基于表面等离激元光子学的增强光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用表面等离激元共振对金属纳米结构局域电磁场的增强作用,调制其附近分子的光学信号行为;通过改变金属纳米结构的大小、构型以及环境介质等因素,在纳米尺度上实现光学信号的有效调控。目前,基于表面等离激元光子学的增强光谱技术,已被广泛应用于超灵敏生物-化学传感、新型光源、高效光学元件、纳米光学成像等领域。本论文从表面等离激元光子学的基本理论出发,理论研究与实验观测相结合,并借助仿真模拟对表面增强光谱技术,特别是针尖增强拉曼散射展开一系列的研究。
     论文主要内容包括两大部分:
     一、利用电化学和微纳加工技术,制备纳米孔洞阵列和三维纳米结构,并探究其表面增强荧光效应;采用湿化学方法,合成高产率的聚集体金属纳米颗粒,研究其液相环境中的表面增强荧光和拉曼散射效应,并从理论和仿真模拟上对实验结果进行分析讨论。
     二、利用高真空针尖增强拉曼散射系统,开展了以下三个方面的研究工作:超灵敏斯托克斯和反斯托克斯拉曼光谱研究,并以此实现了实验温度的原位探测;等离激元催化反应的分子动力学研究,并以此实现了对反应过程的原位调控;针尖增强拉曼光谱中的非线性效应研究。
The localized electromagnetic field enhancement resulted from the surface plasmon can enhance the optical signals of molecule in the vicinity of metallic substrate surface. Optical signals can be controlled at nanoscale by changing the size, shape and dielectric environment of metallic nanostructure. A powerful technique based on the surface plasmon, surface enhanced spectroscopy has been widely used in biological and chemical sensor, new light source, high efficiency optical sensor, and nano-optical imaging, etc. In this dissertation, properties of suface enhanced spectroscopy and tip enhanced Raman scattering are studied, and some novel physical phenomena has been observed.
     The dissertation is divided mainly into two parts. First, the surface enhanced fluorescence on nanohole array and three-dimensional nanoparticles is investigated by using electrochemical and micro-nano technology. We also use chemical method to synthesize gold nanoparticle dimers and trimers, and study the enhanced fluorescence and Raman scattering effect in liquid medium theoretically and numerically. Second, both experimental and theoretical studies on the tip enhanced Raman scattering in high vacuum (HV-TERS) are presented. Ultrasensitive Stokes and anti-Stokes Raman signals and local temperature are obtained through HV-TERS. Some interesting phenomena on the plasmon-driven chemical reaction and nonlinear effects in HV-TERS are observed too.
引文
[1]H. A. Atwater, The promise of plasmonics[J]. Sci Am.2007,296(4):56-63.
    [2]S. A. Maier, Plasmonics:The promise of highly integrated optical devices[J]. Ieee J Sel Top Quant.2006,12(6):1671-1677.
    [3]N. J. Halas, Plasmonics:An Emerging Field Fostered by Nano Letters[J]. Nano Lett.2010, 10(10):3816-3822.
    [4]M. L. Brongersma, V. M. Shalaev, APPLIED PHYSICS The Case for Plasmonics[J]. Science. 2010,328(5977):440-441.
    [5]E. Ozbay, Plasmonics:Merging photonics and electronics at nanoscale dimensions[J]. Science. 2006,311(5758):189-193.
    [6]H. A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices[J]. Nat Mater.2010, 9(3):205-213.
    [7]M. Moskovits, Surface-enhanced Raman spectroscopy:a brief retrospective[J]. J Raman Spectrosc.2005,36(6-7):485-496.
    [8]H. X. Xu, J. Aizpurua, M. Kall, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering[J]. Phys Rev E.2000,62(3):4318-4324.
    [9]E. Fort, S. Gresillon, Surface enhanced fluorescence[J]. J Phys D Appl Phys.2008,41 (1):3001.
    [10]D. M. Kuncicky, S. M. Christesen, O. D. Velev, Engineering of SERS substrate structure for chemical sensors:Role of micro-and nanoporosity.[J]. Abstr Pap Am Chem S.2005, 229(1):93-93.
