污水处理厂达标外排水对受纳水体及修复植物的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济与人口的快速增加,污水排放总量也在迅速增加,为遏制其造成的生态环境污染,近年来,我国加大了城市污水与工业废水的集中处理率。排放自然水体是污水的自然归宿,也是目前我国污水最主要的出路。对于已建成的污水处理厂,其纳污水体也就是一定的。自然水体对接纳废水具有一定的稀释与净化能力,但这个稀释与净化能力是一定的。随着污水排放量的增加,会加剧废水对纳污水体带来冲击和负面影响。而且对于作为纳污水体的河流,在修复过程中,其接纳废水量必然会对修复植物的生长产生影响。因此,研究污水处理厂的废水排放量对受纳水体本身和其修复植物的影响,对水环境的保护和水体修复,具有重要的理论与实际意义。
     本文通过对自然水体、废水排放量等条件的模拟,通过大量实验,取得以下重要结论:
     污水处理厂外排水对受纳水体中的有机物有明显的影响。实验结果表明,水中有机物与叶绿素都随接纳水量而增加,COD除3#比对照低32%外,2、4和5#中COD分别比对照高93%、46%和46%,叶绿素除3#比对照低51.7%外,2、4和5#中叶绿素分别比对照高129.9%、106.5%和81.8%。这说明排水促进了水体藻类初级生产者的演替过程;也说明浮游植物是水体COD的主要贡献者。
     外排水对受纳水体氮磷也有显著的影响。总氮随接纳水量的增加而显著增加,与总氮相比,而水中总磷与接纳废水量的关系并不显著。按照湖泊N、P限制性因素的Redfield比值判断,对照体系1#的氮磷相对平衡,而接纳水量最少的2#系统N起限制作用,随着接纳水量的进一步增加,磷则成为主要的限制性因素。
     外排水对受纳水体溶解性无机盐的积累贡献明显。污水处理厂达标外排废水能显著地增加受纳水体的溶解性盐,可能会导致水生生态系统的退化或增加水体修复的难度,这在干旱地区的水体可能会更加明显。
     外排水对受纳水体底泥有机质的影响也十分显著,接纳水中的有机物水体中有机物的沉降与积聚,反而促进了底泥中有机物的矿质化过程。
     在用修复植物修复已退化的水体时,作为污水处理厂尾水的受纳水体,采用伊乐藻作为修复植物,可以取得比采用水网藻作为修复植物更好的修复效果。一定量的尾水会对植物的生长环境产生某种胁迫作用,而伊乐藻对这种胁迫的抵抗能力较强,在胁迫条件下,也可以较好的生存。
     在设计污水处理厂及选址时,最好能将污水处理厂废水的排放量与受纳水体水量的比例控制在1:100以下。在该比例条件下,尾水对受纳水体及其修复植物影响较小,可将纳污水体的COD、TN、TP控制在一个相对较低的水平上,且修复植物受到的环境胁迫也较少,能够很好的生长。
As China's economy and the population rapid increased, the effluent is also increase greatly. In order to curb it ecological and environmental pollution, our country has increased the rate of the city sewage and industrial wastewater treatment in recent years. Emissions to natural water are the natural destination of effluent, and it is the most important way in our country.
     To the sewage treatment plant which have been completed, and its receiving waters are definite. Natural waters have the ability to dilution and purification the wastewater what it accepted, but this capacity is limited. With the effluents increased, it will aggravate the effluent to receiving water. And it also have impact on the repair process, the effluent may have an impact on the growth of plants. Therefore, Study on the effect of effluent met the standard from Sewage Treatment Plant on the receiving waters and subsequent repair plant, which has important theoretical and practical significance.
     This article analyzes factors like natural water, the amount of effluent and et, we obtained following important conclusion:
     The effect of effluent on organic matter content of the receiving water was very significant. The results show that organic matter and chlorophylls in the water increases along with the accept water. Compared with the control system, the COD of the 3# system lowed 32%, 2 #、4 #、5 # system COD increased 93% ,46% and 46% ; The chlorophylls of 3# system lowed 51.7%,2 #、4 # and 5 # system chlorophylls increased 129.9%、106.5% and 81.8%; It means that the effluent accelerate the succession of primary producers; this also shows that the algae are the main components to COD.
