硅纳米线阵列物性研究及其在表面拉曼增强中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅纳米线阵列具有独特的微结构及量子限域效应,因而呈现出优异的光学及电学性能,近来被广泛应用于太阳能电池、生物传感器、场发射器件及锂离子电池中。通常采用以下方法制备硅纳米线:激光刻蚀、化学气相沉积法、热蒸发、分子束外延等。但这些制备方法工艺相对复杂、制备成本高、很难在硅基底实现硅纳米线阵列的可控生长。近年来,Peng等人报道的金属辅助催化化学腐蚀法由于可以克服上述缺点而备受关注。在金属催化化学腐蚀法中可以通过控制腐蚀液组分及腐蚀时间实现对硅纳米线的直径、长度、晶向及孔隙率等参数的调控。本论文采用金属催化化学腐蚀的方法实现硅纳米线阵列腐蚀方向的控制,并提出相关理论模型,系统研究腐蚀过程中硅纳米线表面形态,最后在腐蚀得到的硅纳米线阵列顶端自组装形成银纳米颗粒,研究该基底的拉曼增强效应等,主要研究工作如下:
     (1)采用金属辅助催化化学腐蚀法制备硅纳米线阵列。硅纳米线表面自然生成一层无定型的硅氧化物,该壳层无定型SiOx与芯部单晶硅纳米线的晶体结构不完全一致,导致在Si/SiOx界面处产生应力。通过研究发现:硅纳米线表面的Si/SiOx界面处的缺陷类型主要为Pb0型,室温下PL谱中蓝峰407nm(3ev)和红峰656nm(1.9ev)处光致发光峰主要来自于Si/SiOx界面中氧缺陷及氧空位缺陷。通过降低腐蚀速率及硅纳米线表面改性等方式可以有效减小Si/SiOx界面处的缺陷浓度。
     (2)硅纳米线阵列腐蚀方向的控制及相关理论模型。采用三种常见N型Si(111)、Si(110)、Si(100)作为腐蚀基底,在硅基片上镀上不同长径比的银催化剂颗粒,再利用金属辅助催化法制备硅纳米线阵列。实验结果表明:Si(111)、Si(110)呈现各向异性的腐蚀行为,而Si(100)硅基底的腐蚀方向一直沿着垂直于硅片的方向腐蚀。在实验基础上,我们提出了硅纳米线阵列腐蚀模型。我们认为:金属辅助催化化学腐蚀中同时存在径向与侧向腐蚀行为,当催化剂颗粒长径比较大时侧向腐蚀尤为明显。因此,我们通过调节银催化剂颗粒的长径比可以实现在Si基底上制备与基底保持不同方向的硅纳米线阵列,甚至可以实现在硅基底上制备硅纳米多重“折线”。
     (3)硅基表面拉曼增强基底。通过调节银纳米颗粒与HAuCl4浓度实现在银颗粒上自组装金纳米结构,并用此基底材料实现了拉曼增强。实验结果表明:在光滑的银纳米颗粒上组装一定数目的金纳米颗粒的基底具有最强的拉曼增强效应,而银纳米颗粒上包裹金纳米层的核壳结构的基底显示最弱的拉曼增强效应。
     通过本文的研究,我们初步揭示了金属催化化学腐蚀法制备硅线的各向异性腐蚀机理及硅线表面态结构,并制备了基于硅线阵列的拉曼增强基底。在今后的研究工作中,我们将进一步探究硅线表面态结构对其物理性能的影响并拓展硅线的应用领域。
Due to the microstructure and quantum confinement, Silicon nanowire arrays have received intensive interests in recent years for their unique electrical and optical properties and potential for device application as solar cell, biosensors, field emission device and lithium-ion battery. Until now, there have been various methods for synthesizing silicon nanowires (SiNWs), such as laser ablation, chemical vapor deposition, thermal evaporation, molecular beam epitaxy. However, these growth process complicated in fabrication and costly in preparation procedures. It is difficult to realize controlled fabrication of silicon nanowire arrays with controllable crystallographic orientation to the substrate surface. Recently, Peng et al. have successfully prepared large-area oriented SiNWs array on silicon utilizing metal-assisted electroless etching method(MacEtch). MacEtch method enables control of various parameters (e.g., diameter, length, crystallographic orientation, and porosity) of SiNWs by adjusting the etchant concentration and etching time. Lager-area uniform SiNW array were prepared by MacEtch. We put forward the related theoretical model to explain the change of etching direction in MacEtch process. The surface state of SiNWs was also discussed in detail. SiNWs arrays coated with Ag nanoparticles act as efficient surface-enhanced Raman scattering (SERS) substrate, which have exhibited distinct surface-enhanced Raman scattering. The main contents are as follows:
     (1) SiNWs arrays have been fabricated by a metal-assisted chemical etching method. A layer of amorphous shell of SiOx was naturally generated on the surfaces of SiNWs arrays. The shell of amorphous SiOx and the core of the SiNWs show lattice mismatch, which resulted in the tensile stress at the Si/SiOx interface of SiNWs. The Si dangling bond interface center Pbo is the prominent defect at Si/SiOx interface. The surface modification with copper nanoparticles can decrease the concentration of Pbo centers on the surfaces of SiNWs. Photoluminescence (PL) spectra showed that bule peak at407nm (3ev) and red peak at656nm (1.9ev), which were mainly come from oxygen vacancies and oxygen deficiency at Si/SiOx interface.
