纳米化Photosan光动力疗法治疗胆囊癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分纳米化Photosan的制备与表征
     目的制备负载光敏剂Photosan的空心氧化硅纳米粒子(以下简称纳米化Photosan),并初步探讨纳米化Photosan的表征。
     方法采用一步湿化学方法制备负载Photosan的空心氧化硅纳米粒子。
     结果成功制备了负载Photosan的空心氧化硅纳米粒子。
     结论采用一步湿化学方法成功制备了负载Photosan的空心氧化硅纳米粒子,实现了光敏剂Photosan的纳米化。
     第二部分普通Photosan及纳米化Photosan对体外培养人胆囊癌细胞GBC-SD的光动力灭活作用
     目的观察普通Photosan和纳米化Photosan对体外培养人胆囊癌细胞GBC-SD的光动力灭活作用。对比普通Photosan和纳米化Photosan的治疗效果及最佳治疗参数。
     方法1.倒置显微镜下随时观察GBC-SD细胞治疗前后的形态变化以及生长状况。2.MTT比色分析法测定普通Photosan及纳米化Photosan对胆囊癌细胞系GBC-SD的杀伤作用。3.Annexin V-FITC/PI双标记法检测细胞凋亡与坏死。
     结果1.普通Photosan-光动力疗法(PDT)治疗后4小时即出现GBC-SD细胞生长状况欠佳;纳米化Photosan-PDT治疗后2小时出现GBC-SD细胞生长状况欠佳。治疗后48小时细胞几乎全部死亡。
     2.MTT比色分析法测定显示:1)单纯使用光敏剂或单纯使用光照均不能对GBC-SD细胞的生长产生抑制作用;2)相同参数设置下纳米化Photosan较普通Photosan对GBC-SD细胞的生长抑制作用更强;3)各自最佳参数设置下纳米化Photosan较普通Photosan对GBC-SD细胞的生长抑制作用更强;4)纳米化Photosan比普通Photosan对GBC-SD细胞的生长抑制作用起效更快。
     3. Annexin V-FITC/PI双标记法检测显示,普通Photosan-PDT和纳米化Photosan-PDT对GBC-SD细胞的杀伤作用均以细胞凋亡为主;在各自最佳参数设置下,纳米化Photosan-PDT比普通Photosan-PDT引起的GBC-SD细胞总凋亡坏死率高。
     结论1.普通Photosan及纳米化Photosan均需要配合光照才能发挥光动力疗法的治疗效果。
     2.纳米化Photosan-PDT比普通Photosan-PDT对人胆囊癌细胞系GBC-SD有更强、更快的杀伤作用。
     3.普通Photosan-PDT和纳米化Photosan-PDT对GBC-SD细胞的杀伤作用均以细胞凋亡为主。
     第三部分Photosan及纳米化photosan对胆囊癌移植瘤的光动力疗效
     目的建立裸鼠人胆囊癌GBC-SD荷瘤模型,研究普通Photosan及纳米化Photosan光动力疗法对肿瘤生长的抑制作用。
     方法1.建立裸鼠人胆囊癌GBC-SD细胞移植瘤模型。2.观察普通Photosan及纳米化Photosan对裸鼠人胆囊癌移植瘤的光动力治疗效果及对裸鼠的不良反应。
     结果1.人胆囊癌GBC-SD细胞接种成功率100%,10-12天肿瘤体积达0.1-0.15cm。
     2.从PDT治疗后2天起治疗组(普通Photosan-PDT治疗组及纳米化Photosan-PDT治疗组)与对照组肿瘤体积就存在着统计学差异,而普通Photosan组与纳米化Photosan组比较从PDT治疗后第6天开始出现统计学差异。治疗组裸鼠移植瘤的重量显著小于对照组,且纳米化Photosan组显著小于普通Photosan组,均有统计学意义。
     3.普通Photosan-PDT及纳米化Photosan-PDT治疗仅使裸鼠发生短暂表皮细小糠屑样物。
     结论1.普通Photosan及纳米化Photosan均对人胆囊癌荷瘤裸鼠模型中肿瘤的生长有明显的抑制作用,后者对胆囊癌的杀伤效果明显优于前者,起效时间明显早于前者。
     2.普通Photosan及纳米化Photosan给药后裸鼠无严重短期不良反应发生。
     第四部分纳米化Photosan光动力治疗胆囊癌凋亡途径的探讨
     目的探讨纳米化Photosan光动力治疗胆囊癌的凋亡途径。
     方法1.实时荧光定量PCR检测survivin、Bcl-2、半胱氨酸天冬氨酸蛋白激酶-8、-9(caspase-8、caspase-9)基因mRNA水平的改变。2. Western-blot免疫印迹法检测survivin、Bcl-2、caspase-8、caspase-9蛋白的表达差异。
     结果实时荧光定量PCR检测及Western-blot检测均显示:纳米化Photosan-PDT治疗后,survivin在治疗早期表达明显下调,治疗晚期表达明显上调;Bcl-2在治疗早期和治疗晚期表达均明显下调;caspase-8治疗早期和治疗晚期的表达与对照组无显著差异;caspase-9在治疗早期表达明显上调,治疗晚期表达明显下调。
     结论1. caspase-9依赖的线粒体途径可能是纳米化Photosan光动力治疗诱导GBC-SD细胞凋亡的主要途径。
     2. caspase-8介导的外源性凋亡途径可能不是纳米化Photosan光动力治疗引起GBC-SD细胞凋亡的主要途径。
     3. survivin可能在纳米化Photosan光动力治疗时参与caspase-9依赖的线粒体途径诱导GBC-SD细胞凋亡。
     4.Bcl-2在纳米化Photosan光动力治疗GBC-SD细胞过程中可能参与复杂的凋亡途径。
Part One The Preparation and the Mechanism of Photosensitizer-loaded Hollow Silica Nanoparticles
     Objective To prepare the Photosan-loaded hollow silica nanoparticles and to observe their physical and chemical characterization.
     Methods Prepare the Photosan-loaded hollow silica nanoparticles.
     Results Prepare the Photosan-loaded hollow silica nanoparticles successfully.
     Conclusion The Photosan-loaded hollow silica nanoparticles are fit for photodynamic therapy as a kind of photosan.
     Part Two The deactivation of free Photosan and Photosan-loaded nanospheres-PDT in GBC in vitro
     Objective To observe the deactivation of free Photosan and Photosan-loaded hollow Silica nanospheres-photodynamic therapy (PDT) in gallbladder cancer cells (GBC-SD) in vitro. Compare the therapeutic effect and the optimal treatment parameters between the free Photosan-PDT and Photosan nanosphere-PDT.
     Methods1. The Changes of morphology and growth condition of the GBC-SD before and after PDT were observed by inverted microscope.2. The deactivation of free Photosan and Photosan-loaded hollow Silica nanospheres-PDT in GBC-SD were determined by MTT assay.3. Cell apoptosis and necrosis was detected by Annexin V-FITC/PI double marking method.
     Results1. The GBC-SD showed poor growth4hours after free Photosan-PDT while they showed poor growth just2hours after Photosan-loaded nanospheres-PDT. The GBC-SD almost totally died48hours after PDT.
     2. The MTT assay showed that, photosensitizer or light could not take effects themselves only on the growth inhibition rate of GBC-SD. Under the same parameters, the Photosan-loaded nanospheres-PDT could make larger effect on the growth inhibition rate than the free Photosan-PDT. Under the optimal parameters of their own respectively, the Photosan-loaded nanospheres-PDT could make larger effect on the growth inhibition rate than the free Photosan-PDT. Photosan-loaded nanospheres-PDT could take effect much faster than the free Photosan-PDT.
     3. Annexin V-FITC/PI double marking method showed that, the free Photosan-PDT and Photosan-loaded nanospheres-PDT both killed GBC-SD cells through apoptosis mainly. Under the optimal parameters of their own respectively, the total rate of apoptosis and necrosis of GBC-SD was higher in the Photosan-loaded nanospheres group than the free Photosan group.
     Conclusion1. Both of the free Photosan and the Photosan-loaded nanospheres required illumination to exert photodynamic therapeutic effect.
     2. Photosan-loaded nanospheres-PDT showed stronger and fast effects on the growth inhibition rate of GBC-SD cells.
     3. The free Photosan-PDT and Photosan-loaded nanospheres-PDT both induced apoptosis mainly in killing GBC-SD.
     Part Three The photodynamic effect of free Photosan and Photosan-loaded nanospheres in the nude mice bearing GBC
     Objective To establish the model of nude mice bearing GBC-SD and to investigate the tumor growth inhibition of free Photosan and Photosan-loaded hollow Silica nanospheres-photodynamic therapy.
     Methods1. The model of nude mice bearing GBC-SD was established.2. The photodynamic therapeutic effect and the side effects of free Photosan and Photosan-loaded nanospheres in nude mice bearing GBC-SD were investigated.
     Results1. All nude mice were transplanted with GBC-SD successfully, tumor lesions all reached at0.1-0.15cm3in10-12days after transplantation.
     2. The effects of PDT in2therapeutic groups (including free Photosan group and Photosan-loaded nanospheres group) were significantly better than the control group. It was significantly different in volumes between the therapeutic groups and the control group2d after treatment. And it was significantly different in volumes between the free Photosan group and the Photosan-loaded nanospheres group6d after treatment. The weight of transplantation tumor in therapeutic groups were significantly less than the control group, while the Photosan-loaded nanospheres group was significantly ligher than the free Photosan group.