    [11]J. Kneipp, Nanosensors based on SERS for applications in living cells[J]. Top Appl Phys.2006, 103(1):335-349.
    [12]M. E. Hankus, B. M. Cullum, SERS probes for the detection and imaging of biochemical species on the nanoscale[J]. Smart Medical and Biomedical Sensor Technology IV.2006, 6380(1):23-34.
    [13]C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, J. R. Lakowicz, Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface:Potential applications of indocyanine green to in vivo imaging[J]. J Phys Chem A.2003, 107(18):3443-3449.
    [14]J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. A. Zhang, R. Badugu, J. Huang, Advances in surface-enhanced fluorescence[J]. J Fluoresc.2004,14(4):425-441.
    [15]N. Mishra, G. V. P. Kumar, Near-Field Optical Analysis of Plasmonic Nano-Probes for Top-Illumination Tip-Enhanced Raman Scattering[J]. Plasmonics.2012,7(2):359-367.
    [16]B. Pettinger, P. Schambach, C. J. Villagomez, N. Scott, Tip-Enhanced Raman Spectroscopy: Near-Fields Acting on a Few Molecules[J]. Annu Rev Phys Chem.2012,63(1):379-399.
    [17]Z. D. Schultz, S. J. Stranick, I. W. Levin, Tip-Enhanced Raman Spectroscopy and Imaging:An Apical Illumination Geometry[J]. Appl Spectrosc.2008,62(11):1173-1179.
    [18]D. Bohm, D. Pines, A Collective Description of Electron Interactions.1. Magnetic Interactions[J]. Phys Rev.1951,82(5):625-634.
    [19]D. Pines, Collective Energy Losses in Solids[J]. Rev Mod Phys.1956,28(3):184-198.
    [20]R. H. Ritchie, Plasma Losses by Fast Electrons in Thin Films[J]. Phys Rev.1957, 106(5):874-881.
    [21]R. A. Ferrell, Predicted Radiation of Plasma Oscillations in Metal Films[J]. Phys Rev.1958, 111(5):1214-1222.
    [22]C. J. Powell, J. B. Swan, Origin of the Characteristic Electron Energy Losses in Aluminum[J]. Phys Rev.1959,115(4):869-875.
    [23]C. J. Powell, J. B. Swan, Origin of the Characteristic Electron Energy Losses in Magnesium[J]. Phys Rev.1959,116(1):81-83.
    [24]E. A. Stern, R. A. Ferrell, Surface Plasma Oscillations of a Degenerate Electron Gas[J]. Phys Rev.1960,120(1):130-136.
    [25]A. Otto, Excitation of Nonradiative Surface Plasma Waves in Silver by Method of Frustrated Total Reflection[J]. Z Phys.1968,216(4):398.
    [26]Kretschm.E, H. Raether, Radiative Decay of Non Radiative Surface Plasmons Excited by Light[J]. Z Naturforsch Pt A.1968, A 23(12):2135.
    [27]Kretschm.E, Scattering of Light at Rough Surfaces Due to Excitation of Surface Plasmons[J]. Z Phys.1969,227(5):412.
    [28]D. L. Jeanmaire, R. P. Vanduyne, Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, and Aliphatic-Amines Adsorbed on Anodized Silver Electrode[J]. J Electroanal Chem.1977,84(1):1-20.
    [29]S. M. Nie, S. R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science.1997,275(5303):1102-1106.
    [30]K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Phys Rev Lett.1997, 78(9):1667-1670.
    [31]H. X. Xu, E. J. Bjerneld, M. Kall, L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Phys Rev Lett.1999,83(21):4357-4360.
    [32]R. M. Stockle, Y. D. Suh, V. Deckert, R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy[J]. Chem Phys Lett.2000,318(1-3):131-136.
    [33]T. W. Ebbesen, Surface plasmon photonics[J]. Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics.2004,71-71.
    [34]P. B. Johnson, R. W. Christy, Optical Constants of Noble Metals[J]. Phys Rev B.1972, 6(12):4370-4379.
    [35]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment[J]. J Phys Chem B. 2003,107(3):668-677.
    [36]J. J. Mock, M. Barbie, D. R. Smith, D. A. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles[J]. J Chem Phys.2002, 116(15):6755-6759.