     (2) Three types of Si wafers, which were n-type (100), n-type (110) Si, n-type (111) Si, have been used as starting wafers. Ag nanoparticles with different Length/Radius ratio was deposited on silicon wafer surfaces. Our experiments indicated that the Length/Radius ratio of Ag catalysts show different etching behavior on three types of Si substrates. The etching directions of (110) and (111) Si substrates are found to be influenced by the Length/Radius ratio of Ag catalysts, whereases the metal-assisted etching direction of (100)Si substrate was found to be vertical to the surface of (100)Si substrate. On the basis of morphology-dependent etching, we concluded that the radial and lateral corrosion behavior are coexist during the process of metal-assisted chemical etching, especially as Ag catalysts with huge Length/Radius ratio. The direction of the SiNWs arrays relative to the Si substrate can been controlled by adjusting the Length/Radius ratio of Ag catalysts, and with this way we can also achieved multiple zigzag silicon nanowires.
     (3) A simple and cost-effective chemical method was introduced to assemble Au nanoparticles on smooth Ag spheres for realizing SERS enhancement by the replacement reaction between chloroauric acid and Ag spheres. In addition, the Ag-Au core-shell spheres were fabricated when a certain amount of chloroauric acid was used in the reaction solution. Ag particles decorated with small Au nanoparticles demonstrated the strongest SERS enhancement, while Ag-Au core-shell spheres showed the weakest enhancement.
     In our study, we revealed the mechanism of anisotropic etching behavior in MacEtch process and made a detailed study about surface states of silicon nanowires. SERS substrates were prepared with SiNW arrays. In future work, we would expand the application fields of SiNW arrays and make the detailed study of the effect of surface states on the physical properties of SiNW arrays.
引文
[1]Peng K Q, Lee S T, Silicon Nanowires for Photovoltaic Solar Energy Conversion [J] Advanced Materials.,2011,23(2),198-215.
    [2]Peng K Q, Wang X, Wu X L, Lee S T, Platinum Nanoparticle Decorated Silicon Nanowires for Efficient Solar Energy Conversion [J] Nano Lett.,2009,9(11), 3704-3709.
    [3]Shu Q K, Wei J Q, Wang K L, et al. Hybrid Heterojunction and Photoelectrochemistry Solar Cell Based on Silicon Nanowires and Double-Walled Carbon Nanotubes [J] Nano Lett.,2009,9(12),4338-4342.
    [4]Sivakov V A, Pecz B, Berger A, et al. Realization of Vertical and Zigzag Single Crystalline Silicon Nanowire Architectures [J] J. Phys. Chem. C.,2010,114 (9), 3798-3803.
    [5]Ilwhan Oh, Joohong Kye, Seongpil H, Enhanced Photoelectrochemical Hydrogen Production from Silicon Nanowire Array Photocathode [J] Nano Lett.,2012,12(1), 298-302.
    [6]Li Z, Chen Y, Li X, Kamins T I, Nauka K, et al. Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires [J] Nano Lett.,2004,4(2),245-247.
    [7]Han X M, Wang H, Ou X M, Zhang X H, Highly sensitive, reproducible, and stable SERS sensors based on well-controlled silver nanoparticle-decorated silicon nanowire building blocks [J] J. Mater. Chem.,2012,22,14127-14132.
    [8]Su S, He Y, Song S P, Li D, et al. A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity [J] Nanoscale., 2010,2,1704-1707.
    [9]Su S, Wu W H, Gao J M, Lu J X, Fan C H, Nanomaterials-based sensors for applications in environmental monitoring [J] J. Mater. Chem.,2012,22, 18101-18110.
    [10]Xuan P. A. Gao, Zheng G F, Charles M. Lieber, Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors [J] Nano Lett.,2010,10 (2), 547-552.
    [11]Zeng Y F, Wu H C, Sheng P S, et al. Stacked Silicon Nanowires with Improved Field Enhancement Factor [J] ACS Appl. Mater. Interfaces.,2010,2 (2), 331-334.
    [12]Chang T H, Panda K, Panigrahi B K, et al. Electrophoresis of Nanodiamond on the Growth of Ultrananocrystalline Diamond Films on Silicon Nanowires and the Enhancement of the Electron Field Emission Properties [J] J. Phys. Chem. C., 2012,116 (37),19867-19876.