     3. The nude mice just had chaff crumbs kind things in surface for a short time after PDT.
     Conclusion1. There were significantly inhibition effects of tumor growth on transplantation GBC-SD tumors of nude mice under Photosan or Photosan-loaded nanospheres-PDT. The effect of the latter was significantly stronger and faster than the former.
     2. Free Photosan and Photosan-loaded nanospheres had no apparent toxicity themselves, so the nude mice showed no severe adverse reaction after dosing.
     Part Four The investigation of the apoptotic pathway of GBC in photosan-loaded nanospheres-PDT
     Objective To investigate the apoptotic pathway of gallbladder cancer cells (GBC-SD) in Photosan-loaded hollow Silica nanospheres-photodynamic therapy (PDT).
     Methods1. The mRNA expression of survivin, Bcl-2caspase-8and caspase-9were detected by real-time fluorescent quantitative PCR.2. The difference of protein expression and kinase activation state of survivin, Bcl-2caspase-8and caspase-9were detected by western-blot method.
     Results The expression level of survivin in early stage was significantly lower than that in the control group, while it was higher in the advanced stage. The expression level of Bcl-2both in early stage and advanced stage were lower than that in the control group. The expression level of caspase-8both in early stage and advanced stage had no significantly distinction with the control group. The expression level of caspase-9in early stage was significantly higher than that in the control group, while it was lower in the advanced stage.
     Conclusion
     1. The mitochondrial pathway dependently on caspase-9mightbe the dominant apoptotic pathway of Photosan-loaded hollow Silica nanospheres-photodynamic therapy.
     2. Caspase-8induced extrinsic pathway might not be dominant in Photosan-loaded hollow Silica nanospheres-PDT-induced apoptosis.
     3. Survivin might participate in the mitochondrial pathway dependently on caspase-9in Photosan-loaded hollow Silica nanospheres-PDT.
     4. Bcl-2might participate complicated apoptotic pathway in Photosan-loaded hollow Silica nanospheres-PDT.
引文
[1]Kapoor VK. Gallbladder cancer:a global perspective[J].J Surg Oneol,2006,93(8): 607-609.
    [2]Varshney S, ButiriniG, Gupta R. Incidental carcinoma of the gallbladder. Eur J Surg Oncol,2002,28:4-10.
    [3]Meri V, Peter O. Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival [J]. Clin Cancer Res,2004,10:3131-3136.
    [4]Ho H, Matros E, Brooks DC, et al. Treatment outcomes associated with surgery for gallbladder cancer:a 20-year experience [J]. J Gastrointest Surg,2004,8: 183-190.
    [5]林守成.胆系肿瘤.现代肿瘤学.第2版.上海科技出版社,1993,852-863.
    [6]Gourgiotis S, Koeher HM, Solaini L, et al. Gallbladder cancer [J]. Am J Surg, 2008,196(2):252-264.
    [7]Huang Z, Xu H, Meyers AD, et al. Photodynamic therapy fortreatment of solid tumors-potential and technical challenges.Technol Cancer Res Treat. 2008;7:309-320.
    [8]Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889-905.
    [9]Korbelik M, Cooper PD. Potentiation of photodynamic therapy of cancer by complement:the effect of gamma-inulin [J]. Br J Cancer,2007,96:67-72.
    [10]Henderson BW, Dougherty TJ. How does photodynamic therapy work [J]. Photochem Photobiol,1992,55:145.
    [11]REN Qing Gunag, WU Su Min, PENG Q, et al.Comparison of 5-amainolevulinic acid and its hexylester mediated photodynamic action on human hepatoma cells [J]. ACTA biochimica et biophysica sniica,2002,34(5):650-654.
    [12]Whitaere CM, Feyes DK, Satoh T, et al. Photodynmaic therapy with the phthalocyanine photosensitizer Pc4 of SW480 human colon cancer xenograefes in athymic mice [J].Clin Caneer Res,2000,6:2021-2027.
    [13]Moore A. Brave small world. Biotechnology and nanotechnology may give rise to a completely new industry[J]. EMBO Rep,2001,2:86-88.
    [14]Xu S, Shen J, Chen S, et al. Active oxygen species (102,02-) generation in the system of TiO2 colloid sensitized by hypocrellin B [J]. J Photochem Photobiol B,2002,67:64-70.
    [1]刘慧龙,刘凡光.影响光动力疗法的几个主要因素.[J].中国激光医学杂志2002,11(2):121-124.
    [2]Wilson BC. Photonic and non-photonic based nanoparticles in cancer imaging and therapeutics. In:Dubowski J, Tanev S, eds. Photon-Based Nanoscience and Nanobiotechnology. Dordrecht, the Netherlands:Springer; 2006:121-151.
    [3]Richter AM, Waterfield E, Jain AK, et al. Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol.1993;57:1000-1006.
    [4]Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy:an emerging paradigm. Adv Drug Deliv Rev.2008;60:1627-1637.
    [5]Moore A. Brave small world. Biotechnology and nanotechnology may give rise to a completely new industry[J]. EMBO Rep,2001,2:86-88.
    [6]E. Ricci-Junior, J.M. Marchetti. Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use, Int. J. Pharm.2006,310:187-195.
    [7]V. Saxena, M. Sadoqi, J. Shao. Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems, J. Photochem. Photobiol. B 2004,74:29-38.
    [8]Chen W, Zhang J. Using nanoparticles to enable simuha-neous radiation and photodynamic therapies for cancer treat ment[J]. J Nanosci Nanotechnol,2006, 6:1159-1166.
    [9]Lobenberg R, Maas J, Kreuter J. Improved body distribution of14C-lab elled AZT bound to nanopartieles in rats determined by radioluminography [J]. J Drug Target,1998,5:171-179.
    [10]Y.N. Konan, R. Gurny and E. Allemann. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B,2002, 66(2):p.89-106.
    [11]M. Soncin, L. Polo, E. Reddi, et al. Effect of the delivery system on the biodistribution of Ge(IV) octabutoxy-phthalocyanines in tumour-bearing mice. Cancer Lett,1995,89(1):p.101-6.
    [12]K. Low, T. Knobloch, S. Wagner, et al. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells, Nanotechnology 2011,22:245102.
    [13]M. Zeisser-Labouebe, N. Lange, R. Gurny, et al. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer, Int. J. Pharm.2006, 326:174-181.
    [14]Y.N. Konan, M. Berton, R. Gurny, E. Allemann, Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles, Eur. J. Pharm. Sci.18 (2003) 241-249.
    [15]E. Ricci-Junior, J.M. Marchetti. Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use, Int. J. Pharm.2006,310:187-195.
    [16]V. Saxena, M. Sadoqi, J. Shao. Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems, J. Photochem. Photobiol. B 2004,74:29-38.
    [17]D. Brevet, M. Gary-Bobo, L. Raehm, et al. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun,2009,12:p.1475-7.
    [18]S.H. Cheng, C.H. Lee, C.S. Yang, et al. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. J Mater Chem,2009,19(9):p1252-7.
    [19]I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs:a novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc.2003,125: 7860-7865.
    [20]D. Bechet, P. Couleaud, C. Frochot, et al. Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends Biotechnol.2008,26:612-621.
    [21]J.W. Snyder, E. Skovsen, J.D. Lambert, P.R. Ogiby, Subcellular, time-resolved studies of singlet oxygen in single cells, J. Am. Chem. Soc.2005,127: 14558-14559.
    [1]Kapoor VK. Gallbladder cancer:a global perspective[J].J Surg Oneol,2006,93(8): 607-609.
    [2]林守成.胆系肿瘤.现代肿瘤学.第2版.上海科技出版社,1993,852-863.
    [3]Gourgiotis S, KoeherHM, Solaini L, et al. Gallbladder cancer [J]. Am J Surg, 2008,196(2):252-264.
    [4]Korbelik M, Cooper PD. Potentiation of photodynamic therapy of cancer by complement:the effect of gamma-inulin [J]. Br J Cancer,2007,96:67-72.
    [5]Henderson BW, Dougherty TJ. How does photodynamic therapy work [J]. Photochem Photobiol,1992,55:145.
    [6]Huang Z, Xu H, Meyers AD, et al. Photodynamic therapy fortreatment of solid tumors-potential and technical challenges.Technol Cancer Res Treat 2008;7:309-320.
    [7]Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889-905.
    [8]Xu S, Shen J, Chen S, et al. Active oxygen species (102, O2-) generation in the system of TiO2 colloid sensitized by hypocrellin B [J]. J Photochem Photobiol B, 2002,67:64-70.
    [9]I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs:a novel drug-carrier system for photodynamic therapy. J Am Chem Soc,2003,125(26):7860-5.
    [10]S.Z. Wang, R.M. Gao, F.M. Zhou, et al. Nanomaterials and signlet oxygen photosensitizers:potential applications in photodynamic therapy. J Mater Chem, 2004,14(4):p.487-93.
    [11]Varshney S, ButiriniG, Gupta R. Incidental carcinoma of the gallbladder. Eur J Surg Oncol,2002,28:4-10.
    [12]Meri V, Peter O. Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival [J]. Clin Cancer Res,2004,10:3131-3136.
    [13]Ho H, Matros E, Brooks DC, et al. Treatment outcomes associated with surgery for gallbladder cancer:a 20-year experience [J]. J Gastrointest Surg,2004,8: 183-190.
    [14]Diamond L, McDonagh AF, Wilson CB, et al. Photodynamic therapy of maligmant tumors. Lancet,1972,2:1175-1177.
