercive force (437kA/m) and specific
    
    
    
    magnetization (65.54A ?m2/kg) that are similar to the theoretically predicted values and far more than those of barium ferrite produced by others without doping.
    4) The rule about the influence of rare earths (La, Nd, Sm, Gd) doping on magnetic properties of barium ferrite is concluded. With the increasing of the doping amount of these four rare earths, both the specific saturation magnetization and the specific remanent magnetization decrease gradually to the same extent. When the doping amount of these four rare earths is lower, coercive force of La and Sm-doped barium ferrite powders shows a similar regularity, that is, there exists a minimum, whereas there exists a maximum in Nd and Gd-doped barium ferrite powders. When the doping amount is higher, coercive force increases greatly with the increasing of the doping amount
引文
[1]王春兰.大力发展高档永磁铁氧体材料.矿冶,1999,8(2):56~59.
    [2]李国栋.稀土磁性材料与分子设计.物理,1993,22(12):730~734.
    [3]田雨霖.取向钡铁氧体微粉的合成及应用.硅酸盐通报,1989,8(1):21~29.
    [4]都有为.铁氧体.南京:江苏科学技术出版社,1996.
    [5]Pankov V V,Pernet M,Germi P,etal.Fine hexaferrite particles for perpendicular recording prepared by the coprecipitation method in the presence of an inert component.J Magn Magn Mat,1993,120:69~72.
    [6]Lin C H,Shih Z W,Chin T S,etal.Hydrothermal processing to produce magnetic particulates.IEEE Transactions on Magnetics,1990,26(1):15~17.
    [7]Haneda K,Miyakawa C,Goto K.Preparation small particles of SrFe_(12)O_(19)with high coercivity by hydrolysis of metal-organic complexes.IEEE Transactions on Magnetics,1987,23(5):3134~3136.
    [8]Oda K,Yoshio T,O-Oka K.Magnetic properties of SrFe_(12)O_(19)particles prepared by the glass-ceramic method.J Mater Sci Let,1984,3(11):1007~1010.
    [9]Pillai V,Kumar P,Shah D O.Magnetic properties of barium ferrite synthesized using a microemulsion mediated process.J Magn Magn Mat,1992,116(3):L299~L304.
    [10]周文运.永磁铁氧体和磁性液体设计工艺.成都:电子科技大学出版社,1991.
    [11]都有为,陆怀先.草酸盐共沉淀工艺制备La_xZn_xBa_(1-x)Fe_(12-x)O_(19)铁氧体.南京大学学报,1981,(3):314~320.
    [12]顾本喜,陆怀先,都有为.Gd取代M型钡铁氧体的研究.南京大学学报,1983,(1):53~59.
    [13]蒉纪圣,陆怀先,都有为.轻稀土Ce、La取代六角铁氧体的制备和磁性.南京大学学报,1984,(3):457~463.
    [14]“粉末冶金词典”编辑组编.粉末冶金词典.北京:冶金工业出版社,1983.
    [15]Stadnik Z M,Griesbach P,Dehe G,etal.~(61)Ni M(?)ssbauer study of the hyperfine magnetic field near the Ni surface.Phys Rev,1987,B35(13):6588~6592.
    [16]李新勇,李树本.纳米半导体研究进展.化学进展,1996,8(3):231~232.
    [17]洪广言,李红军,越淑英等.超微粉末的合成及其应用.无机材料学报,1987,2(2):102~104.
    [18]贺集誠一郎.超微粒子.表面,1988,26(1):27~38.
    [19]王零森.特种陶瓷.长沙:中南工业大学出版社,1994.
    [20]王大志.纳米材料结构特征.功能材料,1993,24(4):303~305.
    [21]Kobo R.Electronic properties of metallic fine particles.I.J Phys Soc Jpn,1962,17(6):975~986.
    [22]高友良.超徽粉末的研究进展.中国陶瓷,1996,32(3):37~40.
    [23]郭景坤,徐跃萍.纳米陶瓷及其进展.硅酸盐学报1992,20(3):286~291.
    [24]易文辉,郭焱.超微细粒子的制备及应用.化工新型材料,1996,(11):7~9.
    
    
    [25]Davis S C,Klabunde K J.Unsurpported small metal particles:preparation,reactivity,and characterization.Chem Rev,1982,82(2):153~208.
    [26]黄艳玲.跨世纪的新技术——纳米科技.矿冶,1997,6(4):62~69.