    [13]Rami R D, Deodatta R S, Fatiha B B, et al. Vertical arrays of SiNWs-ZnO nanostructures as high performance electron field emitters [J] J. Mater. Chem., 2012,22,22922-22928.
    [14]Vinayak S K, Bhaskar R S, Ajay K, et al. A novel catalyst-free synthesis of vertically aligned silicon nanowire-carbon nanotube heterojunction arrays for high performance electron field emitters [J] Chem. Commun.,2011,47, 7785-7787.
    [15]Chueh Y L, Chou L J, Cheng S L, Synthesis of taperlike Si nanowires with strong field emission [J] Appl. Phys. Lett.,2005,86,133112-3.
    [16]Liu N, Hu L B, Matthew T, et al. Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries [J] ACS Nano.,2011,5(8),6487-6493.
    [17]Wang B, Li X L, Zhang X F, Luo B, et al. Adaptable Silicon-Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes [J] ACS Nano.,2013,7(2),1437-1445.
    [18]Candace K C, Reken N P, Michael J, et al, Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J] ACS Nano.,2010,4(3),1443-1450.
    [19]Zhu J,Gladden C, Liu N, et al. Nanoporous silicon networks as anodes for lithium ion batteries [J] Phys. Chem. Chem. Phys.,2013,15,440-443.
    [20]Fan Y, Huang K, Zhang Q, et al. Novel silicon-nickel cone arrays for high performance LIB anodes [J] J. Mater. Chem.,2012,22,20870-20873.
    [21]A.G. Cullis, L.T. Canham, P.D.J. Calcott, The structural and luminescence properties of porous silicon [J] J. Appl. Phys.,1997,82,909-965.
    [22]Cui Y, Duan X F, Hu J T,et al. Doping and Electrical Transport in Silicon Nanowires [J] J. Phys. Chem. B.,2000,104 (22),5213-5216.
    [23]Iftikhar A, Michael F, Xia Y D,Hou X H, et al, Fe-Assisted Synthesis of Si Nanowires [J] J. Phys. Chem. C.,2009,113 (4),1286-1292.
    [24]Miao R, Mu L X, Zhang H Y,et al, Facile Method for Modification of the Silicon Nanowires and Its Application in Fabrication of pH-Sensitive Chips [J] ACS Appl. Mater. Interfaces,2013,5 (5), pp 1741-1746.
    [25]Hong K H, Kim J, Lee S H, et al. Strain-Driven Electronic Band Structure Modulation of Si Nanowires [J] Nano Lett.,2008,8 (5),1335-1340.
    [26]Ng M F, Shen L, Zhou L P, Yang S P, et al, Geometry Dependent I-V Characteristics of Silicon Nanowires [J] Nano Lett.,2008,8(11),3662-3667.
    [27]Luo L B, Yang X B, Liang F X, et al. Surface Defects-Induced p-type Conduction of Silicon Nanowires [J] J. Phys. Chem. C.,2011,115 (38),18453-18458.
    [28]Baumer A, Stutzmann M, Brandt M S, Lee S T, Paramagnetic defects of silicon Nanowires [J] Appl. Phys. Lett.,2004,85,943-945.
    [29]Sun X H, Peng H Y, Lee S T, Surface reactivity of Si nanowires [J] J. Appl. Phys.,2001,89(11),6396-6399.
    [30]Li C P, Sun X H, Wong N B, Lee C S, Lee S T, Silicon Nanowires Wrapped with Au Film [J] J. Phys. Chem. B.,2002,106,6980-6984.
    [31]Liu B Z, Wang Y F, Dilts S, et al. Silicidation of Silicon Nanowires by Platinum [J] Nano Lett.,2007,7(3),818-824.
    [32]Yang L,Lin H Y, Wang T, Ye S Y, et al. Tellurium-modified silicon nanowires with a large negative temperature coefficient of resistance [J] Appl. Phys. Lett., 2012,101,133111-3.
    [34]Hochbaum A I, Fan R, He R R, Yang P D, Controlled Growth of Si Nanowire Arrays for Device Integration [J] Nano Letters.,2005,5(3),457-460.
    [35]Kawashima T, Mizutani T, Masuda H, et al. Initial Stage of Vapor-Liquid-Solid Growth of Si Nanowires [J] J. Phys. Chem. C.,2008,112 (44),17121-17126.
    [36]Wang Y F, Lew K K, Ho T T, et al, Use of Phosphine as an n-Type Dopant Source for Vapor-Liquid-Solid Growth of Silicon Nanowires [J] Nano Lett., 2005,5(11),2139-2143.
    [37]Dupre L, Buttard D, Leclere C, et al. Gold Contamination in VLS-Grown Si Nanowires:Multiwavelength Anomalous Diffraction Investigations [J] Chem. Mater.,2012,24 (23),4511-4516.