    [15]Bonnet R. Photodynamic therapy in historical perspective. Rev contemp phamocother,1999,10:1-17.
    [16]Dougherty TJ, Kaulman JE, Goldfarb A, et al. Photoradiation therapy for the treatment of maglinant tumors. Cancer res,1978,38:2628-2635.
    [17]Greer A. Christopher Foote's discovery of the role of singlet oxygen ('O2 (1Delta g)) in photosensitized oxidation reactions. Acc Chem Res,2006,39,797-804.
    [18]Plaetzer K., B. Krammer, J. Berlanda, et al. Photophysics and photochemistry of photodynamic therapy:fundamental aspects. Lasers Med Sci 2009 Mar; 24(2):259-68.
    [19]Janda P, Sroka R, Baumgartner R, et al. Laser treatment of hyperplastic inferior nasal turbinates:a review. [J]. Lasers Surg Med,2001,28(5):404-413.
    [20]Chan W H, Yu J S, Yang S D. Apoptotic signaling cascade in photosensitized human epidermal carcinoma A431 cells:involvement of singlet oxygen, c-Jun N-terminal kinase, caspase-3 and p21-activated kinase 2. [J]. Biochem J,2000, 351(Pt 1):221-232.
    [21]Karbownik M, ReiterR J. Melatonin protects against oxidative stress caused by delta-aminolevulinic acid:implications for cancer reduction. [J]. Cancer In Vest,2002,20(2):276-286.
    [22]Gerbenova D, Kuzelova K, Smetana K, et al. Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells. [J]. J Photochem Photobiol B,2003,69(2):71-85.
    [23]Henderson B W, Fingar V H. Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model. [J]. Photochem Photobiol, 1989,49(3):299-304.
    [24]Canti G, Marelli O, Ricci L, et al. Haematoporphyrin-treated murine lymphocytes: in vitro inhibition of DNA synthesis and light-mediated inactivation of cells responsible for GVHR. [J]. Photochem Photobiol,1981,34(5):589-594.
    [25]Rousset N., L. Bourre, S. Thibaud. Sensitizers in photodynamic therapy In: Photodynamic Therapy. Ed:T Patrice. The Royal Society of Chemistry, Cambridge, UK 2003.
    [26]Boyle R. W., D. Dolphin. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol,1996,64,469-85.
    [27]Peng Q., J. Moan, G Farrants, H. E. Danielsen et al. Localization of potent photosensitizers in human tumor LOX by means of laser scanning microscopy. Cancer Lett,1991,58,17-27.
    [28]Del Carmen M. G., I. Rizvi, Y. Chang. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J Natl Cancer Inst,2005,97,1516-24.
    [29]Duska L. R., M. R. Hamblin, J. L. Miller. Combination photoimmunotherapy and cisplatin:effects on human ovarian cancer ex vivo. J Natl Cancer Inst,1999,91, 1557-63.
    [30]Ryter S. W., C. J. Gomer. Nuclear factor kappa B binding activity in mouse L1210 cells following photofrin Ⅱ-mediated photosensitization. Photochem Photobiol,1993,58,753-6.
    [31]Matroule J. Y., C. Volanti. NF-kappaB in photodynamic therapy:discrepancies of a master regulator. Photochem Photobiol,2006,82,1241-6.
    [32]Granville D. J., C. M. Carthy, H. Jiang, et al. Nuclear factor-kappaB activation by the photochemotherapeutic agent verteporfin. Blood,2000,95,256-62.
    [33]Du H. Y, M. Olivo, R. Mahendran. Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells. Cell Mol Life Sci,2007,64,979-88.
    [34]Volanti C., N. Hendrickx, J. Van Lint, et al. Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene,2005,24,2981-91.
    [35]Ferrario A., K. F. von Tiehl, N. Rucker,et al. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res,2000,60,4066-9.
    [36]Mitra S., S. E. Cassar, D. J. Niles, et al. Photodynamic therapy mediates the oxygen-independent activation of hypoxiainducible factor 1 alpha. Mol Cancer Ther,2006,5,3268-74.
    [37]Gomer C. J., A. Ferrario, N. Rucker,et al. Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization. Cancer Res,1991,51,6574-9.
    [38]Curry P. M., J. G. Levy. Stress protein expression in murine tumor cells following photodynamic therapy with benzoporphyrin derivative. Photochem Photobiol, 1993,58,374-9.
    [39]Fisher A. M., A. Ferrario, C. J. Gomer. Adriamycin resistance in Chinese hamster fibroblasts following oxidative stress induced by photodynamic therapy. Photochem Photobiol,1993,58,581-8.
    [40]Gomer C. J., S. W. Ryter, A. Ferrario, et al. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res,1996, 56,2355-60.
    [41]Gomer C. J., N. Rucker, S. Wong. Porphyrin photosensitivity in cell lines expressing a heat-resistant phenotype. Cancer Res,1990,50,5365-8.
    [42]Luna M. C, A. Ferrario, S. Wong, et al. Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Res,2000,60,1637-44.
    [43]Moor A. C. Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B,2000,57,1-13.
    [44]Liu G, L. Kleine, R. L. Hebert. Advances in the signal transduction of ceramide and related sphingolipids. Crit Rev Clin Lab Sci,1999,36,511-73.
    [45]Separovic D., K. J. Mann, N. L. Oleinick. Association of ceramide accumulation with photodynamic treatmentinduced cell death. Photochem Photobiol,1998,68, 101-9.
    [46]Separovic D., S. Wang, M. Y. Awad Maitah, et al. Ceramide response post photodamage is absent after treatment with HA14-1. Biochem Biophys Res Commun,2006,345,803-8.
    [47]Separovic D., J. J. Pink, N. A. Oleinick, et al. Niemann-Pick human lymphoblasts are resistant to phthalocyanine 4-photodynamic therapyinduced apoptosis. Biochem Biophys Res Commun,1999,258,506-12.
    [48]Agarwal M. L., H. E. Larkin, S. I. Zaidi,et al. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells. Cancer Res,1993,53, 5897-902.
    [49]Tong Z., G Singh, A. J. Rainbow. Sustained activation of the extracellular signal-regulated kinase pathway protects cells from photofrin-mediated photodynamic therapy. Cancer Res,2002,62,5528-35.
    [50]Tao J., J. S. Sanghera, S. L. Pelech,et al. Stimulation of stress-activated protein kinase and p38 HOG1 kinase in murine keratinocytes following photodynamic therapy with benzoporphyrin derivative. J Biol Chem,1996,271,27107-15.
    [51]Xue L., J. He, N. L. Oleinick. Promotion of photodynamic therapy-induced apoptosis by stress kinases. Cell Death Differ,1999,6,855-64.
    [52]Schieke S. M., C. von Montfort, D. P. Buchczyk, et al. Singlet oxygen-induced attenuation of growth factor signaling:possible role of ceramides. Free Radic Res,2004,38,729-37.
    [53]Ferrario A., N. Rucker, S. Wong, et al. Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res,2007,67,4989-95.
    [54]Cormane R. H., E. Szabo, T. T. Hoo. Histopathology of the skin in acquired and hereditary porphyria cutanea tarda. Br J Dermatol,1971,85,531-9.
    [55]Gigli I., A. A. Schothorst, N. A. Soter, et al. Erythropoietic pratoporphyria. Photoactivation of the complement system. J Clin Invest,1980,66,517-22.
    [56]Korbelik M. PDT-associated host response and its role in the therapy outcome. Lasers Surg Med,2006,38,500-8.
    [57]Korbelik M., J. Sun, I. Cecic, et al. Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors. Photochem Photobiol Sci,2004,3,812-6.
    [58]Korbelik M., P. D. Cooper. Potentiation of photodynamic therapy of cancer by complement:the effect of gamma-inulin. Br J Cancer,2007,96,67-72.
    [59]Cecic I., C. S. Parkins, M. Korbelik. Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors. Photochem Photobiol,2001,74, 712-20.
    [60]Cecic I., J. Sun, M. Korbelik. Role of complement anaphylatoxin C3a in photodynamic therapy-elicited engagement of host neutrophils and other immune cells. Photochem Photobiol,2006,82,558-62.
    [61]Cecic I., M. Korbelik. Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors. Cancer Lett,2002,183,43-51.
    [62]Stott B., M. Korbelik. Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy. Cancer Immunol Immunother,2007,56, 649-58.
    [63]Korbelik M., I. Cecic, S. Merchant, et al. Acute phase response induction by cancer treatment with photodynamic therapy. Int J Cancer,2008,122,1411-7.
    [64]Merchant S., J. Sun, M. Korbelik. Dying cells program their expedient disposal: serum amyloid P component upregulation in vivo and in vitro induced by photodynamic therapy of cancer. Photochem Photobiol Sci,2007,6,1284-9.
    [65]Herrmann G, M. Wlaschek, K. Bolsen, et al. Photosensitization of uroporphyrin augments the ultraviolet A-induced synthesis of matrix metalloproteinases in human dermal fibroblasts. J Invest Dermatol,1996,107,398-403.
    [66]Kick G., G. Messer, A. Goetz, et al. Photodynamic therapy induces expression of interleukin 6 by activation of AP-1 but not NF-kappa B DNA binding. Cancer Res,1995,55,2373-9.
    [67]Gollnick S. O., S. S. Evans, H. Baumann, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer, 2003,88,1772-9.