     With the effluent increasing, the total nitrogen in the water increased greatly, but the significant correlation was not found between total phosphorus and drainage water. According to the Redfield ratio, nitrogen and phosphorus in the control system 1# keep relative balance, while nitrogen in the control system 2# which has the fewest receiving water plays the role of restriction. With a further increase in the receiving water, phosphorus became a major limiting factor.
     The effect of effluent on TSS of the receiving water was very significant too. The effluent can raise the soluble inorganic salt notably; it may contribute to the accumulation of inorganic salts in the natural water, and may result in aquatic ecosystem degradation or increase the difficulty of repairing process, which may become more pronounced in arid areas.
     The effect of effluent on COD、TN、TP in surface sediment of the receiving water was very significant . the effluent dose not cause accumulation and settlement of COD、TN and TP in the sediment, but promote mineralization the organic matter mineral in the sediment and nitrogen and phosphorus released .
     When restoration of degraded river with plant, as the receiving waters of sewage treatment plants, used the waterweed as a repair plants, can be achieved a better effect than Hyd-rodictyon . A certain amount of effluent can have some form of coercion on the growth of plants, waterweed have stronger resistance to this stress and survive better.
     When addressed or design the sewage treatment plant, it is best to controlle the ratio of effluent and receiving water volume around 1:100, In the proportion, the effect of effluent met the standard from Sewage Treatment Plant on the receiving waters and subsequent repair plant are relatively small, COD, TN, TP of the receiving water can control at a relatively low level, and repair plant can survived well.
引文
[1]邵耀锋,韦昌健.膜法技术在复杂水质处理上的应用.水工业市场. 2008, 6: 24-28.
    [2]阎水玉,王祥荣.城市河流在城市生态建设中的意义和应用方法.城市环境与城市生态,1999, 12:36-38.
    [3]张自杰.排水工程(第四版).中国建筑工业出版社.1999.
    [4]上海市政工程设计研究院主编.给水排水设计手册.北京:中国建筑工业出版社,2000.
    [5]马梅,王子健.利用主动和被动采样技术和发光菌毒性测试评价水中有机污染物的毒性.环境科学学报. 2007(24):685-689.
    [6]王毅,王子健,刘季昂,等.利用两种采样技术监测淮河水中的有毒有机污染物[J ] .中国环境科学,2000 ,20 (2) :168-172.
    [7]杜兵,张彭义,张祖鳞,等.北京市某典型污水处理厂中内分泌干扰物的初步调查[J ] .环境科学,2004 , 25 (1) : 114-116.
    [8]徐艳玲,程永清,秦华宇,许宜平.有机微污染物在污水处理过程中的变化研究环境污染与防治第28卷第11期2006年11月.804-806.
    [9] Taowu Ma, Xiaoqiong Wan, Zijian Wang, et al. Biomarker responses and reproductive toxicity of the effluent from a Chinese large sewage treatment plant in Japanese medaka (Oryzias latipes). Chemosphere, 2004, (59) : 281~288.
    [10] Laspidou, C S, Rittmann, BE. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 2002, 36, 2711-2720.
    [11] Aquino S F, Stuckey DC. The effect of organic and hydraulic shock loads on the production of soluble microbial products in anaerobic digesters. Water Environment Research, 2004, 76, 2628-2636.
    [12] Holakoo L, Nakhla G, Yanful E K, Bassi A S. Chelating properties and molecular weight distribution of soluble microbial products from an aerobic membrane bioreactor. Water Research, 2006. 40, 1531-1538.
    [13] Guangtuan Huang, Gang Jin, Jinghui Wu, Yongdi Liu. Effects of glucose and phenol on soluble microbial products (SMP) in sequencing batch reactor systems. International Biodeterioration & Biodegradation 2008, 62:104-108.