    [38]Li Z Z,Baca J, Wu J, In situ switch of boron nanowire growth mode from vapor-liquid-solid to oxide-assisted growth [J] Appl. Phys. Lett.,2007,92, 113104-3.
    [39]Chang J B, Liu J Z, Yan P X, et al.Ultrafast growth of single-crystalline Si nanowires [J] Mater. Lett,2006,60,2125-2128.
    [40]Joshi R K, Schneider J J, Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality [J] Chem. Soc. Rev.,2012,41,5285-5312.
    [41]Chen L J, Silicon nanowires:the key building block for future electronic devices [J] J. Mater. Chem.,2007,17,4639-4643.
    [42]Zhang R Q, Lifshitz Y, Lee S T, et al. Oxide-Assisted Growth of Semiconducting Nanowires [J] Adv. Mater,2003,15,635-640.
    [43]Han X L, Larrieu G, Dubois E, Realization of Vertical Silicon Nanowire Networks with an Ultra High Density Using a Top-Down Approach [J] J. Nanosci. Nanotechnol.,2010,10,1-5.
    [44]Lee D H, Kim Y K, Doerk G S, et al. Strategies for controlling Si nanowire formation during Au-assisted electroless etching [J] J. Mater. Chem.,2011,21, 10359-10363.
    [45]Kim Y K, Tsao A, Lee D H, et al. Solvent-induced formation of unidirectionally curved and tilted Si nanowires during metal-assisted chemical etching [J] J. Mater. Chem. C.,2013,1,220-224
    [46]Bai F, Huang Z F, Porosification-Induced Back-Bond Weakening in Chemical Etching of n-Si(111) [J] J. Phys. Chem. C.,2013,117 (5),2203-2209.
    [47]Kim J K, Han H, Kim Y H, et al. Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires [J] ACS Nano.,2011,5 (4), 3222-3229.
    [48]To W K, Him C, Tsang, Li H H, Fabrication of n-Type Mesoporous Silicon Nanowires by One-Step Etching [J] Nano Lett.,2011,11 (12),5252-5258.
    [49]Zhang M L, Peng K Q, Fan X, et al. Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching [J] J. Phys. Chem. C.,2008,112 (12),4444-4450.
    [50]Peng K Q, Lu A J, Zhang R Q, Lee S T, Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching [J] Adv. Funct. Mater.,2008,18, 3026-3035.
    [51]Huang Z P, Shimizu T, Senz S, Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred <100>Etching Directions [J] Nano Letters.,2009,9(7),2519-2525.
    [52]Lee C.L, Tsujino K, Kanda Y, Ikeda S, Matsumura M, Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts [J] J.Mater. Chem.,2008,18,1015-1020.
    [53]Nishioka K, Sueto T, Saito N, Formation of antireflection nanostructure for silicon solar cells using catalysis of single nano-sized silver particle. [J] Appl. Surf. Sci., 2009,255,9504-9507.
    [54]Chattopadhyay S, Li X L, Bohn P W,In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching [J] J. Appl. Phys.,2002,91,6134-6140.
    [55]Li X, Bohn P W, Metal-assisted chemical etching in HF/H2O2 produces porous silicon[J] Appl. Phys. Lett.,2000,77,2572-2574.
    [56]Hildreth O J, Lin W, Wong C P, Effect of Catalyst Shape and Etchant Composition on Etching Direction in Metal-Assisted Chemical Etching of Silicon to Fabricate 3D Nanostructures [J] ACS Nano.,2009,3,4033-4042.
    [57]Huang Z P. Geyer N, Werner P, Metal-Assisted Chemical Etching of Silicon:A Review [J] Adv. Mater.,2011,23,285-308.
    [58]Peng K Q, Fang H, Hu J J, Wu Y, Zhu J, Lee S T, Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution [J] Chem. Eur. J.,2006,12,7942-7947.
    [59]Yuan G D, Mitdank R, Mogilatenko A, Porous Nanostructures and Thermoelectric Power Measurement ofElectro-Less Etched Black Silicon [J] J. Phys. Chem. C., 2012,116(25),13767-13773
    [60]Sun X Z, Lin L H, Li Z C, et al. Fabrication of silver-coated silicon nanowire arrays for surface-enhanced Raman scattering by galvanic displacement processes [J] Applied Surface Science.,2009,256,916-920.
    [61]Megouda N, Douani R, Hadjersi T, et al. Formation of aligned silicon nanowire on silicon by electroless etching in HF solution [J] Journal of Luminescence.,2009, 129,1750-1753.
    [62]Zhu M G,Chen X J, Wang Z L,et al.Structural and optical characteristics of silicon nanowires fabricated by wet chemical etching [J] Chemical Physics Letters., 2011,511,106-109.