    [68]Wei L. H., H. Baumann, E. Tracy, et al. Interleukin-6 trans signalling enhances photodynamic therapy by modulating cell cycling. Br J Cancer,2007,97, 1513-22.
    [69]Bellnier D. A., S. O. Gollnick, S. H. Camacho, et al. Treatment with the tumor necrosis factor-alpha-inducing drug 5,6-dimethylxanthenone-4-acetic acid enhances the antitumor activity of the photodynamic therapy of RIF-1 mouse tumors. Cancer Res,2003,63,7584-90.
    [70]Ferrario A., C. J. Gomer. Systemic toxicity in mice induced by localized porphyrin photodynamic therapy. Cancer Res,1990,50,539-43.
    [71]Nseyo U. O., R. K. Whalen, M. R. Duncan, et al. Urinary cytokines following photodynamic therapy for bladder cancer. A preliminary report. Urology, 1990,36,167-71.
    [72]Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst.1998; 90:889-905.
    [73]Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer.2003; 3:380-387.
    [1]Korbelik M, Cooper PD. Potentiation of photodynamic therapy of cancer by complement:the effect of gamma-inulin [J]. Br J Cancer,2007,96:67-72.
    [2]Henderson BW, Dougherty TJ. How does photodynamic therapy work [J]. Photochem Photobiol,1992,55:145.
    [3]Lam S., B. Palcic, D. McLean, et al.Detection of early lung cancer using low dose Photofrin II. Chest,1990,97,333-7.
    [4]Stepp H., T. Beck, T. Pongratz, et al. ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. J Environ Pathol Toxicol Oncol,2007,26,157-64.
    [5]Gomer C. J., A. Ferrario, M. Luna, et al. Photodynamic therapy:combined modality approaches targeting the tumor microenvironment. Lasers Surg Med, 2006,38,516-21.
    [6]Verma S., G M. Watt, Z. Mai et al. Strategies for enhanced photodynamic therapy effects. Photochem Photobiol,2007,83,996-1005.
    [7]Wolfsen HC. Carpe luz-seize the light:endoprevention of esophageal adenocarcinoma when using photodynamic therapy with porfimer sodium. Gastrointest Endosc.2005;62:499-503.
    [8]Wang I, Bendsoe N, Klinteberg CA, et al. Photodynamic therapy vs. cryosurgery of basal cell carcinomas:results of a phase Ⅲ clinical trial. Br J Dermatol. 2001; 144:832-840.
    [9]Hahn S, Glatstein E. The emergence of photodynamic therapy as a major modality in cancer treatment. Rev Contemp Pharmocother.1999;10:69-74.
    [10]Wolfsen HC, Hemminger LL, Wallace MB, et al. Clinical experience of patients undergoing photodynamic therapy for Barrett's dysplasia or cancer. Aliment Pharmacol Ther.2004;20:1125-1131.
    [11]Corti L, Skarlatos J, Boso C, et al. Outcome of patients receiving photodynamic therapy for early esophageal cancer. Int J Radiat Oncol Biol Phys. 2000;47:419-424.
    [12]Overholt BF, Wang KK, Burdick JS, et al. Five-year efficacy and safety of photodynamic therapy with Photofrin in Barrett's high-grade dysplasia. Gastrointest Endosc.2007;66:460-468.
    [13]Rees JR, Lao-Sirieix P, Wong A, et al. Treatment for Barrett's oesophagus. Cochrane Database Syst Rev.2010;(1):CD004060.
    [14]Overholt BF, Lightdale CJ, Wang KK, et al. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett's esophagus:international, partially blinded, randomized phase Ⅲ trial. Gastrointest Endosc. 2005;62:488-498.
    [15]Shaheen NJ, Inadomi JM, Overholt BF, et al. What is the best management strategy for high grade dysplasia in Barrett's oesophagus? A cost effectiveness analysis. Gut.2004;53:1736-1744.
    [16]Wolfsen HC. Uses of photodynamic therapy in premalignant and malignant lesions of the gastrointestinal tract beyond the esophagus. J Clin Gastroenterol. 2005;39:653-664.
    [17]Nakamura H, Yanai H, Nishikawa J, et al. Experience with photodynamic therapy (endoscopic laser therapy) for the treatment of early gastric cancer. Hepatogastroenterology.2001;48:1599-1603.
    [18]Mlkvy P, Messmann H, Debinski H, et al. Photodynamic therapy for polyps in familial adenomatous polyposis-a pilot study. Eur J Cancer. 1995;31A:1160-1165.
    [19]Abulafi AM, Allardice JT, Williams NS, et al. Photodynamic therapy for malignant tumours of the ampulla of Vater. Gut.1995;36:853-856.
    [20]McCaughan JS Jr, Mertens BF, Cho C,et al. Photodynamic therapy to treat tumors of the extrahepatic biliary ducts. A case report. Arch Surg. 1991;126:111-113.
    [21]Ortner MA, Liebetruth J, Schreiber S, et al. Photodynamic therapy of nonresectable cholangiocarcinoma. Gastroenterology.1998;114:536-542.
    [22]Ortner ME, Caca K, Berr F, et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma:a randomized prospective study. Gastroenterology.2003; 125:1355-1363.
    [23]Witzigmann H, Berr F, Ringel U, et al. Surgical and palliative management and outcome in 184 patients with hilar cholangiocarcinoma:palliative photodynamic therapy plus stenting is comparable to rl/r2 resection. Ann Surg.2006;244: 230-239.
    [24]Zoepf T, Jakobs R, Arnold JC, et al. Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol. 2005;100:2426-2430.
    [25]Szeimies RM, Ibbotson S, Murrell DF, et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8-20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol.2008;22:1302-1311.
    [26]Rhodes LE, de Rie M, Enstrom Y, et al. Photodynamic therapy using topical methyl aminolevulinate vs surgery for nodular basal cell carcinoma:results of a multicenter randomized prospective trial. Arch Dermatol.2004;140:17-23.
    [27]Pereira SP, Ayaru L, Rogowska A, et al. Photodynamic therapy of malignant biliary strictures using meso-tetrahydroxyphenylchlorin. Eur J Gastroenterol Hepatol.2007; 19:479-485.
    [28]Bown SG, Rogowska AZ, Whitelaw DE, et al. Photodynamic therapy for cancer of the pancreas. Gut.2002;50:549-557.
    [29]Loh CS, Bliss P, Bown SG, et al. Photodynamic therapy for villous adenomas of the colon and rectum. Endoscopy.1994; 26:243-246.
    [30]Nakamura T, Fukui H, Ishii Y, et al. Photodynamic therapy with polypectomy for rectal cancer. Gastrointest Endosc.2003;57:266-269.
    [31]刘庆森,黄英才,李峻亨,等.光动力疗法与Nd:YAG激光对胃胶原纤维损伤机制的比较冲华物理医学杂志,1995,17(3):172-174.
    [32]Molpus KLk, Kato D, Hamblin MR, et al. Intraperironeal photodynamic therapy of human epithelial ovarian carcinomatosis in a xenograff murine model. Cancer research,1996,56:1075-1082.
    [33]Veenhuizen RB, Ruevekamp-Helmers MC, Helmerhorst TJ, et al. Introperitoneal photodynamic therapy in the rat:Comprison of toxity Profiles for photofrin and MTHPC. Int J Cancer,1994.59:830-836.
    [34]REN Qing Gunag, WU Su Min, PENG Q, et al.Comparison of 5-amainolevulinic acid and its hexylester mediated photodynamic action on human hepatoma cells [J]. ACTA biochimica et biophysica sniica,2002,34(5):650-654.
    [35]Whitaere CM, Feyes DK, Satoh T, et al. Photodynmaic therapy with the phthalocyanine photosensitizer Pc4 of SW480 human colon cancer xenograefes in athymic mice[J].Clin Caneer Res,2000,6:2021-2027.
    [1]Oleinick N. L. & H. H. Evans. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res,150,1998, S146-56.
    [2]Plaetzer K., T. Kiesslich, C. B. Oberdanner et al. Apoptosis following photodynamic tumortherapy:induction, mechanisms and detection. Curr Pharm Des,2005,11,1151-65.
    [3]Agarwal M. L., M. E. Clay, E. J. Harvey, et al. Photodynamic therapy induces rapid cell death by apoptosis in L5178 Y mouse lymphoma cells. Cancer Res, 1991,51,5993-6.
    [4]Granville D. J., C. M. Carthy, H. Jiang, et al. Rapid cytochrome c release, activation of caspases 3,6,7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett,1998,437,5-10.
    [5]Ozoren N., W. S. El-Deiry. Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol,2003,13,135-47.
    [6]Schempp C. M., B. Simon-Haarhaus, C. C. Termeer et al. Hypericin photo-induced apoptosis involves the tumor necrosis factor-related apoptosisinducing ligand (TRAIL) and activation of caspase-8. FEBS Lett, 2001,493,26-30.
    [7]Takahashi R,Deveraux Q, Tamm I, et al. A single BIR domain of XIAP sufficient for inhibiting caspases [J] J Biol Chem,1998,273:7787.
    [8]Ambrosini G,Adda C,Sirugo G, et al. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting[J].J Biol Chem,1998,273:11177.
    [9]Li F, Ambrosini G, Chu Ey, et al. Control of apoptosis and mitotic spindle checkpoint by survivin[J]. Nature,1998,396:5801.
    [10]Ferrario A., N. Rucker, S. Wong, et al. Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res,2007,67,4989-95.