    [27]朱孝信.超微细粉末材料的发展.材料开发与应用,1998,13(5):28~33.
    [28]尾崎羲治.粒子進化.日本科学技术,1984,25(227):43~51.
    [29]贺集誠一郎.金属超微粉——進用途开发.金属,1979,49(2):31~34.
    [30]Kawabata A.On the charge neutrality of metallic fine particles.J Phys Colloq,1977,38(2):83~85.
    [31]Bean C P,Livingston J D.Superparamagnetism.JAppl Phys,1959,30:120s~129s.
    [32]Bostanjoglo O,Gemuend H P.Possible tunneling in ferromagnetics with extra ordinary viscosity.Phys Stat solid(A),1973,17(1):115~123.
    [33]Stauffer D.Quantum tunneling nucleation for superparamagnetic spin cluster reversals.Solid State Comm,1976,18(4):533~535.
    [34]Uehara M,Barbara B,Dieny B,etal.Staircase behaviour in the magnetization reversal of a chemically disordered magnet at low temperature.Phys Lett,1986,114A(1):23~26.
    [35]Defranzo A,Klik I,Gunther L,etal.Macroscopic quantum tunneling in single domain magnetic particles.J Appl Phys,1988,63(8):4234~4236.
    [36]杨修春,丁子上,沈志坚.纳米陶瓷的制造及其性能.中国陶瓷,1994,(5):52~55.
    [37]Du Y W,Wu J,Lu H X,etal.Magnetic properties of fine iron particles.J Appl Phys,1987,61(8):3314~3316.
    [38]田崎明.磁性见超微粒子.应用物理,1984,53(11):942~947.
    [39]Coey J M D.Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites.Phys Rev Lett,1971,27(17):1140~1143.
    [40]Berkowitz A E,Lahut J A,Jacobs I S,etal.Spin pinning at ferrite-organic interfaces.Phys Rev Lett,1975,34(10):594~597.
    [41]Du Y W,Lu H X,Wang Y Q,etal.The effect of surfactant on the magnetic properties and m(?)ssbauer spectra of magnetite.J Magn Magn Mat,1983,31-34Pt: 896~898.
    [42]Morrish A H,Haneda K.Surface magnetic properties of fine particles.J Magn Magn Mat,1983,35(1-3):105~113.
    [43]田明原,施尔畏,仲维卓等.纳米陶瓷与纳米陶瓷粉末.无机材料学报,1998,13(2):129~137.
    [44]Smit J,Wijn H P J.Ferrites,Eindhoven(Holland),1959.
    [45]Evans B J,Grandjean F,Lilot A P,etal.~(57)Fe hyperfine interaction parameters and selected magnetic properties of high purity MFe_(12)O_(19)(M=Sr,Ba).J Magn Magn Mat,1987,67(1):123~129.
    [46]Thompson G K,Evans B J.~(57)Fe M(?)ssbauer investigation of oriented single -crystal and polycrystalline PbFe_(12)O_(19).J Magn Magn Mat,1991,95(2):L142~L144.
    [47]Kojima H.Ferromagnetic Materials,1982,3.
    [48]Stoner E C,Wohlfarth E P.A mechanism of magnetic hysteresis in heterogeneous alloys.PhilTrans Roy Soc,1948,A240:599~642.
    
    
    [49]李萌远,李国栋.铁氧体物理学.北京:科学出版社,1978.
    [50]Yamamoto H,Kawaguchi T,Nagakura M.A new permanent magnetic material:modified Caferrite.IEEE Trans Magn,1979,MAG-15(3):1141~1146.
    [51]Summergrad R N,Banks E.New hexagonal ferrimagnetic oxides.J Phys Chem Solid,1957,2(4):312~317.
    [52]Mones A H,Banks E.Cation substitutions in BaFe_(12)O_(19).J Phys Chem Solid,1958,4(3):217~222.
    [53]都有为,陆怀先,张毓昌等.La_xBa_(1-x)Fe_(12-x)Zn_xO_(19)铁氧体磁性与穆斯堡尔谱的研究.物理学报,1983,32(2):168~175.
    [54]Van Uitert L G.Magnetic induction and coercive force data members of the series BaAl_xFe_(12-x)O_(19)and related oxides.J Appl Phys,1957,28(3):317~319.
    [55]小岛浩.硬質磁性材料(日文).東京:丸善株式會社,1976.