    [37]S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, Channel plasmon-polariton guiding by subwavelength metal grooves[J]. Phys Rev Lett.2005,95(4):6802.
    [38]S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature. 2006,440(7083):508-511.
    [39]E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, F. J. Garcia-Vidal, Guiding and focusing of electromagnetic fields with wedge plasmon polaritons[J]. Phys Rev Lett.2008, 100(2):3901.
    [40]R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nat Photonics.2008, 2(8):496-500.
    [41]D. K. Gramotnev, S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit[J]. Nat Photonics. 2010,4(2):83-91.
    [42]S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging and superlensing[J]. Nat Photonics:2009,3(7):388-394.
    [43]Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, H. X. Xu, Branched Silver Nanowires as Controllable Plasmon Routers[J]. Nano Lett.2010,10(5):1950-1954.
    [44]H. Wei, Z. P. Li, X. R. Tian, Z. X. Wang, F. Z. Cong, N. Liu, S. P. Zhang, P. Nordlander, N. J. Halas, H. X. Xu, Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks[J]. Nano Lett.2011,11(2):471-475.
    [45]H. Wei, Z. X. Wang, X. R. Tian, M. Kall, H. X. Xu, Cascaded logic gates in nanophotonic plasmon networks[J]. Nat Commun.2011,2(387):387.
    [46]J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Biosensing with plasmonic nanosensors[J]. Nat Mater.2008,7(6):442-453.
    [47]K. M. Mayer, J. H. Hafner, Localized Surface Plasmon Resonance Sensors[J]. Chem Rev.2011, 111(6):3828-3857.
    [48]A. D. McFarland, R. P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity [J]. Nano Lett.2003,3(8):1057-1062.
    [49]M. Moskovits, Surface-Enhanced Spectroscopy[J]. Rev Mod Phys.1985,57(3):783-826.
    [50]A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, W. E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nat Photonics.2009,3(11):654-657.
    [51]K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, C. D. Geddes, Metal-enhanced fluorescence:an emerging tool in biotechnology [J]. Curr Opin Biotech.2005, 16(1):55-62.
    [52]K. A. Willets, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry.2007,58(l):267-297.
    [53]Y. W. C. Cao, R. C. Jin, C. A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science.2002,297(5586):1536-1540.
    [54]M. Ishikawa, Y. Maruyama, J. Y. Ye, M. Futamata, Single-molecule imaging and spectroscopy of adenine and an analog of adenine using surface-enhanced Raman scattering and fluorescence[J]. J Lumin.2002,98(1-4):81-89.
    [55]M. Ishikawa, Y. Maruyama, J. Y. Ye, M. Futamata, Single-molecule imaging and spectroscopy using fluorescence and surface-enhanced Raman scattering[J]. J Biol Phys.2002, 28(4):573-585.
    [56]I. Delfino, A. R. Bizzarri, S. Cannistraro, Single-molecule detection of yeast cytochrome c by surface-enhanced Raman spectroscopy[J]. Biophys Chem.2005,113(1):41-51.
    [57]P. Johansson, H. X. Xu, M. Kall, Surface-enhanced Raman scattering and fluorescence near metal nanoparticles[J]. Phys Rev B.2005,72(3):5427.
    [58]C. V. Raman, K. S. Krishnan, A new type of secondary radiation[J]. Nature.1928, 121(501-502.
    [59]Fleischm.M, P. J. Hendra, Mcquilla.Aj, Raman-Spectra of Pyridine Adsorbed at a Silver Electrode[J]. Chem Phys Lett.1974,26(2):163-166.
    [60]M. G. Albrecht, J. A. Creighton, Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode[J]. J Am Chem Soc.1977,99(15):5215-5217.
    [61]T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles[J]. J Phys Chem B. 2000,104(45):10549-10556.
    [62]E. Hao, G. C. Schatz, Electromagnetic fields around silver nanoparticles and dimers[J]. J Chem Phys.2004,120(1):357-366.
    [63]Z. Q. Tian, B. Ren, D. Y. Wu, Surface-enhanced Raman scattering:From noble to transition metals and from rough surfaces to ordered nanostructures[J]. J Phys Chem B.2002, 106(37):9463-9483.