    [14] Namjung Jang, Xianghao Ren, Geontae Kim, Changhyo Ahn, Jaeweon Cho, In S Kim. Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse. Desalination, 2007, 202: 90-98.
    [15] Laspidou C S, Rittmann B E. Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res., 2002, 36: 1983-1992.
    [16] McSwain B S, Irvine R L, Hausner M, Wilderer P A. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol., 2005, 71:1051-1057.
    [17] Sheng, G P, Yu H Q, Li X Y. Stability of sludge flocs under shear conditions: roles of extracellular polymeric substances(EPS). Biotechnol. Bioeng., 2006, 93:1095-1102.
    [18] Benjamin S, Magbanua Jr, Bowers A R. Characterization of soluble microbial products (SMP) derived from glucose and phenol in dual substrate activated sludge bioreactors. Biotechnol. Bioeng., 2006, 93: 862-870.
    [19] Alpkvist E, Picioreanu C, van Loosdrecht, M C M, Heyden A. Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol. Bioeng., 2006, 94: 961-979.
    [20] Rappaport S M, Richard M G, Hollstein, M C, Talcott R E. Mutagenic activity in organic wastewater concentrates. Environ. Sci. Technol., 1979, 13 (8):957-961.
    [21] Ma Mei,Wang Zijian,Shang Wei,Wang Chunxia,Wang Wen Hua. Mutagenieity and acute toxicity of waters from different treatment processes in Beijing waterworks.Environmental and Science and Health,2003,35(10):88-96.
    [22]马梅,王毅,王子健.天然水体有毒有机污染物毒性监测的样品前处理方法研究.环境科学,l999,20(6):80-83.
    [23]董玉瑛,冯霄,王宗爽.发光细菌法测定有机工业废水综合毒性研究。化工环保, 2005, 25 (1) : 65– 67.
    [24] U.S.EPA (EPA-821-R-02-013). Short-term Methods for Estimation the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms.Fourth Edition,Oetober 2002.
    [25] Wang Chunxia, Wang Yi, Kiefer F, et al. Ecotoxiocological and chemical charaterization of selected treatment process effluences of municipal sewage treatment plant. Ecotoxiocology and Environmental Safety, 2003 ,56 :211-214.
    [26] Iqbal A, Mario P, Maria A S. Anguilla anguilla L. oxidative stress biomarkers: An in situ study of freshwater wetland ecosystem (Pateira de Fermentelos, Portugal). Chemosphere, 2006, 65: 952-962.
    [27] National Research Council (NRC). Compensating for wetland losses under the Clean Water Action. National Academy of Science, Washington, D C, 2001:322.
    [28] Ferat L, Pergent-Martini C, Romeo M. Assesment of the use of biomarkers in aquatic plants for the evalution of environmental quality: application to seagrasses,Aquatic Toxicology, 2003,65:187-204.
    [29] Livingstone D R. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 2001:656-666.
    [30] Almedia J A, Diniz Y S, Marques S F G, et al.. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadminum contamination. Environment International, 2002, 27:673-679.
    [31] Lafontaine D, Gagne Y, Blaise F, et al.. Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St. Lawrence ricer (Canada). Aquatic Toxicology, 2000, 50:51-71.
    [32] Vidal M L, Basseres A, Narbonne J F. Seasonal variations of pollution biomarkers in two populations of Corbicula fluminea (Muller). Comparative Biochemistry and Physiology, Part C, 2002, 131: 133-151.
    [33] Damiens G, His E, Gnassia-Barelli M, et al.. Evaluation of biomarkers in oyster larvae in natural and polluted conditions. Comparative Biochemistry and Physiology, Part C, 2004, 138:121-128.
    [34] Leinio S, Lehtonen K K. Seasonal variability in biomarkers in the bivalves Mytilus edulis and Macoma balthica from the northern Baltic Sea. ComparativeBiochemistry and Physiology, Part C, 2005, 140:408-421.
    [35] Alla A A, Mouneyrac C, Durou C, et al.. Tolerance and biomarkers as useful tools for assessing environmental quality in the Oued Souss estuary (Bay of Agadir, Morocco). Comparative Biochemistry and Physiology, Part C, 2006, 143:23-29.