    [56]Albanese G,Deriu A,Lucchini E,etal.Cation distribution and sublattice magnetization of hexagonal ferrites substituted with In and Sc.IEEE Trans on Magn,1981,MAG-17(6):2639~2641.
    [57]Tauber A,Kohn A J,Savage R O.Single-crystal ferroxdure,BaFe_(12-x)~(3+)Ir_x~(4+)Zn_x~(2+)O_(19),with strong planar anisotropy,J Appl Phys,1963,34(4)part2:1265~1267.
    [58]Collomb A,Obradors X,Isalgue A.Neutron diffraction study of the crystallographic and magnetic structures of the BaFe_(12-x)Mn_xO_(19)M-type hexagonal ferrites.J Magn Magn Mat,1987,69(3):317~324.
    [59]Sandiumenge F,Martinez B,Battle X,etal.Cation distirbution and magnetization of BaFe_(12-2x)Co_xSn_xO_(19)(X=0.9,1.28)single crystals,J Appl Phys,1992,72(10):4608~4614.
    [60]Kubo O,Nomura T,ldo T,etal.Improvement in the temperature coefficient of coecivity for barium ferrite particles.IEEE Trans Magn,1988,24(6):2859~2861.
    [61]Banks E.Fluoride ion compensated substitutions of bivalent cations in BaFe_(12)O_(19)and other hexagonal oxides.J Phys Soc Japan,1962,17(Suppl B1):196~198.
    [62]Robbins M,Banks E.Effect of fluoride-compensated Co~(2+)on the anisotropy of BaFe_(12)O_(19).J Appl Phys,1963,34(4)part2:1260~1261.
    [63]Haneda K,Kojima H.Effect of milling on the intrinsic coercivity of barium ferrite powders.J Am Ceram Soc,1974,57(2):68~71.
    [64]Kaczmarek W A,Ninham B W.Preparation of high-coercivity fine barium ferrite powder.J Appl Phys,1994,76(10)part2:6065~6067.
    [65]Tenzer R K.Influence of particle size on the coecive force of barium ferrite powders.J Appl Phys,1963,34(4):1267~1268.
    [66]Tenzer R K.Influence of static pressure on the coecive force of barium ferrite powder.J Appl Phys,1965,36(3):1180~1181.
    [67]Kaczmarek W A,Radlinska E Z,Ninham B W.Electrokinetic and magnetic properties of submicron BaFe_(12)O_(19)ferrite powder dispersions.Mater Chem Phys,1993,35(1):31~35.
    
    
    [68]Kaczmarek W A,Ninham B W.Magnetic properties of Ba-ferrite powders prepared by surfactant assisted ball milling.IEEE Trans Magn,1994,30(2):717~719.
    [69]Campbell S J,Kaczmarek W A,Wu E,etal.Surfactant assisted ball milling of barium ferrite.IEEE Trans Magn,1994,30(2):742~745.
    [70]Tang Z X,Nafis S,Sorensen C M,etal.Magnetic properties of aerosol synthesized barium ferrite particles.IEEE Trans Magn,1989,25(5):4236~4238.
    [71]Cabanas M V,Gonz(?)lez-Calbet J M,Vallet-Regi M.Synthesis of barium hexaferrite by pyrolysis of an aerosol.J Mater Res,1994,9(3):712~716.
    [72]Kaczmarek W A,Ninham B W,Calka A.Structure and magnetic properties of aerosol synthesized barium ferrite particles.J Appl Phys,1991,70(10)partⅡ:5909~5911.
    [73]Cabanas M V,Gonz(?)lez-Calbet J M,Labeau M,etal.Evolution of the microstructure and its influence on the magnetic properties of aerosol synthesized BaFe_(12)O_(19)particles.J Solid State Chem,1992,101(2):265~274.
    [74]日本专利.87/94810,1987,Appl.
    [75]日本专利.87/159720,1987,Appl.
    [76]冯晓凤.化学共沉淀法制备 BaFe_(12-2x)Co_xTi_xO_(19)系列磁性材料的研究.无机材料学报,1988,3(4):347~351.
    [77]邵元智等.钡铁氧体BaFe_(11-x-y)Co_(0.5)Ti_(0.5)Ni_xZn_yO(19-R)的制备及其磁性.功能材料,1992,23(4):230~233.
    [78]Mee C D,Jeschke J C.Single-domain properties in hexagonal ferites.J Appl Phys,1963,34(4):1271~1272.