    [64]M. T. Sun, Z. P. Li, Y. J. Liu, H. X. Xu, Direct visual evidence for chemical mechanisms of SERRS via charge transfer in Au-20-pyrazine-Au-20 junction[J]. J Raman Spectrosc.2009, 40(12):1942-1948.
    [65]M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, H. X. Xu, Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer:(II) Binding-site and quantum-size effects[J]. J Raman Spectrosc.2009,40(9):1172-1177.
    [66]A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-Enhanced Raman-Scattering[J]. J Phys-Condens Mat.1992,4(5):1143-1212.
    [67]A. Campion, P. Kambhampati, Surface-enhanced Raman scattering[J]. Chem Soc Rev.1998, 27(4):241-250.
    [68]A. Campion, J. E. Ivanecky, C. M. Child, M. Foster, On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman-Scattering[J]. J Am Chem Soc.1995, 117(47):11807-11808.
    [69]W. E. Doering, S. M. Nie, Single-molecule and single-nanoparticle SERS:Examining the roles of surface active sites and chemical enhancement[J]. J Phys Chem B.2002,106(2):311-317.
    [70]S. Lecomte, P. Matejka, M. H. Baron, Correlation between surface enhanced Raman scattering and absorbance changes in silver colloids. Evidence for the chemical enhancement mechanism[J]. Langmuir.1998,14(16):4373-4377.
    [71]J. G. Wilkinson, Principles of Fluorescence Spectroscopy-Lakowicz,Jr[J]. Chem Brit.1984, 20(5):442-442.
    [72]E. L. Wehry, Principles of Fluorescence Spectroscopy-Lakowicz,Jr[J]. Am Sci.1984, 72(4):395-396.
    [73]T. Itoh, M. Iga, H. Tamaru, K. Yoshida, V. Biju, M. Ishikawa, Quantitative evaluation of blinking in surface enhanced resonance Raman scattering and fluorescence by electromagnetic mechanism[J]. J Chem Phys.2012,136(2):4703.
    [74]I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, J. R. Lakowicz, Surface plasmon-coupled directional fluorescence emission[J]. P Soc Photo-Opt Ins.2004, 5327(1):37-44.
    [75]C. D. Geddes, A. Parfenov, I. Gryczynski, J. Malicka, D. Roll, J. R. Lakowicz, Fractal silver structures for metal-enhanced fluorescence:Applications for ultra-bright surface assays and lab-on-a-chip-based nanotechnologies[J]. J Fluoresc.2003,13(2):119-122.
    [76]J. R. Lakowicz, Radiative decay engineering:Biophysical and biomedical applications[J]. Anal Biochem.2001,298(1):1-24.
    [77]J. R. Lakowicz, Y. B. Shen, S. D'Auria, J. Malicka, J. Y. Fang, Z. Gryczynski, I. Gryczynski, Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer[J]. Anal Biochem.2002,301(2):261-277.
    [78]I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz, Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission[J]. Anal Biochem.2004, 324(2):170-182.
    [79]J. R. Lakowicz, Radiative decay engineering 3. Surface plasmon-coupled directional emission[J]. Anal Biochem.2004,324(2):153-169.
    [80]J. R. Lakowicz, Radiative decay engineering 5:metal-enhanced fluorescence and plasmon emission[J]. Anal Biochem.2005,337(2):171-194.
    [81]M. L-Viger, D. Brouard, D. Boudreau, Plasmon-Enhanced Resonance Energy Transfer from a Conjugated Polymer to Fluorescent Multi layer Core-Shell Nanoparticles:A Photophysical Study[J]. J Phys Chem C.2011,115(7):2974-2981,
    [82]Z. Zhang, H. Zheng, J. Dong, X. Yan, Y. Sun, H. Xu, Surface enhanced fluorescence by porous alumina with nanohole arrays[J]. Science China-Physics Mechanics & Astronomy.2012, 55(5):767-771.
    [83]B. Pettinger, G. Picardi, R. Schuster, G. Ertl, Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces[J]. Single Mol.2002,3(5-6):285-294.