    [36] Handy R D, Galloway T S, Depledge M H. A proposal for the use of biomarkers for the assessment of chronic pollution and in regulatory toxicology. Ecotoxicology, 2003, 12:331-343.
    [37]方允中,郑荣梁。自由基生物学的理论与应用。北京:科学出版社。2002:1-529.
    [38] Ahmad I, Pacheco M, Santos M A. Enzymatic and nonenzymatic antioxidants as an adaptation to phagocyte-induced damage in Anguilla anguilla L. following in situ harbaor water exposure, Ecotoxicology and environmental safety, 2004, 57:290-302.
    [39] Santos M A, Pacheco M, Ahmad I. Responses of European eel (Anguilla anguilla L.) circulating phagocytes to an in situ closed pulp mill effluent exposure and its association with organ-spcific peroxidative damage. Chemosphere, 2005, 61:267-275.
    [40]刘元元.论河流生态修复[J].水利学报,2006,37(9):1029-1037.
    [41]水环境生态修复国内外研究进展[J].中国水利,2007,11:25-27.
    [42]张展羽,卢敏,朱成立.城镇河道的水生态环境建设和保护[J].灌溉排水学报,2004,23(6): 18-20.
    [43]谭炳卿,孔令金.河流保护与管理综述[J].水资源保护,2002,3:53-57.
    [44]邢雅囡,阮晓红,赵振华.城市河道底泥疏浚深度对氮磷释放的影响[J].河海大学学报:自然科学版,2006,34(4):378-382.
    [45]李希宁,郝金之,李宏伟.国内外挖河疏浚概述[J].人民黄河,2006,28(11)60-61.
    [46]黎荣,赵新华,从月宾.城市河道环保疏浚的试验研究[J].水利水电技术,2004,35(5):19-21.
    [47]薛朝霞,蒋小欣.引水冲污治理苏州的水环境[J].中国给水排水,2002,18(10) :33-35.
    [48]熊万永.福州内河引水冲污工程的实践与认识[J].中国给水排水,2000,16(7):26-28.
    [49]周俊,王焰新.引江灌湖治理东湖污染工程方案初探[J].地质科技情报,2002 21(4):73-76.
    [50]刘延恺,陆苏.河道曝气法—适合我国国情的环境污水处理工艺[J].环境污染与防治,1994,16(1):22-25.
    [51]孙从军,张明旭.河道曝气技术在河流污染治理中的应用[J].环境保护,2001(4):12-14.
    [52]陈伟,叶舜涛,张明旭.苏州河河道曝气复氧探讨[J].给水排水,2001,27(4):7-9.
    [53]黄民生,徐亚同,戚仁海.苏州河污染支流—绥宁河生物修复试验研究[J].上海环境科学,2003,22(6):384-388.
    [54]熊万林,李玉林.人工曝气生态净化系统治理黑臭河流的原理及应用[J].四川环境,2004,23(2):34-36.
    [55]薛传东,杨浩,刘星.天然矿物材料修复富营养化水体的实验研究[J].岩石矿物学杂志,2003(4):381-385.
    [56]李玉梁,李玲.环境水力学的研究进展与发展趋势[J] .水资源保护, 2002(1):1-6 .
    [57]刘建康.高级水生生物学[M].北京:科学出版社,2000,150 - 153.
    [58]韦朝海,韦美兰.水生生态调控及水污染治理中微生物的应用[J] .应用基础与工程科学学报,1999,4:381-385.
    [59]李静会,高伟,张衡.除藻剂应急治理玄武湖蓝藻水华实验研究[J].环境污染与防治,2007(1):60-62.
    [60]尹平河,赵玲.缓释铜离子法去除海洋原甲藻赤潮生物的研究[J].环境科学,2000,21(5):12-16.
    [61]李孟.絮凝投药控制技术在黄河水处理中的应用研究[J].武汉工业大学学报,1998 20(4):38-39.