    [79]Roos W.Formation of chemically coprecipitated barium ferrite.J Am Ceram Soc,1980,63(11-12):601~603.
    [80]Haneda K,Miyakama C,kojima H.Preparation of high-coercivity BaFe_(12)O_(19).J Am Ceram Soc,1974,57(8):354~357.
    [81]Haneda K,Kojima H.Magnetization reversal process in chemically precipitated and ordinary prepared BaFe_(12)O_(19).J Appl Phys,1973,44:3760~3762.
    [82]司新文等.钡铁氧体磁粉的制备研究.化工冶金,1996,17(4):357~361.
    [83]Chin Tsung-shune,Hsu S L,Deng M C.Barium ferrite particulates prepared by a salt-melt method.J Magn Magn Mater,1993,120(1-3):64~68.
    [84]日本专利.88/106370,1988,Appl.
    [85]曹健等.熔盐法合成BaFe_(11)Co_(0.5)Ti_(0.5)O_(19)磁性粉体及其性能分析.功能材料,1996,27(5):446~448.
    [86]Guo Z B,Ding W P,Zhong W,etal.Preparation and magnetic properties of SrFe_(12)O_(19)particles prepared by the salt-melt method.J Magn Magn Mater,1997,175:333~336.
    [87]U.S.Patent.3804767,16 April 1974.
    [88]Corradi A R,Speliotis D E,Morrish A H,etal.Effect of the cation site occupancy on the magnetization reversal machanism of hydrothermal barium ferrites.IEEE Trans Magn,1988,24(6):2862~2864.
    
    
    [89]U.S.Patent 4,781,981.
    [90]Ataie A,Harris R,Ponton C B,etal.Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions.J Mater Sci,1995,30(6):1429~1433.
    [91]都有为等.水热法生成BaFe_(12)O_(19)铁氧体的相变过程.物理学报,1984,33(4):579~582.
    [92]张密林等.水热法合成BaNd_xFe_(12-x)O_(19)铁氧体的研究.稀土,1996,17(2):14~17.
    [93]张密林等.水热法合成Sr-La铁氧体超微粉末.稀土,1994,15(1):31~33.
    [94]Sugita N,Maekawa M,Ohta Y,etal.Advances in fine magnetic particles for high density recording.IEEE Trans Magn,1995,31(6):2854~2858.
    [95]Shirk B T,Buessem W R.Magnetic properties of barium ferrite formed by crystallization of a glass.J Am Ceram Soc,1970,53(4):192~196.
    [96]Kubo O,Ido T,Yokoyama H.Properties of Ba ferrite particles for perpendicular magnetic recording media.IEEE Trans Magn,1982,MAG-18(6):1122~1124.
    [97]Ram S,Bahadur D,Chakravorty D,etal.Magnetic properties of BaFe_(12)O_(19)particles with B_2O_3 addition.J Magn Magn Mater,1988,71(3):359~363.
    [98]Yang Z,Liu J Z,Zheng P,etal.Preparation and magnetic properties of Co and Ti substituted Ba-ferrite fine platelet particles.IEEE Trans Magn,1987,MAG-23(5):3131~3133.
    [99]Yang Z,Zeng H X,Hah D H,etal.Morphological,structural and magnetic charateristics of Co-Tiand Co-Sn Substituted Ba-ferrite particles for magnetic recording.J Magn Magn Mater,1992,115:77~86.
    [100]G(?)rnert P,Sinn E,Sch(?)ppel W,etal.Structural and magnetic properties of BaFe_(12-2x)Co_xFe_(16)O_(27)powders prepared by the glass crystallization method.IEEE Trans Magn,1990,26(1):12~14.
    [101]Fujiwara T,Isshiki M,Koike Y,etal.Recording performances of Ba-ferrite coated perpendicular magnetic tapes.IEEE Trans Magn,1982,MAG-18(6):1200~1202.
    [102]Fujiwara T.Barium ferrite media for perpendicular recording.IEEE Trans Magn,1985,MAG-21(5):1480~1485.
    [103]Isshiki M,Suzuki T,Ito T,etal.Relations between coercivity and recording performances for Ba-ferrite particulate perpendicular media.IEEE Trans Magn,1985,MAG-21(5):1486~1488.
    [104]Kuz'Mitcheva T G,OI'khovik L P,Shabatin V P.Synthesis and properties of fine Ba-ferrite powders.IEEE Trans Magn,1995,31(1):800~803.