    [84]B. Pettinger, G. Picardi, R. Schuster, G. Ertl, Surface-enhanced and STM tip-enhanced Raman spectroscopy of CN-ions at gold surfaces[J]. J Electroanal Chem.2003,554(3):293-299.
    [85]B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy [J]. Phys Rev Lett.2004,92(9):6101.
    [86]D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, J. F. Maguire, Nano-Raman spectroscopy with side-illumination optics[J]. J Raman Spectrosc.2005, 36(11):1068-1075.
    [87]Z. L. Yang, Q. H. Li, Y. R. Fang, M. T. Sun, Deep ultraviolet tip-enhanced Raman scattering[J]. Chem Commun.2011,47(32):9131-9133.
    [88]J. Steidtner, B. Pettinger, High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum[J]. Rev Sci Instrum.2007,78(10):3104.
    [89]N. Jiang, E. T. Foley, J. M. Klingsporn, M. D. Sonntag, N. A. Valley, J. A. Dieringer, T. Seideman, G. C. Schatz, M. C. Hersam, R. P. Van Duyne, Observation of Multiple Vibrational Modes in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy Combined with Molecular-Resolution Scanning Tunneling Microscopy [J]. Nano Lett.2012,12(10):5061-5067.
    [90]M. T. Sun, Z. L. Zhang, H. R. Zheng, H. X. Xu, In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy[J]. Sci Rep-Uk.2012,2(647):647.
    [91]J. Wessel, Surface-Enhanced Optical Microscopy[J]. J Opt Soc Am B.1985,2(9):1538-1541.
    [92]M. S. Anderson, Locally enhanced Raman spectroscopy with an atomic force microscope[J]. Appl Phys Lett.2000,76(21):3130-3132.
    [93]N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Metallized tip amplification of near-field Raman scattering[J]. Opt Commun.2000,183(1-4):333-336.
    [94]B. Pettinger, G. Picardi, R. Schuster, G. Ertl, Surface enhanced Raman spectroscopy:Towards single molecular spectroscopy [J]. Electrochemistry.2000,68(12):942-949.
    [95]N. Hayazawa, A. Tarun, Y. Inouye, S. Kawata, Near-field enhanced Raman spectroscopy using side illumination optics[J]. J Appl Phys.2002,92(12):6983-6986.
    [96]N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope[J]. J Chem Phys. 2002,117(3):1296-1301.
    [97]D. S. Bulgarevich, K. Otake, T. Sako, T. Sugeta, Y. Takebayashi, C. Kamizawa, D. Shintani, A. Negishi, C. Tsurumi, Kinetics of the N-alkylation by supercritical methanol[J]. J Supercrit Fluid.2003,26(3):215-224.
    [98]M. T. Sun, Y. R. Fang, Z. L. Yang, H. X. Xu, Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering[J]. Phys Chem Chem Phys.2009,11(41):9412-9419.
    [99]B. S. Yeo, T. Schmid, W. H. Zhang, R. Zenobi, Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips[J]. Anal Bioanal Chem. 2007,387(8):2655-2662.
    [100]J. Steidtner, F. Hernandez, H. Baltruschat, Electrocatalytic reactivity of Pd monolayers and monatomic chains on Au[J]. J Phys Chem C.2007,111(33):12320-12327.
    [101]J. Steidtner, B. Pettinger, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution[J]. Phys Rev Lett.2008,100(23):6101.
    [102]E. Bailo, V. Deckert, Tip-enhanced Raman spectroscopy of single RNA strands:Towards a novel direct-sequencing method[J]. Angew Chem Int Edit.2008,47(9):1658-1661.
    [103]Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy [J]. Nat Commun.2011,2(305):305.
    [104]Z. Liu, Z. B. Chen, S. Y. Ding, X. Wang, J. H. Tian, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, Z. Q. Tian, Fishing-Mode Tip-enhanced Raman Spectroscopy (FM-TERS) for Studying Single-Molecule Junctions[J]. Aip Conf Proc.2010,1267(12):1255-1256.
    [105]B. Ren, G. Picardi, B. Pettinger, R. Schuster, G. Ertl, Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces[J]. Angew Chem Int Edit.2005, 44(1):139-142.