    [62]卢磊,高宝玉,许春华.聚合铝基复合絮凝剂用于城市纳污河道废水处理[J].环境科学,2007, 28(9):2035-2040.
    [63]李勇,王超.城市浅水型湖泊底泥磷释放的环境因子影响实验研究[J].江苏环境科技,2002,15(4):4-6.
    [64]余光伟,雷恒毅,刘广立.重污染感潮河道底泥释放特征及其控制技术研究[J].环境科学学报,2007,27(9):1476-1484.
    [65]郭观林,周启星,李秀颖.重金属污染土壤原位化学固定修复研究进展[J].应用生态学报,2005,16(10):1990-1996.
    [66]吉海平,陈金山.光合细菌在净化水质中的应用试验研究[J].生物工程进展,1998,18(2):29-32.
    [67]曾宇,秦松.光合细菌在水处理中的应用[J].城市环境与城市生态,2000,13(6):29-31.
    [68]井艳文,胡秀林,许志兰等.利用生物浮床技术进行水体修复研究与示范[J].北京水利,2003,6:20-22.
    [69]司友斌,包军杰,曹德菊等,香根草对复营养化水体净化效果研究[J].应用生态学报,2003,14(2):277-279.
    [70]宋海亮,吕锡武,稻森悠平.水生植物床预处理富营养化水源水中研究[J].给水排水,2004,30(8):8-12.
    [71]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59.
    [72]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-87.
    [73]杨敦,周琪.人工湿地脱氮技术的机理及应用[J].中国给水排水,2003,19(1):23-24.
    [74]刘超翔,胡洪营,李锋民等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83.
    [75]段志勇,刘超祥,施汉昌等.复合植物床式人工湿地研究[J].环境污染治理技术与设备,2002,3(8):4-7.
    [76]姜翠玲,崔广柏.湿地对农业非点源污染的去除效应[J].农业环境保护,2002,21(5):471-473.
    [77]温东辉,李璐.以有机污染为主的河流治理技术研究进展[J].生态环境,2007,16(5):1539-1545.
    [78]李孔燕,金承翔.低温季节生物栅对富营养化河水净化试验研究[J].环境科学与技术,2007, 30(10):40-41.
    [79]周勇,操家顺.生物填料在重污染河道治理中的应用研究[J].环境污染与防治, 2007,29(4):289-292.
    [80]田伟君,郝芳华,王超.仿生填料在河道内直接布设挂膜的试验研究[J].中国给水排水,2007,23(3):81-83.
    [81]韦万丽,张笑一.污水土地处理污染土壤生物修复技术研究[J].安徽农业科学,2006,34(19):5008-5008.
    [82]赵建芬,马香玲.污水慢速渗滤土地处理系统的改进试验研究[J].农业工程学报,2006,22(9):85-88 .
    [83]田世英,罗纨.用溶质运移理论评价污水土地处理系统运行的处理效果[J].农业工程学报,2006,22(6):152-156.
    [84] Robert H Kadlec , Robert L Knight , et al. Constructed Wetlands for Pollution Control [M] . USA : IWA Publishing , 2002 ,93-102.
    [85] Brix H. Do macrophytes play a role in constructed treatment wetlands [J ] . Water Science and Technology ,1997 ,35 (5) :11-17.
    [86] Drizo A. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow , using shale as a substrate [ J ] . Water Science and Technology , 1997 , 35(5) :95-102.
    [87] Hosoi Y. Field examination on reed growth , harvest and regeneration for nutrient removal [J ] . Water Science and Technology ,1998 ,38(1) :351-359
    [88]张鸿,陈光荣,吴振斌,等.两种人工湿地氮、磷净化率与细菌分布关系的初步研究[J ] .华中师范大学学报,1999 ,33 (4) :575-578.
    [89]吴振斌,成水平,贺锋,等.垂直流人工湿地设计及净化功能初探[J ] .应用生态学报,2002 ,13 (6) :715-718.
    [90]王晓月,徐清山,葛莹.人工湿地对西湖非点源的治理研究[J ] .杭州师范学院学报,2001 ,18 (6) :6-10.