    [11]Koseki T, Yamato K, Kajewski S, et al. Activin A-induced apoptosis is suppressed by Bcl-2. [J]. FEBS.1995,376:247-250.
    [12]He J, Agarwal ML, Larkin HE, et al. The induction of partial resistance to photodynamic therapy by the protooncogene Bcl-2. [J]. Photochem Photobiol. 1996,64:845-852.
    [13]Kessel D, Castelli M. Evidence that Bcl-2 is the target of three photosensitizers that induce a rapid apoptotic response. [J]. Photochem. Phtotobiol.2001,74:318-322.
    [14]Xue L. Y., S. M. Chiu, K. Azizuddin, et al. Protection by Bcl-2 against apoptotic but not autophagic cell death after photodynamic therapy. Autophagy,2008,4, 125-7.
    [15]He J., M. L. Agarwal, H. E. Larkin, L. R. Friedman, L. Y. Xue & N. L. Oleinick: The induction of partial resistance to photodynamic therapy by the protooncogene BCL-2. Photochem Photobiol,64,845-52 (1996)
    [16]Kim H. R., Y. Luo, G. Li, et al. Enhanced apoptotic response to photodynamic therapy after Bcl-2 transfection. Cancer Res,1999,59,3429-32.
    [17]Xue L. Y, S. M. Chiu, A. Fiebig, et al. Photodamage to multiple Bcl-xL isoforms by photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene,2003,22,9197-204.
    [18]Kessel D. Promotion of PDT Efficacy by a Bcl-2 Antagonist. Photochem Photobiol 2007,3:598-590
    [19]Kessel D., M. Castelli, J. J. Reiners, Jr. Apoptotic response to photodynamic therapy versus the Bcl-2 antagonist HA14-1. Photochem Photobiol,2002,76, 314-9.
    [1]Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90:889-905.
    [2]Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer.2003;3:380-387.
    [3]Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol.2008;53:R61-R109.
    [4]Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy:fundamental aspects. Lasers Med Sci. 2009; 24:259-268.
    [5]Greer A.:Christopher Foote's discovery of the role of singlet oxygen (102 (1Delta g)) in photosensitized oxidation reactions. Acc Chem Res,39,797-804 (2006).
    [6]Plaetzer K., B. Krammer, J. Berlanda, F. Berr & T. Kiesslich:Photophysics and photochemistry of photodynamic therapy:fundamental aspects. Lasers Med Sci (2008).
    [7]Lam S., B. Palcic, D. McLean, et al.Detection of early lung cancer using low dose Photofrin Ⅱ. Chest,97,333-7 (1990).
    [8]Stepp H., T. Beck, T. Pongratz, et al. ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. J Environ Pathol Toxicol Oncol,26,157-64 (2007).
    [9]Gomer C. J., A. Ferrario, M. Luna, et al. Photodynamic therapy:combined modality approaches targeting the tumor microenvironment. Lasers Surg Med,38, 516-21 (2006).
    [10]Verma S., G M. Watt, Z. Mai et al. Strategies for enhanced photodynamic therapy effects. Photochem Photobiol,83,996-1005 (2007).
    [11]Bugelski PJ, Porter CW, Dougherty TJ. Autoradiographic distribution of hematoporphyrin derivative in normal and tumor tissue of the mouse. [J]. Cancer Res,1981,41(11 Ptl):4606-4612.
    [12]PengQ, WarloeT, BergK, et al.5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. [J].Caneer,1997, 79(12):2282-2308.
    [13]Copper MP, Tan IB, Oppelaar H, et al. Meta-tetra(hydroxyPhenyl) chlorine photodynamic therapy in early-stage squamous cell carcinoma of the head and neck. [J]. Arch Otolaryngol Head Neck Surg,2003,129(7):709-711.
    [14]E. Ricci-Junior, J.M. Marchetti, Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use, Int. J. Pharm.310 (2006) 187-195.
    [15]V. Saxena, M. Sadoqi, J. Shao, Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems, J. Photochem. Photobiol. B 74 (2004) 29-38.
    [16]刘慧龙,刘凡光.影响光动力疗法的几个主要因素.[J].中国激光医学杂志2002,11(2):121-124.
    [17]Wilson BC. Photonic and non-photonic based nanoparticles in cancer imaging and therapeutics. In:Dubowski J, Tanev S, eds. Photon-Based Nanoscience and Nanobiotechnology. Dordrecht, the Netherlands:Springer; 2006:121-151.
    [18]Richter AM, Waterfield E, Jain AK, et al. Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol.1993;57:1000-1006.
    [19]Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy:an emerging paradigm. Adv Drug Deliv Rev.2008;60:1627-1637.
    [20]Moore A. Brave small world. Biotechnology and nanotechnology may give rise to a completely new industry[J]. EMBO Rep,2001,2:86-88.
    [21]Chen W, Zhang J. Using nanoparticles to enable simuha-neous radiation and photodynamic therapies for cancer treat ment[J]. J Nanosci Nanotechnol,2006, 6:1159-1166.
    [22]Lobenberg R, Maas J, Kreuter J. Improved body distribution of14C-lab elled AZT bound to nanopartieles in rats determined by radioluminography [J]. J Drug Target,1998,5:171-179.
    [23]Y.N. Konan, R. Guray and E. Allemann. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B, (2002) 66(2):p.89-106.
    [24]M. Soncin, L. Polo, E. Reddi, et al.Effect of the delivery system on the biodistribution of Ge(IV) octabutoxy-phthalocyanines in tumour-bearing mice. Cancer Lett, (1995) 89(1):p.101-6.
    [25]I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs:a novel drug-carrier system for photodynamic therapy. J Am Chem Soc, (2003) 125(26):7860-5.
    [26]S.Z. Wang, R.M. Gao, F.M. Zhou, et al. Nanomaterials and signlet oxygen photosensitizers:potential applications in photodynamic therapy. J Mater Chem, (2004) 14(4):p.487-93.
    [27]K. Low, T. Knobloch, S. Wagner, A. Wiehe, A. Engel, K. Langer, H von Briesen, Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells, Nanotechnology 22 (2011) 245102.
    [28]M. Zeisser-Labouebe, N. Lange, R. Gurny, F. Delie, Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer, Int. J. Pharm. 326(2006)174-181.
    [29]Y.N. Konan, M. Berton, R. Gurny, E. Allemann, Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles, Eur. J. Pharm. Sci.18 (2003) 241-249.
    [30]D. Brevet, M. Gary-Bobo, L. Raehm, S. Richeter, O. Hocine, K. Amto, B. Loock, P. Couleaud, C. Frochot, A. Morere, P. Maillard, M. Garcia and J.O. Durand: Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun, (2009) 12:p.1475-7.
    [31]S.H. Cheng, C.H. Lee, C.S. Yang, F.G. Tseng, C.Y. Mou and L.W. Lo: Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy:potential cancer theranostics. J Mater Chem, (2009) 19(9):p.1252-7.
    [32]I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, E.J. Bergey, A.R. Oseroff, J. Morgan, T.J. Dougherty, P.N. Prasad, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs:a novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc.125 (2003) 7860-7865.
    [33]D. Bechet, P. Couleaud, C. Frochot, M.L. Viriot, F. Guillemin, M. Barberi-Heyob, Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends Biotechnol.26 (2008) 612-621.
    [34]J.W. Snyder, E. Skovsen, J.D. Lambert, P.R. Ogiby, Subcellular, time-resolved studies of singlet oxygen in single cells, J. Am. Chem. Soc.127 (2005) 14558-14559.
    [35]Juzeniene A, Nielsen KP, Moan J. Biophysical aspects of photodynamic therapy. J Environ Pathol Toxicol Oncol.2006;25:7-28.
    [36]Henderson BW, Busch TM, Snyder JW. Fluence rate as a modulator of PDT mechanisms. Lasers Surg Med.2006;38:489-493.
    [37]Brancaleon L, Moseley H. Laser and nonlaser light sources for photodynamic therapy. Lasers Med Sci.2002; 17:173-186.
    [38]Juzeniene A, Juzenas P, Ma LW, Iani V, Moan J. Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy. Lasers Med Sci. 2004;19:139-149.
    [39]Szeimies RM, Morton CA, SidoroffA, Braathen LR. Photodynamic therapy for non-melanoma skin cancer. Acta Derm Venereol.2005;85:483-490.
    [40]VanBH. On the evolution of some endoscopic light delivery systems for photodynamic therapy. [J].Endoscopy,1998,30(4):392-40.
    [41]Beyer W. Systems for light application and dosimetry in photodynamic therapy. J Photochem Photobiol B.1996;36:153-156.
    [42]Rousset N., L. Bourre, S. Thibaud. Sensitizers in photodynamic therapy In: Photodynamic Therapy. Ed:T Patrice. The Royal Society of Chemistry, Cambridge, UK (2003).
    [43]Boyle R. W., D. Dolphin. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol,64,469-85 (1996).
    [44]Peng Q., J. Moan, G Farrants, H. E. Danielsen & C. Rimington:Localization of potent photosensitizers in human tumor LOX by means of laser scanning microscopy. Cancer Lett,58,17-27 (1991).
    [45]Del Carmen M. G., I. Rizvi, Y. Chang. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J Natl Cancer Inst,97,1516-24 (2005).
    [46]Duska L. R., M. R. Hamblin, J. L. Miller. Combination photoimmunotherapy and cisplatin:effects on human ovarian cancer ex vivo. J Natl Cancer Inst,91, 1557-63 (1999).