    [106]X. Wang, Z. Liu, M. D. Zhuang, H. M. Zhang, X. Wang, Z. X. Xie, D. Y. Wu, B. Ren, Z. Q. Tian, Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips[J]. Appl Phys Lett.2007,91(10):1105.
    [107]M. D. Zhuang, Z. Liu, B. Ren, Z. Q. Tian, Surface bonding on silicon surfaces as probed by tip-enhanced Raman spectroscopy [J]. Sci China Chem.2010,53(2):426-431.
    [108]B. Ren, Z. Liu, X. Wang, Z. L. Yang, Z. Q. Tian, Electromagnetic Coupling Effect for Surface-enhanced Raman Spectroscopy and Tip-enhanced Raman Spectroscopy[J]. Aip Conf Proc.2010,1267(12):1241-1242.
    [109]J. N. Chen, W. S. Yang, K. Dick, K. Deppert, H. Q. Xu, L. Samuelson, H. X. Xu, Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles[J]. Appl Phys Lett. 2008,92(9):3110.
    [110]W. H. Zhang, B. S. Yeo, T. Schmid, R. Zenobi, Single molecule tip-enhanced Raman spectroscopy with silver tips[J]. J Phys Chem C.2007,111(4):1733-1738.
    [111]M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, K. A. Scheidt, L. Jensen, G. C. Schatz, R. P. Van Duyne, Single-Molecule Tip-Enhanced Raman Spectroscopy[J]. J Phys Chem C.2012,116(1):478-483.
    [112]M. T. Sun, Y. R. Fang, Z. Y. Zhang, H. X. Xu, Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy [J]. Phys Rev E.2013,87(2):0401
    [113]V. Sadasivan, C. P. Richter, L. Menon, P. F. Williams, Electrochemical self-assembly of porous alumina templates[J]. Aiche J.2005,51(2):649-655.
    [114]M. H. Rahimi, S. Saramad, S. H. Tabaian, S. P. Marashi, A. Zolfaghari, M. Mohammadalinezhad, Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina[J]. Appl Surf Sci.2009,256(1):12-16.
    [115]Z. L. Zhang, H. R. Zheng, J. Dong, X. Q. Yan, Y. Sun, H. X. Xu, Surface enhanced fluorescence by porous alumina with nanohole arrays[J]. Sci China Phys Mech.2012, 55(5):767-771.
    [116]Z. L. Zhang, H. R. Zheng, M. C. Liu, H. Zhang, B. Y. Yin, H. J. Zhang, Surface Enhanced Fluorescence of Rh6G with Gold Nanohole Arrays[J]. J Nanosci Nanotechno.2011, 11(11):9803-9807.
    [117]G. S. Huang, X. L. Wu, Y. F. Mei, X. F. Shao, G. G. Siu, Strong blue emission from anodic alumina membranes with ordered nanopore array[J]. J Appl Phys.2003,93(1):582-585.
    [118]A. Wirgin, T. Lopezrios, Can Surface-Enhanced Raman-Scattering Be Caused by Waveguide Resonances[J]. Opt Commun.1984,48(6):416-420.
    [119]T. Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, Surface shape resonances in lamellar metallic gratings[J]. Phys Rev Lett.1998,81(3):665-668.
    [120]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature.1998,391(6668):667-669.
    [121]T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, T. W. Ebbesen, Surface-plasmon-enhanced transmission through hole arrays in Cr films[J]. J Opt Soc Am B.1999,16(10):1743-1748.
    [122]M. Mehmood, A. Rauf, M. A. Rasheed, S. Saeed, J. I. Akhter, J. Ahmad, M. Aslam, Preparation of transparent anodic through-thickness anodic alumina with ordered nanochannels by oxidation of aluminum sheet[J]. Mater Chem Phys.2007,104(2-3):306-311.
    [123]R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, Bridging quantum and classical plasmonics with a quantum-corrected model[J]. Nat Commun.2012,3(1):825.
    [124]K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, Revealing the quantum regime in tunnelling plasmonics[J]. Nature.2012,491(7425):574-577.
    [125]D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, A. G. Borisov, Quantum Plasmonics:Nonlinear Effects in the Field Enhancement of a Plasmonic Nanoparticle Dimer[J]. Nano Lett.2012,12(3):1333-1339.