    [91] Robert H Kadlec , Robert L Knight , et al. Constructed Wetlands for Pollution Control [M] . USA : IWA Publishing , 2002 ,1-6.
    [92] Fennessy M S , Gonk J K, Mitsch WJ . Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions[J ] . Eco. Eng. ,1994 ,3(4) :469-484.
    [93]吴振斌,成水平,贺锋,等.垂直流人工湿地的涉及及净化功能研究[J ] .应用生态学报,2002 ,13 (6) :715-718.
    [94]夏汉平.人工湿地处理污水的机理与效率[J ] .生态学杂志,2002 ,21 (4) :51259.
    [95]吴振斌,邱东茹,贺锋,等.水生植物对富营养化水体水质净化作用的研究[J ] .武汉植物学研究,2001 ,19 (4) :299-303.
    [96]赵晟,吴学灿,夏锋.滇池水生植物研究概述[J ] .云南环境科学,1999 ,18 (3) :428.
    [97]陈国强,刘双,王娜,等.磷对水生植物菱及睡莲叶生理活性的影响[J ] .南京师大学报,2002 ,25 (1) :71-77.
    [98] Brix H. Functions of macrophytes in constructed wetlands[J] . Sci.Technol. ,1994 ,29 ,71-78.
    [99]刘德启,李敏,朱成文,等.模拟太湖底泥疏浚对氮磷营养物释放过程的影响研究.农业环境科学学报.2005,24(3):521-525
    [100]邹少民.太湖出入湖水质评价[J].水利水电技术,1997,(2):2-5
    [101]李文朝.东太湖水生植物的促污效应与磷沉积[J].环境科学.1997,18(3):10-16
    [102]林秋奇,王朝晖.水网藻治理水体富营养化的可行性研究[J].生态学报,2001(5):814-819.
    [103]刘德启,由文辉,李敏,等.利用水网藻对微藻的抑制作用净化源水[J].中国给水排水,2004(10):14-17.
    [104]于桂兰,卢玉棋.采用烘箱直接烘干法测定生活饮用水中的溶解性总固体.中国卫生检疫杂志, 2002(12): 99-100
    [105]钱君龙,符灵敏.用过硫酸钾氧化法测定水样中的总氮、总磷[J].环境科学.1991,12(1):61-64.
    [106]陈杰,吴亦红.碱性过硫酸钾消解测定城市污泥中总氮.环境监测管理与技术.2005,2(17):35-36
    [107]赵多.总氮测定中的一点体会.中国环境监测.2001,3:41
    [108] Berman T Alkaline phosphatase and phosphorus availability in Lake Kinneret.Limnol.Oceanogr,1970,15:663-674.
    [109]关松荫等.土壤酶及其研究法.农业出版社,1986:309-313.
    [110]国家环保局.水和废水监测分析方法[M]..北京:中国环境科学出版社,1994.
    [111]城乡建设环境保护部环境保护局.环境监测分析方法..北京:中国环境科技出版社,1986.
    [112] Sinke A J C,Cornclese A A,Cappenberg T E.Phosphatase activity in sediment of the Loosdreeht Lakes.Verh. Internat Verein Limnol,1991,24:719-720.
    [113]张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社,1990
    [114] Heath RL and Parker L. Photo peritation in isolated chloroplasts kinetics and stoichiometry of fatty acid peroxidation [J].Arch Biophys,1968,25:189-198
    [115] Redfield. The biological control of chemical factors in the environment Am. Sci., 1958, 46:205-221
    [116]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992.300-314.
    [117]吴丰昌.云贵高原湖泊沉积物和水体氮、磷和硫的生物地球化学作用和生态环境效应[J].地质地球化学, 1996, 6:88- 89.
    [118] Moore P A, Reddy K R,Graetz D A. Nutrient transformations in sediment as influenced by oxygen supply [J].Environ Qual, 1992,21:387-393.
    [119] D' Angelo E M,Reddy KR. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: II. Role of inorganic electron acceptors in nutrient release[J]. Environ Qual, 1994,23(5): 937- 943.