    [47]Mercurio F., A. M. Manning:NF-kappaB as a primary regulator of the stress response. Oncogene,18,6163-71 (1999).
    [48]Matroule J. Y, C. Volanti. NF-kappaB in photodynamic therapy:discrepancies of a master regulator. Photochem Photobiol,2006,82,1241-6.
    [49]Granville D. J., C. M. Carthy, H. Jiang, et al. Nuclear factor-kappaB activation by the photochemotherapeutic agent verteporfin. Blood,2000,95,256-62.
    [50]Du H. Y., M. Olivo, R. Mahendran. Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells. Cell Mol Life Sci,2007,64,979-88.
    [51]Volanti C., N. Hendrickx, J. Van Lint, et al. Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene,2005,24,2981-91.
    [52]Ferrario A., K. F. von Tiehl, N. Rucker,et al. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res,2000,60,4066-9.
    [53]Mitra S., S. E. Cassar, D. J. Niles, et al. Photodynamic therapy mediates the oxygen-independent activation of hypoxiainducible factor 1 alpha. Mol Cancer Ther,2006,5,3268-74.
    [54]Gomer C. J., A. Ferrario, N. Rucker,et al. Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization. Cancer Res,1991,51,6574-9.
    [55]Curry P. M, J. G Levy. Stress protein expression in murine tumor cells following photodynamic therapy with benzoporphyrin derivative. Photochem Photobiol, 1993,58,374-9.
    [56]Fisher A. M., A. Ferrario, C. J. Gomer. Adriamycin resistance in Chinese hamster fibroblasts following oxidative stress induced by photodynamic therapy. Photochem Photobiol,1993,58,581-8.
    [57]Gomer C. J., S. W. Ryter, A. Ferrario, et al. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res,1996, 56,2355-60.
    [58]Gomer C. J., N. Rucker, S. Wong. Porphyrin photosensitivity in cell lines expressing a heat-resistant phenotype. Cancer Res,1990,50,5365-8.
    [59]Luna M. C, A. Ferrario, S. Wong, et al. Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genes ligated to the human heat shock promoter. Cancer Res,2000,60,1637-44.
    [60]Moor A. C. Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B,2000,57,1-13.
    [61]Liu G., L. Kleine, R. L. Hebert. Advances in the signal transduction of ceramide and related sphingolipids. Crit Rev Clin Lab Sci,1999,36,511-73.
    [62]Separovic D., K. J. Mann, N. L. Oleinick. Association of ceramide accumulation with photodynamic treatmentinduced cell death. Photochem Photobiol,1998,68, 101-9.
    [63]Separovic D., S. Wang, M. Y. Awad Maitah, et al. Ceramide response post photodamage is absent after treatment with HA 14-1. Biochem Biophys Res Commun,2006,345,803-8.
    [64]Separovic D., J. J. Pink, N. A. Oleinick, et al. Niemann-Pick human lymphoblasts are resistant to phthalocyanine 4-photodynamic therapyinduced apoptosis. Biochem Biophys Res Commun,1999,258,506-12.
    [65]Agarwal M. L., H. E. Larkin, S. I. Zaidi,et al. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells. Cancer Res,1993,53, 5897-902.
    [66]Tong Z., G. Singh, A. J. Rainbow. Sustained activation of the extracellular signal-regulated kinase pathway protects cells from photofrin-mediated photodynamic therapy. Cancer Res,62,5528-35 (2002).
    [67]Tao J., J. S. Sanghera, S. L. Pelech,et al. Stimulation of stress-activated protein kinase and p38 HOG1 kinase in murine keratinocytes following photodynamic therapy with benzoporphyrin derivative. J Biol Chem,1996,271,27107-15.
    [68]Xue L., J. He, N. L. Oleinick. Promotion of photodynamic therapy-induced apoptosis by stress kinases. Cell Death Differ,1999,6,855-64.
    [69]Schieke S. M., C. von Montfort, D. P. Buchczyk, et al. Singlet oxygen-induced attenuation of growth factor signaling:possible role of ceramides. Free Radic Res,2004,38,729-37.
    [70]Ferrario A., N. Rucker, S. Wong, et al. Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res,2007,67,4989-95.
    [71]Cormane R. H., E. Szabo, T. T. Hoo. Histopathology of the skin in acquired and hereditary porphyria cutanea tarda. Br J Dermatol,1971,85,531-9.
    [72]Gigli I., A. A. Schothorst, N. A. Soter, et al. Erythropoietic protoporphyria. Photoactivation of the complement system. J Clin Invest,1980,66,517-22.
    [73]Korbelik M. PDT-associated host response and its role in the therapy outcome. Lasers Surg Med,2006,38,500-8.
    [74]Korbelik M., J. Sun, I. Cecic, et al. Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors. Photochem Photobiol Sci,2004,3,812-6.
    [75]Korbelik M., P. D. Cooper. Potentiation of photodynamic therapy of cancer by complement:the effect of gamma-inulin. Br J Cancer,2007,96,67-72.
    [76]Cecic I., C. S. Parkins, M. Korbelik. Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors. Photochem Photobiol,2001,74, 712-20.
    [77]Cecic I., J. Sun, M. Korbelik. Role of complement anaphylatoxin C3a in photodynamic therapy-elicited engagement of host neutrophils and other immune cells. Photochem Photobiol,2006,82,558-62.
    [78]Cecic I., M. Korbelik. Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors. Cancer Lett,2002,183,43-51.
    [79]Stott B., M. Korbelik. Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy. Cancer Immunol Immunother,2007,56, 649-58.
    [80]Korbelik M., I. Cecic, S. Merchant, et al. Acute phase response induction by cancer treatment with photodynamic therapy. Int J Cancer,2008,122,1411-7.
    [81]Merchant S., J. Sun, M. Korbelik. Dying cells program their expedient disposal: serum amyloid P component upregulation in vivo and in vitro induced by photodynamic therapy of cancer. Photochem Photobiol Sci,2007,6,284-9.
    [82]Herrmann G., M. Wlaschek, K. Bolsen, et al. Photosensitization of uroporphyrin augments the ultraviolet A-induced synthesis of matrix metalloproteinases in human dermal fibroblasts. J Invest Dermatol,1996,107,398-403.
    [83]Kick G., G. Messer, A. Goetz, et al. Photodynamic therapy induces expression of interleukin 6 by activation of AP-1 but not NF-kappa B DNA binding. Cancer Res,1995,55,2373-9.
    [84]Gollnick S. O., S. S. Evans, H. Baumann, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer, 2003,88,1772-9.
    [85]Wei L. H., H. Baumann, E. Tracy, et al. Interleukin-6 trans signalling enhances photodynamic therapy by modulating cell cycling. Br J Cancer,2007,97, 1513-22.
    [86]Bellnier D. A., S. O. Gollnick, S. H. Camacho, et al. Treatment with the tumor necrosis factor-alpha-inducing drug 5,6-dimethylxanthenone-4-acetic acid enhances the antitumor activity of the photodynamic therapy of RIF-1 mouse tumors. Cancer Res,2003,63,7584-90.
    [87]Ferrario A., C. J. Gomer. Systemic toxicity in mice induced by localized porphyrin photodynamic therapy. Cancer Res,1990,50,539-43.
    [88]Nseyo U. O., R. K. Whalen, M. R. Duncan, et al. Urinary cytokines following photodynamic therapy for bladder cancer. A preliminary report. Urology, 1990,36,167-71.
    [89]Oleinick N. L. & H. H. Evans:The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res,150, S146-56 (1998)
    [90]Plaetzer K., T. Kiesslich, C. B. Oberdanner & B.Krammer:Apoptosis following photodynamic tumortherapy:induction, mechanisms and detection. Curr Pharm Des,11,1151-65(2005)
    [91]Agarwal M. L., M. E. Clay, E. J. Harvey, H. H. Evans, A. R. Antunez & N. L. Oleinick:Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res,51,5993-6 (1991)
    [92]Granville D. J., C. M. Carthy, H. Jiang, G C. Shore, B. M. McManus & D. W. Hunt:Rapid cytochrome c release, activation of caspases 3,6,7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett, 437,5-10 (1998)
    [93]Ozoren N., W. S. El-Deiry. Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol,2003,13,135-47.
    [94]Schempp C. M., B. Simon-Haarhaus, C. C. Termeer et al. Hypericin photo-induced apoptosis involves the tumor necrosis factor-related apoptosisinducing ligand (TRAIL) and activation of caspase-8. FEBS Lett, 2001,493,26-30.
    [95]Xue L. Y., S. M. Chiu, K. Azizuddin, et al. Protection by Bcl-2 against apoptotic but not autophagic cell death after photodynamic therapy. Autophagy,2008,4, 125-7.
    [96]He J., M. L. Agarwal, H. E. Larkin, L. R. Friedman, L. Y. Xue & N. L. Oleinick: The induction of partial resistance to photodynamic therapy by the protooncogene BCL-2. Photochem Photobiol,64,845-52 (1996)
    [97]Kim H. R., Y. Luo, G. Li, et al. Enhanced apoptotic response to photodynamic therapy after Bcl-2 transfection. Cancer Res,1999,59,3429-32.
    [98]Xue L. Y., S. M. Chiu, A. Fiebig, et al. Photodamage to multiple Bcl-xL isoforms by photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene,2003,22,9197-204.
    [99]Kessel D. Promotion of PDT Efficacy by a Bcl-2 Antagonist. Photochem Photobiol 2007,3:598-590
    [100]Kessel D., M. Castelli, J. J. Reiners, Jr. Apoptotic response to photodynamic therapy versus the Bcl-2 antagonist HA14-1. Photochem Photobiol,2002,76, 314-9.