    [126]D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, S. Jon, Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging (vol 129, pg 7661,2007)[J]. J Am Chem Soc.2007,129(41):12585-12585.
    [127]W. Y. Li, P. H. C. Camargo, X. M. Lu, Y. N. Xia, Dimers of Silver Nanospheres:Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering[J]. Nano Lett. 2009,9(1):485-490.
    [128]A. Weiss, G. Haran, Time-dependent single-molecule Raman scattering as a probe of surface dynamics[J]. J Phys Chem B.2001,105(49):12348-12354.
    [129]K. A. Bosnick, J. Jiang, L. E. Brus, Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates[J]. J Phys Chem B.2002, 106(33):8096-8099.
    [130]S. Sasic, T. Itoh, Y. Ozaki, Detailed analysis of single-molecule surface-enhanced resonance Raman scattering spectra of Rhodamine 6G obtained from isolated nano-aggregates of colloidal silver[J]. J Raman Spectrosc.2005,36(6-7):593-599.
    [131]K. Kneipp, H. Kneipp, Single molecule Raman scattering[J]. Appl Spectrosc.2006, 60(12):322a-334a.
    [132]N. P. W. Pieczonka, R. F. Aroca, Single molecule analysis by surfaced-enhanced Raman scattering[J]. Chem Soc Rev.2008,37(5):946-954.
    [133]P. G. Etchegoin, P. D. Lacharmoise, E. C. Le Ru, Influence of Photostability on Single-Molecule Surface Enhanced Raman Scattering Enhancement Factors[J]. Anal Chem. 2009,81(2):682-688.
    [134]W. H. Hsiao, H. Y. Chen, Y. C. Yang, Y. L. Chen, C. Y. Lee, H. T. Chiu, Surface-Enhanced Raman Scattering Imaging of a Single Molecule on Urchin-like Silver Nanowires[J]. Acs Appl Mater Inter.2011,3(9):3280-3284.
    [135]A. Ahmed, R. Gordon, Single Molecule Directivity Enhanced Raman Scattering using Nanoantennas[J], Nano Lett.2012,12(5):2625-2630.
    [136]P. J. G. Goulet, N. P. W. Pieczonka, R. F. Aroca, Overtones and combinations in single-molecule surface, enhanced resonance Raman scattering spectra[J]. Anal Chem.2003, 75(8):1918-1923.
    [137]M. T. Sun, H. X. Xu, A Novel Application of Plasmonics:Plasmon-Driven Surface-Catalyzed Reactions[J]. Small.2012,8(18):2777-2786.
    [138]Y. R. Fang, Y. Z. Li, H. X. Xu, M. T. Sun, Ascertaining p,p'-Dimercaptoazobenzene Produced from p-Aminothiophenol by Selective Catalytic Coupling Reaction on Silver Nanoparticles[J]. Langmuir.2010,26(11):7737-7746.
    [139]B. Dong, Y. R. Fang, X. W. Chen, H. X. Xu, M. T. Sun, Substrate-, Wavelength-, and Time-Dependent Plasmon-Assisted Surface Catalysis Reaction of 4-Nitrobenzenethiol Dimerizing to p,p'-Dimercaptoazobenzene on Au, Ag, and Cu Films[J]. Langmuir.2011, 27(17):10677-10682.
    [140]G. Binnig, H. Rohrer, Scanning Tunneling Microscopy[J]. Helv Phys Acta.1982, 55(6):726-735.
    [141]K. Sarayeddine, M. Spajer, D. Courjon, J. M. Vigoureux, Scanning Tunneling Optical Microscopy-a New Tool for High-Resolution Nondestructive Testing[J]. Inst Phys Conf Ser. 1990,98):29-32.
    [142]B. Ren, G. Picardi, B. Pettinger, Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching[J]. Rev Sci Instrum.2004, 75(4):837-841.
    [143]X. Wang, Y. Cui, B. Ren, Fabrication of Au tips for tip-enhanced Raman spectroscopy[J]. Chem J Chinese U.2007,28(3):522-525.
