湿地履带板锻造工艺设计及成形过程数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程机械是我国装备工业的重要组成部分,广泛应用于国防、交通,能源、水利、建筑、道路和城市建设等领域。近十年来,随着中国工程机械应用量的不断增长,履带板市场得到飞速发展。湿地履带板是工程机械在湿地环境下作业的关键部件,使用条件十分恶劣,其硬度、抗拉强度、屈服强度、冲击韧度等力学性能必须满足使用要求。
     目前我国湿地履带板多采用铸造方法生产,铸造成形容易产生铸造缺陷,进而导致产品组织粗糙、精度降低、力学性能变差。传统的铸造工艺引起的铸造缺陷严重影响了产品的可靠性与质量,导致在产能和产品质量上都无法满足市场需求。因此,研究湿地履带板的成形工艺,制造优质履带板,对我国工程机械行业具有重要意义。
     本文在综合分析湿地履带板成形技术要求的基础上,提出了一种湿地履带板的锻造成形新工艺,采取锻造工艺代替铸造工艺,从而达到改善产品质量和提高产品可靠性及使用寿命的目的。
     本文首先对湿地履带板锻造工艺进行了分析,绘制了湿地履带板的计算毛坯图,确定了锻造设备吨位,设计了湿地履带板的初始锻造工艺流程,在“预锻成形、终锻精整”经验基础上,设计了湿地履带板预锻模膛与终锻模膛。然后建立了湿地履带板锻造成形过程的有限元数值模拟模型,采用有限元模拟软件DEFORM-3D对湿地履带板预锻成形过程进行了数值分析,揭示了金属成形过程流动规律,分析了等效应力、应变、温度分布规律及力能曲线。
     对不同设计方案进行了数值建模和分析,通过对比不同设计方案下的模拟结果,确定了最佳锻造工艺及预制坯形状,并对预锻、终锻过程进行了数值模拟,获得了金属成形过程的流动规律及应力应变场、温度场分布和力能曲线。在此基础上确定了最佳工艺的辊锻模膛、压扁模膛及整体锻模结构。
Engineering machinery is an important part of the equipment industry. It's widely used in the field of national defense, transportation, energy, water conservancy, construction, road and urban construction. In the last10years, the creeper tread market has received tremendous development with the growing application of engineering machinery in China. The wetland creeper tread is the key component of engineering machinery operated in the environment of wetland. Since its service condition is very bad, its hardness, tensile strength, yield strength, impact toughness and other mechanical properties must meet the requirements.
     At present, our wetland creeper tread is mainly produced by casting method which is prone to causing casting defects and leading to rough products, low accuracy and bad mechanical properties. Casting defects caused by the traditional casting process greatly affect the reliability and quality of the product. Thus the production capacity and product quality could not meet the market requirement. Therefore, it's of great significance for our engineering machinery industry to study the forming process of wetland creeper tread and produce wetland creeper tread of high-quality.
     Based on the comprehensive analysis of the wetland creeper tread's forming process, the paper proposed a new forging forming technology of wetland creeper tread. In place of casting process, the forging process can attain the goal of improving product quality, product reliability and service life.
     The paper analyzes the forging process, gets the calculation blank drawing, determines the equipment tonnage and gets the initial forging process of wetland creeper tread. Then the die cavity of pre-forging and finish-forging are designed on the basis of "Forming by pre-forging and finishing by finish-forging". The finite element model of wetland creeper tread's forming process is established and the finite element software DEFORM-3D is used to simulate the pre-forging process. The flowing law of metal and load-stroke curve are predicted. The distribution of the stress and strain, temperature and the equivalent strain rate are obtained.
     Finite element models of different design schemes are designed and analyzed. The best forging process and the shape of preforming billet are determined by comparing the simulation results of different design schemes. The flowing law of metal, load-stroke curve and distribution of stress, strain, temperature and equivalent strain rate are obtained by simulating the pre-forging and finish-forging process. On this basis, the rolling forging die, pressing die and the whole forging die structure are determined.
引文
[1]赵殿华,李兰英.应用TRIZ理论进行分体式多功能履带板结构设计[J].工程机械,2009,40:34-37.
    [2]王冬.年产30000t履带板的铸造车间工艺设计[C].2010中国铸造活动周论文集.
    [3]顾俊方.坦克装甲车辆的履带板[J].坦克装甲车辆,1991,2:35-37.