    [120] Eckerrot A,Pettersson K. Pore water phosphorus and iron concentrations in a shalloweutrophic lake- identification of bacterial regulation[J]. Hydrobiologia, 1993,253( 1- 3) : 615- 177.
    [121]胡雪峰,等.上海市郊河流底泥氮磷释放规律的初步研究[J].上海环境科学,2002, 20( 2) :66- 70.
    [122] Tagaj N. & Koberi, H ,Phosphatase activity in eutrophic Tokyo Bay ,Marine Biology, 1978,49:221- 229
    [123] Matavulj. M et a1, Phosphatase activity as an additional paratneter of water condition estimate in stone Iakes of Vojvodina province Microhiologia 1984. 21(1):53-62
    [124] Matavulj, M.et al,Phosphatase activity of water as a monitoring parameter .Wat Sci Tech 1990. 22(5):63-68
    [125]Kuenzler, E.J. & Pertas, J. P , Phosphatese of marine algae. Biol. BulI. Woods Hole 1965. 128:27l- 284
    [126] Chappell,K.R.and Goulder,R.Enzyme as river pollutants and the response of native epilithic extracellular enzyme activity. Enviromental Pollution 1994,86:161-169
    [127] Carr, O. J. and Goulder, R., Fisn-farm effluents in rivers. I .Effect of bacterial populations and alkaline phosphatase activity. Wat. Res.1990,24:631-638
    [128]Φ1X1哈兹耶夫1土壤酶活性[M] .北京:科学出版社,1980,35~46.
    [129]中国科学院南京土壤研究所微生物室编1土壤微生物研究法[M] .北京:科学出版社,1985,48~52.
    [130] Ceccanti B ,Garcia C. Coupled chemical and biochemical methodologies to characterize a composting process and the humid substances [ C] . In : Humic Substances in the Global Environment and Implications on Human Health ,Newyork : Elsevier ,1999( 1 ):279~1 285.
    [131]刘昌玲,王国庆.细菌过氧化氢酶的分离、结晶及性质.生物化学与生物物理进展,1900,17(5):380- 383
    [132]沈根祥1上海蔬菜主要品种污染物含量调查评估[J ] .上海环境科学,2002 ,21 (8) :475~478.
    [133]黄智,李时银,刘新会,等1苯噻草胺对土壤中过氧化氢酶活性及呼吸作用的影响[J ] .环境化学,2002 ,21(5) :481~484.
    [134]李时银,张晓昆,冯建,等1氰戊菊酯及代谢物对土壤过氧化氢酶活性的影响[J ] .中国环境科学,2002 ,22(2) :154~157.
    [135]郑巍,刘惠君,刘维屏1吡虫啉及代谢产物对土壤过氧化氢酶活性的影响[J ] .中国环境科学,2000 ,20 (6) :524~527.
    [136]陈少裕.膜脂过氧化对植物细胞的伤害[J ] .植物生理学通讯,1991 ,27(2) :84 - 90.
    [137]汪耀富,韩锦峰,林学梧,等.烤烟生长前期对干旱胁迫的生理生化响应研究[J ] .作物学报,1996 ,22 (1) :117 -121.
    [138]王宝山.生物自由基与植物膜伤害[J ] .植物生理学通讯,1988(2) :12 - 16.
    [139]陈少裕.膜脂过氧化对植物细胞的伤害[J ] .植物生理学通讯,1991 ,27(2) :84 - 90.
    [140]王金胜,郭春绒,张映.农业生物化学技术[M] .太原:山西科学技术出版社,1997.
    [141]翟彩霞,马春红,王立安,等.抗病激发子在诱导植物抗病性中的应用[J ] .华北农学报,2003 ,18 (增刊) :58- 61.
    [142] MA C H , ZHAI C X,WANGL A , et al . Induced resistance by the toxin filtrate of Bipolaris maydis race T cultivation[J ] . Agricultural Sciences in China , 2006 ,5(9) :678 - 684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700