    [144]M. C. Baykul, Preparation of sharp gold tips for STM by using electrochemical etching method[J]. Mat Sci Eng B-Solid.2000,74(1-3):229-233.
    [145]C. Williams, D. Roy, Fabrication of gold tips suitable for tip-enhanced Raman spectroscopy [J]. J Vac Sci Technol B.2008,26(5):1761-1764.
    [146]D. P. dos Santos, G. F. S. Andrade, A. G. Brolo, M. L. A. Temperini, Fluctuations of the Stokes and anti-Stokes surface-enhanced resonance Raman scattering intensities in an electrochemical environment[J]. Chem Commun.2011,47(25):7158-7160.
    [147]M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, Photodetection with Active Optical Antennas[J]. Science.2011,332(6030):702-704.
    [148]J. G. Endriz, W. E. Spicer, Surface-Plasmon-One-Electron Decay and Its Observation in Photoemission[J]. Phys Rev Lett.1970,24(2):64-68.
    [149]X. M. Wu, E. S. Thrall, H. T. Liu, M. Steigerwald, L. Brus, Plasmon Induced Photovoltage and Charge Separation in Citrate-Stabilized Gold Nanoparticles[J]. J Phys Chem C.2010, 114(30):12896-12899.
    [150]H. X. Vu, D. F. DuBois, D. A. Russell, J. F. Myatt, Hot-electron generation by "cavitating" Langmuir turbulence in the nonlinear stage of the two-plasmon-decay instability[J]. Phys Plasmas.2012,19(10):2708.
    [151]N. A. Ebrahim, H. A. Baldis, C. Joshi, R. Benesch, Hot-Electron Generation by the 2-Plasmon Decay Instability in the Laser-Plasma Interaction at 10.6 Mu-M[J]. Phys Rev Lett.1980, 45(14):1179-1182.
    [152]E. M. V. Lantman, T. Deckert-Gaudig, A. J. G. Mank, V. Deckert, B. M. Weckhuysen, Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy [J]. Nat Nanotechnol.2012,7(9):583-586.
    [153]J. K. Sass, H. Neff, M. Moskovits, S. Holloway, Electric-Field Gradient Effects on the Spectroscopy of Adsorbed Molecules[J]. J Phys Chem-Us.1981,85(6):621-623.
    [154]E. J. Ayars, H. D. Hallen, C. L. Jahncke, Electric field gradient effects in Raman spectroscopy[J]. Phys Rev Lett.2000,85(19):4180-4183.
    [155]M. Moskovits, D. P. Dilella, Intense Quadrupole Transitions in the Spectra of Molecules near Metal-Surfaces[J]. J Chem Phys.1982,77(4):1655-1660.
    [156]A. M. Polubotko, Sers Phenomenon as a Manifestation of Quadrupole Interaction of Light with Molecules[J]. Phys Lett A.1990,146(1-2):81-84.
    [157]E. Fermi, F. Rasetti, About the Raman effect of rock salt.[J]. Z Phys.1931,71(9-10):689-695.
    [158]E. Fermi, The Raman effect of carbon dioxide[J]. Z Phys.1931,71(3-4):250-259.
    [159]K. D. Bier, H. J. Jodl, Tuning of the Fermi Resonance of Co2 and Cs2 by Temperature, Pressure, and Matrix Material[J]. J Chem Phys.1987,86(8):4406-4410.
    [160]R. A. Nyquist, H. A. Fouchea, G. A. Hoffman, D. L. Hasha, Infrared Study of Beta-Propiolactone in Various Solvent Systems and Other Lactones[J]. Appl Spectrosc.1991, 45(5):860-867.
    [161]Y. Li, P. Wang, Z. Zhang, Y. Li, F. Ma, M. Sun, Nonlinear resonances in electrochemical SERS of SCN-, rotation-resolved Raman and anti-Stokes Raman of SCN- in HV-TERS[J]. Rsc Advances.2012,2(32):12160-12163.
    [162]M. Sun, Z. Zhang, L. Chen, H. Zheng, H. Xu, Tip-enhanced resonance couplings (TERCs) revealed by high vacuum tip-enhanced Raman spectroscopy (HV-TERS)[J]. Advanced Optical Materials.2013,10.1002/adom.201200074

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700