    [4]王振富.低合金高强度钢在履带上的应用[J].江麓机械厂,1985:41-43.
    [5]乔中莲.履带板挤压成形工艺研究[D].中北大学,2006.
    [6]D. T. Tran, J. O'Brien, T. Muro. An optimal method for the design of a robotic tracked vehicle to operate over fresh concrete under steering motion [J]. Journal of Terramechanics,2002, 39(1):1-22.
    [7]A. Bodin. Development of a tracked vehicle to study the influence of vehicle parameters on tractive performance in soft terrain [J]. Journal of Terramechanics,1999,36(3):167-181.
    [8]D. Rubinstein, R. Hitron. A detailed multi- body model for dynamic simulation of off-road tracked vehicles [J]. Journal of Terramechanics,2004,41(2):163-173.
    [9]凌静秀.EBZ-135型悬臂式掘进机履带板的优化设计[D].太原理工大学,2010.
    [10]贾佳.履带板多向加载温挤压成形工艺研究[D].中北大学,2007.
    [1l]乔中莲,张治民.履带板挤压过程数值模拟研究[J].锻造,2006:53-55.
    [12]荀志国.大型履带起重机支重轮与履带板设计技术研究[D],大连理工大学,2007.
    [13]殷光辉,黄华,殷兆辉.履带板应力有限元分析与试验验证[J],车辆与动力技术,2004,4:49-51.
    [14]谷志飞,李明峰,祝占宏.履带板锻造工艺数值模拟[J],机械设计,2006:78-80.
    [15]鲁建霞,苟惠芳.有限元法的基本思想与发展过程[J].机械管理开发,2009,24(2):74-75.
    [16]Bathe. Finite Element Procedures in Engineering Analysis [M]. Prentice,1976.
    [17]李尧.金属塑性成形原理[M].机械工业出版社,北京,2004.
    [18]林治平.锻压变形力的工程计算[M].机械工业出版社,北京,1986.
    [19]杨雨生,曹桂荣,阮中燕等.金属塑性成形力学原理[M].北京工业大学出版社,北京,1999.
    [20]林治平,谢水生,程军.金属塑性变形的实验方法[M].冶金工业出版社,安徽,2002.
    [21]吕丽萍.有限元法及其在锻压工程中的应用[M].西北工业大学出版社,西安,1989.
    [22]詹梅.面向带阻尼台叶片精锻过程的三维有限元数值模拟研究[D].西北工业大学,2000.
    [23]Lee C H, Kobayashi S. New Solutions Rigid-Plastic Deformation Problems Using a Matrix Method [J]. Trans. ASME,1973,95:865-873.
    [24]Walters J. Application of Finite Element Method in Forging an Industry Perspective [J]. Journal of Materials Processing Technology,1991,27:41-43.
    [25]Oh S I, Wu W T, Tang J P. Simulation of cold Forging process by the DEFORM System. Journal of Materials Processing Technology[J],1992,35:357-372.
    [26]L. Tricarico, M. De Cosmo. Analysis of an industrial net shape forming application through numerical and experimental approach, advanced technology of plasticity[J], proceedings of the 6th ICTP, Sept.19-24, Precision Forging,1999,759-764.
    [27]Hyunkee Kim, Tetsuji Yagi, MasahitoYamanaka, FE simulation as a must tool in cold/warm forging process and tool design[J], Journal of Materials Processing Technology 98(2000), 143-149.
    [28]赵健,陈拂晓,上官林健等.金属体积成形模拟技术[J].热加工工艺,2001,(3):49-52.
    [29]Bramley A N, Mynors, The Use of Forging Simulation Tools[J]. Materials and Design,2000, (21):279-286.
    [30]董湘怀,郑莹,兰箭等.金属塑性成形计算机模拟的若干进展[J].金属成形工艺,2000,18(1):1-4.
    [31]H J Haepp, K Roll, Future Perspectives and Limits for the Mathematical Modeling of Metal Forming Processes in Automotive Industry[J], Advanced Technology of Plasticity, proceedings of the 6th ICTP, Sept.19-24, Modeling&Simulation,1999,481-496.
    [32]胡忠.材料加工过程计算机模拟的现状与未来[J].塑性工程学报,1998,5(2):1-8.