    [101]Furre I. E., M. T. Moller, S. Shahzidi, et al. Involvement of both caspase-dependent and-independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells. Apoptosis,2006,11,2031-42.
    [102]Usuda J., S. M. Chiu, K. Azizuddin,et al. Promotion of photodynamic therapy-induced apoptosis by the mitochondrial protein Smac/DIABLO: dependence on Bax. Photochem Photobiol,2002,76,217-23.
    [103]Ferrario A., N. Rucker, S. Wong, et al. Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res,2007,67,4989-95.
    [104]Klionsky D. J.:The molecular machinery of autophagy:unanswered questions. J Cell Sci,118,7-18(2005)
    [105]Xue L. Y, S. M. Chiu, K. Azizuddin, S. Joseph & N. L. Oleinick:The death of human cancer cells following photodynamic therapy:apoptosis competence is necessary for Bcl-2 protection but not for induction of autophagy. Photochem Photobiol,83,1016-23 (2007)
    [106]Kessel D., M. G Vicente & J. J. Reiners, Jr.:Initiation of apoptosis and autophagy by photodynamic therapy. Autophagy,2,289-90 (2006)
    [107]McMahon K. S., T. J. Wieman, P. H. Moore & V. H. Fingar:Effects of photodynamic therapy using mono-Laspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Res,54,5374-9 (1994)
    [108]Bernstein Z. P., B. D. Wilson, A. R. Oseroff, C. M. Jones, S. E. Dozier, J. S. Brooks, R. Cheney, L. Foulke, T. S. Mang, D. A. Bellnier & T. J. Dougherty: Photofrin photodynamic therapy for treatment of AIDS-related cutaneous Kaposi's sarcoma. Aids,13,1697-704 (1999)
    [109]Luo Y. & D. Kessel:Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyannie. Photochem Photobiol,66, 479-83 (1997)
    [110]Buytaert E., M. Dewaele & P. Agostinis:Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta, 1776,86-107(2007)
    [111]Castano A. P., P. Mroz & M. R. Hamblin:Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer,6,535-45 (2006)
    [112]Korbelik M.:PDT-associated host response and its role in the therapy outcome. Lasers Surg Med,38,500-8 (2006)
    [113]Braathen LR, Szeimies RM, Basset-Seguin N, et al. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer:an international consensus. International Society for Photodynamic Therapy in Dermatology, 2005. J Am Acad Dermatol.2007;56:125-143.
    [114]Nestor MS, Gold MH, Kauvar AN, et al. The use of photodynamic therapy in dermatology:results of a consensus conference. J Drugs Dermatol. 2006;5:140-154.
    [115]Taub AF. Photodynamic therapy:other uses. Dermatol Clin.2007;25:101-109.
    [116]Wolf P, Rieger E, Kerl H. Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid. An alternative treatment modality for solar keratoses, superficial squamous cell carcinomas, and basal cell carcinomas? J Am Acad Dermatol.1993;28:17-21.
    [117]Zeitouni NC, Shieh S, Oseroff AR. Laser and photodynamic therapy in the management of cutaneous malignancies. Clin Dermatol.2001;19:328-338.
    [118]Basset-Seguin N, Ibbotson SH, Emtestam L, et al. Topical methyl aminolaevulinate photodynamic therapy versus cryotherapy for superficial basal cell carcinoma:a 5 year randomized trial. Eur J Dermatol. 2008;18:547-553.
    [119]Szeimies RM, Ibbotson S, Murrell DF, et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8-20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol.2008;22:1302-1311.
    [120]Mosterd K, Thissen MR, Nelemans P, et al. Fractionated 5-aminolaevulinic acidphotodynamic therapy vs. surgical excision in the treatment of nodular basal cell carcinoma:results of a randomized controlled trial. Br J Dermatol. 2008; 159:864-870.
    [121]Rhodes LE, de Rie M, Enstrom Y, et al. Photodynamic therapy using topical methyl aminolevulinate vs surgery for nodular basal cell carcinoma:results of a multicenter randomized prospective trial. Arch Dermatol.2004; 140:17-23.
    [122]Jerjes W, Upile T, Akram S, Hopper C. The surgical palliation of advanced head and neck cancer using photodynamic therapy. Clin Oncol (R Coll Radiol). 2010;22:785-791.
    [123]Bredell MQ Besic E, Maake C, Walt H. The application and challenges of clinical PD-PDT in the head and neck region:a short review. J Photochem Photobiol B.2010;101:185-190.
    [124]Li LB, Luo RC, Liao WJ, Zhang MJ, Luo YL, Miao JX. Clinical study of Photofrin photodynamic therapy for the treatment of relapse nasopharyngeal carcinoma. Photochem Photobiol Ther.2006;3:266-271.
    [125]Biel MA. Photodynamic therapy and the treatment of head and neck neoplasia. Laryngoscope.1998;108:1259-1268.
    [126]Biel M. Advances in photodynamic therapy for the treatment of head and neck cancers. Lasers Surg Med.2006;38:349-355.
    [127]Keller GS, Doiron DR, Fisher GU. Photodynamic therapy in otolaryngology-head and neck surgery. Arch Otolaryngol.1985;111:758-761.
    [128]Feyh J, Goetz A, Muller W, Konigsberger R, Kastenbauer E. Photodynamic therapy in head and neck surgery. J Photochem Photobiol B.1990;7:353-358.
    [129]Hopper C, Kubler A, Lewis H, Tan IB, Putnam G. mTHPC-mediated photodynamic therapy for early oral squamous cell carcinoma. Int J Cancer. 2004;111:138-146.
    [130]Fan KF, Hopper C, Speight PM, Buonaccorsi G, MacRobert AJ, Bown SG Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer.1996;78:1374-1383.
    [131]Copper MP, Triesscheijn M, Tan IB, Ruevekamp MC, Stewart FA. Photodynamic therapy in the treatment of multiple primary tumours in the head and neck, located to the oral cavity and oropharynx. Clin Otolaryngol. 2007;32:185-189.
    [132]D Cruz AK, Robinson MH, Biel MA. mTHPC-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer:a multicenter study of 128 patients. Head Neck.2004;26:232-240.
    [133]Grant WE, Hopper C, MacRobert AJ, Speight PM, Bown SG. Photodynamic therapy of oral cancer:photosensitization with systemic aminolaevulinic acid. Lancet.1993;342:147-148.
    [134]Sieron A, Namyslowski G, Misiolek M, Adamek M, Kawczyk-Krupka A. Photodynamic therapy of premalignant lesions and local recurrence of laryngeal and hypopharyngeal cancers. Eur Arch Otorhinolaryngol.2001;258:349-352.
    [135]Wolfsen HC. Carpe luz-seize the light:endoprevention of esophageal adenocarcinoma when using photodynamic therapy with porfimer sodium. Gastrointest Endosc.2005;62:499-503.
    [136]Wang I, Bendsoe N, Klinteberg CA, et al. Photodynamic therapy vs. cryosurgery of basal cell carcinomas:results of a phase Ⅲ clinical trial. Br J Dermatol.2001;144:832-840.
    [137]Hahn S, Glatstein E. The emergence of photodynamic therapy as a major modality in cancer treatment. Rev Contemp Pharmocother.1999; 10:69-74.
    [138]Wolfsen HC, Hemminger LL, Wallace MB, et al. Clinical experience of patients undergoing photodynamic therapy for Barrett's dysplasia or cancer. Aliment Pharmacol Ther.2004;20:1125-1131.
    [139]Corti L, Skarlatos J, Boso C, et al. Outcome of patients receiving photodynamic therapy for early esophageal cancer. Int J Radiat Oncol Biol Phys. 2000;47:419-424.
    [140]Overholt BF, Wang KK, Burdick JS, et al. Five-year efficacy and safety of photodynamic therapy with Photofrin in Barrett's high-grade dysplasia. Gastrointest Endosc.2007;66:460-468.
    [141]Rees JR, Lao-Sirieix P, Wong A, et al. Treatment for Barrett's oesophagus. Cochrane Database Syst Rev.2010;(1):CD004060.
    [142]Overholt BF, Lightdale CJ, Wang KK, et al. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett's esophagus: international, partially blinded, randomized phase III trial. Gastrointest Endosc. 2005;62:488-498.
    [143]Shaheen NJ, Inadomi JM, Overholt BF, et al. What is the best management strategy for high grade dysplasia in Barrett's oesophagus? A cost effectiveness analysis. Gut.2004;53:1736-1744.
    [144]Wolfsen HC. Uses of photodynamic therapy in premalignant and malignant lesions of the gastrointestinal tract beyond the esophagus. J Clin Gastroenterol. 2005; 39:653-664.
    [145]Nakamura H, Yanai H, Nishikawa J, et al. Experience with photodynamic therapy (endoscopic laser therapy) for the treatment of early gastric cancer. Hepatogastroenterology.2001;48:1599-1603.
    [146]Mlkvy P, Messmann H, Debinski H, et al. Photodynamic therapy for polyps in familial adenomatous polyposis-a pilot study. Eur J Cancer. 1995;31A:1160-1165.
    [147]Abulafi AM, Allardice JT, Williams NS, et al. Photodynamic therapy for malignant tumours of the ampulla of Vater. Gut.1995;36:853-856.