    [105]De Gennes P G,Taupin C.Microemulsions and the flexibility of oil/water interfaces. J Phys Chem,1982,86(3):2294~2304.
    [106]覃兴华,卢迪芬.反胶团微乳液法制备超微细颗粒的研究进展.化工新型材料,1998,(2):27~28.
    [107]Fendler J H.Atomic and molecular clusters in membrane mimetic chemistry.Chem Rev,1987,87(5):877~899.
    
    
    [108]Rivas J,L(?)pez-Quintela M A,L(?)pez-P(?)rez J A,etal.First Steps towards tailoring fine and ultrafine iron particles using microemulsions.IEEE Trans Magn,1993,29(6):2655~2657.
    [109]沈君权.精细陶瓷用超微粉料的制备.硅酸盐通报,1987,6(2):49~56.
    [110]日本专利.87/44962,1987,Appl.
    [111]陈祖耀,张大杰,钱逸泰.喷雾热解法制备超细粉末及其应用.硅酸盐通报,1988,7(6):54~61.
    [112]姚志强,王琴,钟炳.超临界流体干燥法制备超细钡铁氧体粉末(Ⅰ).功能材料,1998,29(5):468~470.
    [113]姚志强,王琴,钟炳.超临界流体干燥法制备超细钡铁氧体粉末(Ⅱ).功能材料,1998,29(5):471~473.
    [114]李垚,韩杰才,杜善义.铁氧体的自蔓延高温合成方法.功能材料,1999,30(6):598~600.
    [115]Ardiaca R,Ramos R,Isalgue A,etal.Hexagonal ferrite particles for perpendicular recording by the precursor method.IEEE Trans Magn,1987,23(1):22~24.
    [116]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报,1993,21(5):443~450.
    [117]李飞跃.用聚丙烯酰胺凝胶法制备钡铁氧体BaFe_(12)O_(19)超细颗粒.功能材料,1992,23(3):157~159.
    [118]Li Xinyong,Lu Gongxuan,Li Shuben.Synthesis and properties of strontium ferrite ultrafine powder.J Mater Sci Letter,1996,15(5):397~399.
    [119]李丹,王晓慧,徐永峰等.硬脂酸凝胶法合成纳米钡铁氧体的红外吸收光谱研究.功能材料,1996,27(4):332~334.
    [120]Sankaranarayanan V K,Pankhurst Q A,Dickson D P E,etal.Ultrafine particles of barium ferrite from a citrate precursor.J Magn Magn Mater,1993,120:73~75.
    [121]Surig C,Hempel A,Bonnenberg D,etal.Formation and microwave absorption of barium and strontium ferrite prepared by sol-gel technique.Appl phys Lett,1993,63(20):2836~2838.
    [122]Licci F,Besagni T.Organic resin method for highly reactive and homogeneous hexaferrite powders.IEEE Trans Magn,1984,MAG-20(5):1639~1641.
    [123]范薇.纳米复合材料的制备及其微波吸收性能的研究[博士学位论文].长春:吉林大学,1996.
    [124]李懋强.湿化学法合成陶瓷粉料的原理和方法.硅酸盐学报,1994,22(1):85~91.
    [125]Sugimoto T.Preparation of monodispersed colloidal particles.Adv in Colloid and Interface Sci,1987,28:65~108.
    [126]王光信,赵长贵,陈宗淇等.均分散胶体的研究.Ⅰ.钇化合物均分散胶体的形成.物理化学学报,1991,7(6):655~661.
    [127]Dynys F W,Halloran J W.Influence of aggregates on sintering,J Am Ceram Soc,1984,67(9):596~401.
    [128]Rhodes W H.Agglomerate and particle size effects on sintering yttria-stabilized zirconia.J Am Ceram Soc,1981,64(1):19~22.
    [129]许迪春,郝晓春,朱宣惠.湿化学法制备ZrO_2(Y_2O_3)超细粉末过程中团聚状态的控制.硅酸盐学报,1992,20(1):48-54.
    
    
    [130]Pampach R,Haberkc K.Ceramic powders.Amsterdam:Elsevier Scientific Pub.Company,1983:623.
    [131]杨金龙,吴建銧,黄勇等.陶瓷粉末颗粒尺寸测试、表征及分散(三)陶瓷粉末在液体介质中的分散及分散评价.硅酸盐通报,1995,14(5):67~77.