    [63]Goldberger J, Hochbaum A I, Fan R, Yang P D, Silicon Vertically Integrated Nanowire Field Effect Transistors [J] Nano Lett.,2006,6(5),973-977.
    [64]Fang H, Li X D, Song S, Xu Y, Zhu J, Fabrication of slantingly-aligned Silicon nanowire arrays for solar cell applications [J] Nanotechnology.,2008,19, 255703-255709.
    [65]Chen H, Wang H, Zhang X H, Lee C S, Lee S T, Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles [J] Nano Lett.,2010,10,864-868.
    [66]Huang Z P, Geyer N, Liu L F, Li M Y, Zhong P, Metal-assisted electrochemical etching of silicon [J] Nanotechnology.,2010,21,465301-465306.
    [67]Peng K Q, Xu Y, Wu Y, Yan Y J, Lee S T, Zhu J, Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications [J] small.,2005,1(11), 1062-1067.
    [68]Zhang M L, Fan X, Zhou H W, et al. A High-Efficiency Surface-Enhanced Raman Scattering Substrate Based on Silicon Nanowires Array Decorated with Silver Nanoparticles [J] J. Phys. Chem. C.,2010,114 (5),1969-1975.
    [69]Wang X T, Shi W S, She G W, et al. Using Si and Ge Nanostructures as Substrates for Surface-Enhanced Raman Scattering Based on Photoinduced Charge Transfer Mechanism [J]J. Am. Chem. Soc.,2011,133 (41),16518-16523.
    [70]Peng M F, Gao J, Zhang P P, et al. Reductive Self-Assembling of Ag Nanoparticles on Germanium Nanowires and Their Application in Ultrasensitive Surface-Enhanced Raman Spectroscopy [J] Chem. Mater.,2011,23 (14), 3296-3301.
    [71]Wang X T, Shi W S, She G W, Mu L W, Lee S T, High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides [J] Appl. Phys. Lett., 2010,96,053104-3.
    [72]Fleischmann M, Hendra P J, McQuillan A J, Raman spectra of pyridine adsorbed at a silver electrode [J] Chem. Phys. Lett.,1974,26,163-166.
    [73]Jeanmaire D L, Van Duyne R P, Surface Raman Electrochemistry. Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode [J] J. Electroanal. Chem.,1977,84,1-20.
    [74]Chang R K, Furtak T E. Surface Enhanced Raman Scattering, New York:Plenum Press,1982.
    [75]Kneipp K,Wang Y, Kneipp H, et al, Single molecule detection using Surface enhanced Raman scattering(SERS),[J] Phys. Rev.Lett.,1997,78(9), 1667-1670.
    [76]Nie S,Emory S. R, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,[J] Science.,1997,275,1102-1106.
    [77]Weaver M J, Zou S Z, Chan H,The new interfacial ubiquity of surface-enhanced Raman spectroscopy, [J] Anal. Chem.,2000,72(1),38A-47A.
    [78]Otto A, The chemical (electronic) contribution to surface-enhanced Raman scattering[J] J. Raman Spectrosc.,2005,36,497-509.
    [79]Moskovits M, Surface-enhanced spectroscopy [J] Rev. Mod. Phys.,1985,57, 783-826.
    [80]Otto A, Mrozek I, Grabhorn H, et al, Surface-Enhanced Raman-Scattering [J] J.Phys:Condens. Matter.,1992,4,1143-1212.
    [81]Jensen L, Aikens C M, Schatz G C, Electronic structure methods for studying surface-enhanced Raman scattering [J] Chem. Soc. Rev.,2008,37,1061-1073.
    [82]Frederick W K, Richard P, Van D, Theory of Raman scattering by molecules adsorbed on electrode surfaces [J] J Chem Phys.,1978,69,4472-4481.
    [83]Efrima S, Metiu H, Classical theory of light scattering by an adsorbed molecule [J]J Chem Phys.,1979,70,1602-1613.
    [84]King F W, Van Duyne R P, Schatz G C, Theory of Raman scattering by molecules adsorbed on electrode surfaces [J] J Chem Phys.,1978,69,4472-4481.
    [85]Sibblad M S, Cotton C G, Reduction of Cytochrome c by Halide-Modified, Laser-Ablated Silver Colloids [J] The Journal of Physical Chemistry.,1996, 100(11),4672-4678.
    [86]Kelly K L, Coronado E, Zhao L L, Schatz G C, The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment [J] J. Phys. Chem. B.,2003,107(3),668-677.
    [87]Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and Biophysics [J] J. Phys.:Condens.,2002,14,597-624.
    [88]Etchegoin P G, Ru E L, Basic Electromagnetic Theory of SERS. Weinheim: Wiley & KGaA,2010.
    [89]Bohren C F, Huffman D R, Absorption and scattering of light by small particles, New York:Wiley & Sons,1983.