    [148]McCaughan JS Jr, Mertens BF, Cho C,et al. Photodynamic therapy to treat tumors of the extrahepatic biliary ducts. A case report. Arch Surg. 1991;126:111-113.
    [149]Ortner MA, Liebetruth J, Schreiber S, et al. Photodynamic therapy of nonresectable cholangiocarcinoma. Gastroenterology.1998; 114:536-542.
    [150]Ortner ME, Caca K, Berr F, et al. Successful photodynamic therapyr for nonresectable cholangiocarcinoma:a randomized prospective study. Gastroenterology.2003; 125.1355-1363.
    [151]Witzigmann H, Berr F, Ringel U, et al. Surgical and palliative management and outcome in 184 patients with hilar cholangiocarcinoma:palliative photodynamic therapy plus stenting is comparable to rl/r2 resection. Ann Surg. 2006;244:230-239.
    [152]Zoepf T, Jakobs R, Arnold JC, et al. Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol. 2005;100:2426-2430.
    [153]Szeimies RM, Ibbotson S, Murrell DF, et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8-20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol.2008;22:1302-1311.
    [154]Rhodes LE, de Rie M, Enstrom Y, et al. Photodynamic therapy using topical methyl aminolevulinate vs surgery for nodular basal cell carcinoma:results of a multicenter randomized prospective trial. Arch Dermatol.2004;140:17-23.
    [155]Pereira SP, Ayaru L, Rogowska A, et al. Photodynamic therapy of malignant biliary strictures using meso-tetrahydroxyphenylchlorin. Eur J Gastroenterol Hepatol.2007; 19:479-485.
    [156]Bown SG, Rogowska AZ, Whitelaw DE, et al. Photodynamic therapy for cancer of the pancreas. Gut.2002;50:549-557.
    [157]Loh CS, Bliss P, Bown SG, et al. Photodynamic therapy for villous adenomas of the colon and rectum. Endoscopy.1994; 26:243-246.
    [158]Nakamura T, Fukui H, Ishii Y, et al. Photodynamic therapy with polypectomy for rectal cancer. Gastrointest Endosc.2003;57:266-269.
    [159]Nathan TR, Whitelaw DE, Chang SC, et al. Photodynamic therapy for prostate cancer recurrence after radiotherapy:a phase I study. J Urol. 2002;168:1427-1432.
    [160]Moore CM, Nathan TR, Lees WR, et al. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Lasers Surg Med. 2006;38:356-363.
    [161]Weersink RA, Forbes J, Bisland S, et al. Assessment of cutaneous photosensitivity of TOOKAD (WST09) in preclinical animal models and in patients. Photochem Photobiol.2005;81:106-113.
    [162]Trachtenberg J, Bogaards A, Weersink RA, et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy:assessment of safety and treatment response. J Urol.2007; 178:1974-1979; discussion 1979.
    [163]Trachtenberg J, Weersink RA, Davidson SR, et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy:a study of escalating light doses. BJU Int.2008;102:556-562.
    [164]Prout GR Jr, Lin CW, Benson R Jr, et al. Photodynamic therapy with hematoporphyrin derivative in the treatment of superficial transitional-cell carcinoma of the bladder. N Engl J Med.1987;317:1251-1255.
    [165]Uchibayashi T, Koshida K, Kunimi K, Hisazumi H. Whole bladder wall photodynamic therapy for refractory carcinoma insitu of the bladder. Br J Cancer.1995;71:625-628.
    [166]D'Hallewin MA, Baert L. Long-term results of whole bladder wall photodynamic therapy for carcinoma in situ of the bladder. Urology. 1995;45:763-767.
    [167]Nseyo UO, Shumaker B, Klein EA, Sutherland K. Photodynamic therapy using porfimer sodium as an alternative to cystectomy in patients with refractory transitional cell carcinoma in situ of the bladder. Bladder Photofrin Study Group. J Urol.1998; 160:39-44.
    [168]Berger AP, Steiner H, Stenzl A, Akkad T, Bartsch G, Holtl L. Photodynamic therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent superficial bladder cancer:a single-center study. Urology. 2003;61:338-341.
    [169]Waidelich R, Beyer W, Knuchel R, et al. Whole bladder photodynamic therapy with 5-aminolevulinic acid using a white light source. Urology. 2003;61:332-337.
    [170]Hayata Y, Kato H, Konaka C, Ono J, Takizawa N. Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest. 1982;81:269-277.
    [171]LoCicero J 3rd, Metzdorff M, Almgren C. Photodynamic therapy in the palliation of late stage obstructing non-small cell lung cancer. Chest. 1990;98:97-100.
    [172]Moghissi K, Dixon K, Stringer M, Freeman T, Thorpe A, Brown S. The place of bronchoscopic photodynamic therapy in advanced unresectable lung cancer: experience of 100 cases. Eur J Cardiothorac Surg.1999; 15:1-6.
    [173]McCaughan JS Jr, Williams TE. Photodynamic therapy for endobronchial malignant disease:a prospective fourteen-year study. J Thorac Cardiovasc Surg. 1997; 114:940-946; discussion 946-947.
    [174]Furuse K, Fukuoka M, Kato H, et al. A prospective phase Ⅱ study on photodynamic therapy with photofrin Ⅱ for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group. J Clin Oncol.1993;11:1852-1857.
    [175]Diaz-Jimenez JP, Martinez-Ballarin JE, Llunell A, Farrero E, Rodriguez A, Castro MJ. Efficacy and safety of photodynamic therapy versus Nd-YAG laser resection in NSCLC with airway obstruction. Eur Respir J.1999; 14:800-805.
    [176]Lam S, Muller NL, Miller RR, et al. Laser treatment of obstructive endobronchial tumors:factors which determine response. Lasers Surg Med. 1987;7:29-35.
    [177]Furuse K, Fukuoka M, Kato H, et al. A prospective phase Ⅱ study on photodynamic therapy with photofrin Ⅱ for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group. J Clin Oncol.1993;11:1852-1857.
    [178]Loewen GM, Pandey R, Bellnier D, Henderson B, Dougherty T. Endobronchialphotodynamic therapy for lung cancer. Lasers Surg Med. 2006;38:364-370.
    [179]Corti L, Toniolo L, Boso C, et al. Longterm survival of patients treated with photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma. Lasers Surg Med.2007;39:394-402.
    [180]Endo C, Miyamoto A, Sakurada A, et al. Results of long-term follow-up of photodynamic therapy for roentgenographically occult bronchogenic squamous cell carcinoma. Chest.2009;136:369-375.
    [181]Minnich DJ, Bryant AS, Dooley A, Cerfolio RJ. Photodynamic laser therapy for lesions in the airway. Ann Thorac Surg.2010;89:1744-1748; discussion 1748-1749.
    [182]Friedberg JS. Photodynamic therapy as an innovative treatment for malignant pleural mesothelioma. Semin Thorac Cardiovasc Surg.2009;21:177-187.
    [183]Moskal TL, Dougherty TJ, Urschel JD, et al. Operation and photodynamic therapy for pleural mesothelioma:6-year follow-up. Ann Thorac Surg.1998;66: 1128-1133.
    [184]Pass HI, Temeck BK, Kranda K, et al. Phase Ⅲ randomized trial of surgery withor without intraoperative photodynamic therapy and postoperative immunochemotherapy for malignant pleural mesothelioma. Ann Surg Oncol. 1997;4:628-633.
    [185]Friedberg JS, Mick R, Stevenson J, et al. A phase Ⅰ study of Foscan-mediated photodynamic therapy and surgery in patients with mesothelioma. Ann Thorac Surg.2003;75:952-959.
    [186]Schouwink H, Rutgers ET, van der Sijp J, et al. Intraoperative photodynamic therapy after pleuropneumonectomy in patients with malignant pleural mesothelioma:dose finding and toxicity results. Chest.2001; 120:1167-1174.
    [187]Kostron H. Photodynamic diagnosis and therapy and the brain. Methods Mol Biol.2010;635:261-280.
    [188]Perria C, Capuzzo T, Cavagnaro G, et al. Fast attempts at the photodynamic treatment of human gliomas. J Neurosurg Sci.1980;24:119-129.
    [189]Kaye AH, Morstyn G, Brownbill D. Adjuvant high-dose photoradiation therapy in the treatment of cerebral glioma:a phase 1-2 study. J Neurosurg. 1987;67:500-505.
    [190]Muller PJ, Wilson BC. Photodynamic therapy for recurrent supratentorial gliomas. Semin Surg Oncol.1995; 11:346-354.
    [191]Krishnamurthy S, Powers SK, Witmer P, Brown T. Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Lasers Surg Med.2000;27:224-234.
    [192]Kostron H, Fritsch E, Grunert V. Photodynamic therapy of malignant braintumours:a phase Ⅰ/Ⅱ trial. Br J Neurosurg.1988;2:241-248.
    [193]Marks PV, Belchetz PE, Saxena A, et al. Effect of photodynamic therapy on recurrent pituitary adenomas:clinical phase Ⅰ/Ⅱ trial-an early report. Br J Neurosurg.2000; 14:317-325.
    [194]Muller PJ, Wilson BC. Photodynamic therapy of brain tumors-a work in progress. Lasers Surg Med.2006;38:384-389.
    [195]Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma:a randomised controlled multicentre phase Ⅲ trial. Lancet Oncol.2006; 7:392-401.
    [196]Eljamel MS, Goodman C, Moseley H. ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme:a single centre Phase III randomized controlled trial. Lasers Med Sci.2008;23:361-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700