    [132]徐跃萍,郭景坤,黄校先等.无团聚ZrO_((2)~-)Y_2O_3陶瓷超细粉的制备及微观结构表征.硅酸盐学报,1991,19(3):269~273.
    [133]Alok Maskra,Douglas M Smith.Agglomeration during the drying of fine silica powders,part Ⅱ:The role of particle solubility.J Am Ceram Soe,1997,80(7):1715~1722.
    [134]Scherer G W.Drying gels.1.General theory,J Non-Cryst Solids,1986,87(1-2):199~225.
    [135]Jones S L,Norman C J.Dehydration of hydrous zirconia.J Am Ceram Soc,1988,71(4):C-190~C-191.
    [136]Coble R L.Sintering crystalline solids.Ⅰ.Intermediate and final state diffusion models,J Appl Phys,1961,32(5):787~792.
    [137]Matijevic E.Colloid science of ceramic powders.Pure & Appl Chem,1988,60(10):1479~1491.
    [138]杨熙珍等.金属腐蚀电化学热力学—电位—pH图及应用.1991,北京:化学工业出版社.
    [139]张承中.金属的腐蚀与保护.1985,北京:冶金工业出版社.
    [140]Munir Z A,Anselmi-Tamburini U.Self-propagating exothermic reactions:the synthesis of high-temperature materials by combustion.Mater Sci Rep,1989,3(7-8):277~365.
    [141]李如生.非平衡态热力学和耗散结构.1986,北京:清华大学出版社.
    [142]殷声.燃烧合成.北京:冶金工业出版社,1999.
    [143]Fumo D A,Morelli M R,Segad(?)es A M,etal.Combustion synthesis of calcium aluminates.Mater Res Bull,1996,31(10):1243~1255.
    [144]莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987.
    [145]Arne E Nielsen.Kinetics of Precipitation.Pergamon Press,Oxford,1964:29~85.
    [146]Carside J.Review article number 15.Industrial crystallization from solution.Chem Eng Sci,1985,40(1):3~26.
    [147]Terry A King.Nucleation growth and agglomeration during precipitation of powders.Proceeding of Second World Congress PARTICLE TECHNOLOGY,Septem,1990:19.
    [148]Randolph A D,Larson M A.Theory of Particulate Process.New York:Alademic Press,1971:50~79.
    [149]Hartel R W,Gottung B E,Randolph A D.Mechanisms and kinetic modeling of calcium oxalate crystal aggregation in a urinelike liquor.Part 1:Mechanisms.AICHE,1986,32(7):1176~1185.
    [150]Friedlander S K,Wang C S.The self-preserving particle size distribution for coagulation by brownian motion.J Colloid and Interface Science,1966,22(2):126~132.
    [151]顾燕芳,胡黎明,陈敏恒.沉淀过程中超细颗粒的凝并与生长模型.华东化工学院学报,1992,18(4):511~515.
    
    
    [152]周亚栋.无机材料物理化学.1994,武汉:武汉工业大学出版社.
    [153]Shirk B T,Buessem W R.Temperature dependence of M_s and K_1 of BaFe_(12)O_(19)and SrFe_(12)O_(19)single crystals.J.Appl phys,1969,40(3):1294~1296.
    [154]Braun P B.A superstructure in spinels.Nature,1950,170:1123.
    [155]Henry W E,Boehm M J.Intradomain magnetic saturation and magnetic structure of γ-Fe_2O_3.Phys Rev,1956,101(4):1253~1254.
    [156]岳振星等.溶胶-凝胶自燃烧法合成Ni-Zn铁氧体纳米粉末.材料研究学报,1999,13(5):484~486.
    [157]岳振星等.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成.硅酸盐学报,1999,27(4):466~470.
    [158]彭先明,肖军.粉末冶金烧结炉的结构设计及发展趋势.粉末冶金技术,1996,14(2):102~107.
    [159]Hausner H H著.北京市粉末冶金研究所译.粉末冶金手册.北京:冶金工业出版社,1982,187~192.
    [160]Davison J F,Cliff R,Harrison D.Fluidization.Academic Press,Inc,1985,226~232.
    [161]白丁荣,金涌,俞芷青.循环流态化(Ⅰ).化学反应工程与工艺,1991,7(2):202~213.
    [162]张世远等编著.磁性材料基础.北京:科学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700