    [90]Wang Y L, Zou X Q, Ren W, et al. Effect of Silver Nanoplates on Raman Spectra of p-Aminothiophenol Assembled on Smooth Macroscopic Gold and Silver Surface [J] J. Phys. Chem. C.,2007,111(8),3259-3265.
    [91]Kliewer K L, Fuchs R. Anomalous Skin Effect for Specular Electron Scattering and Optical Experiments at Non-Normal Angles of Incidence [J] Physics Review., 1968,172,607-624.
    [92]Seki H, Philpott M R, Surface enhanced Raman scattering by pyridine on silver island films in an ultrahigh vacuum [J] J. Chem. Phys.,1980,73,5376-5380.
    [93]Furtak T E, Roy D, Nature of the Active Site in Surface-Enhanced Raman Scattering [J] Phys. Rev. Lett.,1983,50,1301-1304.
    [94]Sanda P N, Warlaumont J M, Demuth J E, et al. Surface-Enchanced Raman Scattering from Pyridine on Ag(111) [J] Phys. Rev. Lett.,1980,45,1519-1523.
    [95]Frank J A, Charge transfer effects in surface-enhanced raman scattering [J] Journal Of Chemical Physics.,1982,77(11),5302-5314.
    [96]Campion A, Kambhampati P, Surface-enhanced Raman scattering [J] Chem. Soc. Rev.,199827,241-250.
    [97]Lombardi J R, Birke R L, Sanchez L A, Bernard I, Sun S C, The Effect Of Molecular Structure on Voltage Induced Shifts of Charge Transfer Excitation in Surface Enhanced Raman Scattering [J] Chem. Phys. Lett.,1984,104,240-246.
    [98]Andrea T, Franklin K, Christian H, Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy [J] Nano Lett.,2003,3,1229-1233.
    [99]Lu Y, Liu G L, Lee L P, High-Density Silver Nanoparticle Film with Temperature-Controllable Interparticle Spacing for a Tunable Surface Enhanced Raman Scattering Substrate [J] Nano Lett.,2005,5,5-9.
    [100]Fang C, Agarwal A, Widjaja E, Metallization of Silicon Nanowires and SERS Response from a Single Metallized Nanowire [J] Chem. Mater.,2009,21, 3542-3548.
    [101]Chung K H, Hsiao L Y, Lin Y S, Morphology and electrochemical behavior of Ag-Cu nanoparticle-doped amalgams [J] Acta Biomaterialia.,2008,4,717-724.
    [102]Sun X Z, Lin L H, Li Z C, et al. Novel Ag-Cu substrates for surface-enhanced Raman scattering [J] Materials Letters.,2009,63,2306-2308.
    [103]Yoshitaka S, Baku T, Hideki N, et al. Observation of a Small Number of Molecules at a Metal Nanogap Arrayed on a Solid Surface Using Surface-Enhanced Raman Scattering [J]J. AM. CHEM. SOC.,2007,129, 1658-1662.
    [104]Leng W N, Yasseri A A, Sharma S, et al. Silver Nanocrystal-Modified Silicon Nanowires as Substrates for Surface-Enhanced Raman and Hyper-Raman Scattering [J] Anal. Chem.,2006,78,6279-6282
    [105]Wang Y L, Chen H J. ErkangW. Facile fabrication of gold nanoparticle arrays for efficient surface-enhanced Raman scattering [J] Nanotechnology.,2008,19, 105604-5.
    [106]Samuel S R, Anant K S, Dulal S, et al. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene [J] J. AM. CHEM. SOC.2009,131,13806-13812.
    [107]Kimberly N H, Benjamin G J, Gustavo E. S, et al. Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells [J] J. AM. CHEM. SOC.,2008,130,16592-16600
    [108]Cheng C W,Yan B, Wong S M, et al. Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays [J] Applied Materials&interfaces,2010,2,1824-1828.
    [109]Wang H H, Liu C Y, Wu S B, et al. Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps [J] Adv. Mater. 2006,18,491-495.[110] Zhang R, Xu B B, Liu X Q, et al.Highly efficient SERS test strips [J] Chem. Commun.,2012,48,5913-5915.
    [111]Tan Y W, Gu J J, Xu L H, et al. High-Density Hotspots Engineered by Naturally Piled-Up Subwavelength Structures in Three-Dimensional Copper Butterfl y Wing Scales for Surface-Enhanced Raman Scattering Detection [J] Adv. Funct. Mater.,2012,22,1578-1585.
    [112]Oh Y J, Jeong K H, Glass Nanopillar Arrays with Nanogap-Rich Silver Nanoislands for Highly Intense Surface Enhanced Raman Scattering [J] Adv. Mater.,2012,24,2234-2237.
    [113]Huang J F, Vongehr S,Tang S, et al. Ag Dendrite-Based Au/Ag Bimetallic Nanostructures with Strongly Enhanced Catalytic Activity [J] Langmuir.,2009, 25(19),11890-11896.
    [114]Freeman R G, Michael B H, Katherine C G, et al. Ag-Clad Au Nanoparticles: Novel Aggregation, Optical, and Surface-Enhanced Raman Scattering Properties [J] J. Phys. Chem.,1996,100,718-724.
    [115]Fang J X, Du S Y, Lebedkin S,et al.Gold Mesostructures with Tailored Surface Topography and Their Self-Assembly Arrays for Surface-Enhanced Raman Spectroscopy [J] Nano Lett.,2010,10 (12),5006-5013.
    [116]Sun X Z, Lin L H, Li Z C, et al. Novel Ag-Cu substrates for surface-enhanced Raman scattering [J] Materials Letters.,2009,63 2306-2308.
    [117]Hsu S W, On K, Gao B, et al. Polyelectrolyte-Templated Synthesis of Bimetallic Nanoparticles [J] Langmuir.,2011,27(13),8494-8499.
    [118]Han H F, Fang Y, Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation [J] Appl. Phys. Lett.,2008, 92,023116-3.
    [119]Pande S,Chowdhury J, Tarasankar P, Understanding the Enhancement Mechanisms in the Surface-Enhanced Raman Spectra of the 1,10-Phenanthroline Molecule Adsorbed on a Au@Ag Bimetallic Nanocolloid [J] J. Phys. Chem. C., 2011,115(21),10497-10509.
    [120]Zhu C H, Meng G W, Huang Q, Au Hierarchical Micro/Nanotower Arrays and Their Improved SERS Effect by Ag Nanoparticle Decoration [J] Cryst. Growth Des.,2011,11 (3),748-752.
    [121]Hunyadi S E, Murphy C J, Bimetallic silver-gold nanowires:fabrication and use in surface-enhanced Raman scattering [J] J. Mater. Chem.,2006,16,3929-3935.
    [122]Zhang Y F, Tang Y H, Peng H Y, et al. Diameter modification of silicon nanowires by ambient gas [J] Appl. Phys. Lett.,1999,75,1842-3.
    [123]Yu D P, Lee C S, Bello I, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature [J] Solid State Communications.,1998,105, 403-407.
    [124]Zhang Y F, Tang Y H, Lam C, et al.Bulk-quantity Si nanowires synthesized by SiO sublimation [J] Journal of Crystal Growth.,2000,212,115-118.
    [125]Zeng X B, Xu Y Y, Zhang S B, et al. Silicon nanowires grown on a pre-annealed Si substrate [J] Journal of Crystal Growth.,2003,247,13-16.
    [126]陆家和,陈长彦.现代分析技术[M].北京:清华大学出版社,1995.
    [127]Fernando C, Manuel C, Effect of Carrier Concentration on the Raman Frequencies of Si and Ge [J] Phys. Rev. B.,1972,5,1440-1454.
    [128]肖清华,屠海令。Si/SiGe异质结构的硅盖层中应变对Raman谱特性的影响[J]光谱学与光谱分析,2005,25,719-722.
    [129]Wang R P, Zhou G W, Liu Y L, et al. Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects [J] Phys. Rev. B.,2000, 61,16827-16832.
    [130]张立德,牟季美,纳米材料和纳米结构[M]北京:科学出版社,2001.
    []31]唐元洪,硅纳米线及硅纳米管[M]北京:化学工业出版社,2007.
    [132]Kanemitsu Y, Efficient indirect-exciton luminescence in silicon nanowires [J] Physical E,2003,17,183-184.
    [133]Qi J F, White J M, Belcher A M, et al. Optical spectroscopy of silicon nanowires [J] Chem Phys Lett,2003,372,763-766.
    [134]Gupta R, Xiong Q, Adu C K, et al. Laser-Induced Fano Resonance Scattering in Silicon Nanowires [J] Nano Letters.,2003,3 (5),627-631.
    [135]Fernando C, Manuel C, Effect of Carrier Concentration on the Raman Frequencies of Si and Ge [J] Phys. Rev. B.,1972,5,1440-1454.
    [136]Sevak K, Konstantinos P, Ken O, et al. Elastic Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires [J] J. Phys. Chem. C, 2013,117(8),4219-4226.
    [137]Poindexter E H, Caplan P J, Bruce E D, et al. Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers [J] J. Appl.Phys.,1981,52,879-886.
    [138]Stesmans A, Gorp G V, Observation of dipolar interactions between Pbo defects at the (111) Si/SiO2 interface [J] Phys. Rev. B.,1990,42,3765-3768.
    [139]Helms C R, Poindexter E H, The Silicon-Silicon Dioxide System:Its Microstructure and Imperfections [J] Reports on Progress in Physics., 1994,57,791-852.
    [140]Kirk C T, Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica [J] Phys. Rev. B.,1988,38,1255-1273.
    [141]Canham L T, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J] Appl. Phys. Lett.,1990,57,1046-1048.
    [142]Koch F, Koch V P, Muschik T, The luminescence of porous Si:the case for the case for the surface state mechanism [J] J. Lumin.,1993,57,271-281.
    [143]Bai Z G, Yu D P, Wang J J, et al. Synthesis and photoluminescence properties of semiconductor nanowires [J] Mater Sci Eng B,2000,72,117-120.
    [144]彭英才,傅广生。Si基纳米发光材料的研究进展[J]科学通报,2002,47,721-730.
    [145]Munekuni S, Yamanaka T, Shimogaichi Y, et al.Various types of nonbridging oxygen hole center in high-purity silica glass [J] J. Appl. Phys.,1990,68, 1212-1217.
    [146]宋海智,鲍希茂。Si+注入热生长Si02的光致发光激发谱与光电子能谱[J]半导体学报,1997,18,820-824.
    [147]Wu C C, Wu C I, Sturm J C,et al. Surface modification of indium tin oxide by plasma treatment:An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices [J] Appl. Phys. Lett.,1997, 70,1348-1351.
    [148]Niino H, Yabe A, Surface modification and metallization of fluorocarbon polymers by excimer laser processing [J] Appl. Phys. Lett.,1993,63,3527-3530.
    [149]Sun X H, Sammynaiken R, Naftel S J, et al. Ag Nanostructures on a Silicon Nanowire Template Preparation and X-ray Absorption Fine Structure Study at the Si K-edge and Ag L3,2-edge [J] Chem. Mater.,2002,14(6),2519-2526.
    [150]Sun X H, Peng H Y, Tang Y H, et al. Surface reactivity of Si nanowires [J] J. Appl. Phys.,2001,89,6396-6401.
    [151]李鹏,马玉蓉,方容川。[J]物理学报,1998,47,124-130.
    [152]匡同春,刘正义。理化检验-物理分册[M]1997,33,21-25.
    [153]Morinaga H, Suyama M, Ohmi T J, Mechanism of Metallic Particle Growth and Metal-Induced Pitting Si wafer surface in wet chemical processing [J] Journal of the Electrochemical Society.,1994,141,2834-2841.
    [154]Xia X H, Ashruf C M A, French P J, et al. Etching and Passivation of Silicon in Alkaline Solution:A Coupled Chemical/Electrochemical System [J] J. Phys. Chem. B,2001,105 (24),5722-5729.
    [155]Garcia-Vidal F J, Pendry J B, Collective Theory for Surface Enhanced Raman Scattering Phys. Rev. Lett.1996,77,1163-1166.
    [156]Lee S J, Morrill A R, Moskovits M, Hot Spots in Silver Nanowire Bundles for Surface-Enhanced Raman Spectroscopy[J] J. Am. Chem. Soc.,2006,128 (7), 2200-2201.
    [157]Wang H, Levin C S, Halas N, Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates [J] J. Am. Chem. Soc.,2005,127(43),14992-14993.
    [158]Wang H H, Liu C Y, Wu S B, et al. Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps [J] Adv. Mater., 2006,18,491-495.
    [159]Huang Z L, Meng G W, Huang Q, et al. Improved SERS Performance from Au Nanopillar Arrays by Abridging the Pillar Tip Spacing by Ag Sputtering [J] Adv. Mater.,2010,22,4136-4139.
    [160]Duan G T, Cai W P, Luo Y Y, et al. Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering [J] Appl. Phys. Lett., 2006,89,181918-3.
    [161]Fang J X, Du S Y, Lebedkin S, et al. Gold Mesostructures with Tailored Surface Topography and Their Self-Assembly Arrays for Surface-Enhanced Raman Spectroscopy [J] Nano Lett.,2010,10(12),5006-5013.
    [162]Braun G, Lee S J, Dante M, et al. Surface-Enhanced Raman Spectroscopy for DNA Detection by Nanoparticle Assembly onto Smooth Metal Films [J] J. Am. Chem. Soc.,2007,129(20),6378-6379.
    [163]Wei H, Hao F, Huang Y Z, et al. Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems [J] Nano Lett., 2008,8(8),2497-2502.
    [164]Ye J, Shioi M, Lodewiijks K,et al. Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering [J] Appl. Phys. Lett.,2010,97,163106-3.
    [165]Gunawidjaja R, Peleshanko S, Ko H, et al. Bimetallic Nanocobs:Decorating Silver Nanowires with Gold Nanoparticles [J] Adv. Mater.,2008,20,1544-1549.
    [165]Sun Y G, Xia Y N, Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium [J] J. Am. Chem. Soc.,2004,126(12),3892-3901.
    [166]Felidj N, Aubard J, Levi G, Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering [J] Phys. Rev. B.,2002, 65,075419-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700