    [33]龙丽.TA15合金锻造过程的数值模拟[D].西北工业大学,2005.
    [34]C.H.Lee, New Solution to Rigid-Plastic Deformation Problems[J]. Trans. ASME,1975,95: 871-873.
    [35]O. C. Zienkiewicz, P. N. Godbole. A penalty Function Approach to Problems of Plastic Flow of Metals with Large Surface Deformations [J]. Strain Analysis,1975,10:180-196.
    [36]P. Perzyna. Fundamental Problems in Visco plasticity[J]. Adv. App. Meth.1969,9:243.
    [37]S. I. Oh, N. M. Rebelo, S. Kobayashi. Finite-Element Formulation for the Analysis of Plastic Deformation of Rate-Sensitive Materials in Metal Forming[J]. IUTAM Symposium, Tutzing/Germany,1978:273.
    [38]A. Makinouchi. Finite Element Modeling of Draw-bending Process of Sheet Metal[J]. Proc. NUMIFORM'86, Gothenburg, Sweden,1986:327-332.
    [39]N. M. Wang, S. C. Tang. Analysis of Bending Affection Sheet Forming Operations[J]. NUMIFORM'86, Gothenburg, Sweden,1986:71-76
    [40]邱晓刚,卢国清,陈文龙等.板材成形有限元仿真技术的应用[J].钢铁钒钛,2003,24(1):54-60.
    [41]管延锦,张建华,赵国群等.管材激光弯曲成形有限元工艺仿真的技术处理研究[J].应用激光,2004,24(2):73-76.
    [42]张士宏,尚彦凌,郎利辉等.用动态显式有限元法对板材成形进行计算机模拟[J].塑性工程学报,2001,8(1):19-24.
    [43]余雷,袁国定,岳陆游.有限元数值模拟在汽车覆盖件设计和制造中的应用[J].锻压技术,2002,2:23-26.
    [44]S. Kobayashi, S. I. Oh, T. Altan. Metal Forming and the Finite Element Method [M]. Oxford University Press, London,1989
    [45]S. I. Oh. Finite Element Analysis of Metal Forming Processes with Arbitrarily Shaped Dies[J]. International Journal of Mechanical Sciences,1982,24(8):479-488.
    [46]J. J. Park, S. Kobayashi. Three-dimension Finite Element Analysis of Block Compression[J]. International Journal of Mechanical Sciences,1984,26(3):165-176.
    [47]赵国群,阮雪榆,关廷栋.多工位连续锻造过程的有限元模拟[J].锻压技术,1992,2:2-6.
    [48]曹飞,蒋鹏,崔红娟等.曲轴锻造成形工艺的有限元模拟[J].锻压技术,2005(增刊):68-71.
    [49]蒋鹏,方刚,胡福荣等.汽车前轴精密辊锻成形过程的数值模拟[J].机械工程学报,2005,41(6):123-127.
    [50]K. Iwata, K. Osakada. Analysis of Hydrostatic Extrusion by the Finite Element Method. Trans. ASME[J], Journal of Engineer for Industry,1972, (94):697-703.
    [51]Y. M. Guo. Y. Yokouchi etal. Analysis of Hot Forward-backward Extrusion by the Visco-plastic Finite Element Method [J]. Journal of Materials Processing Technology,1993, (38):103-114.
    [52]H. Long, R. Balendra. FE Simulation of the Influence of Thermal and Elastic Effects on the Accuracy of Cold-extruded Components[J]. Journal of Materials Processing Technology, 1998,84(1-3):247-260.
    [53]谢水生,王祖唐等.弹塑性有限元法分析不同型线凹模静液挤压时的应力和应变状态[J].机械工程学报,1985,(2):19-23.
    [54]X. Y. Ruan, Y. H. Pengetal. The FEM Simulation of Bimetal Forming Process[J]. Proc. The 5th ICTP, Columbus, Ohio, USA,1996:271-278.
    [55]S. N. Shah, S. Kobayashi. A theory on Metal Flow in Axis metric Piercing and Extrusion [J]. Journal of Production Engineer,1977, (1):73-78.
    [56]徐虹,贾树盛,白凤梅,徐成林.基于数值模拟的渐开线花键件冷挤压工艺参数优化[J].塑性工程学报,2005,(6):7-10.
    [57]李传彪,胡建华,朱彦生等.锥齿轮挤压成形弹塑性有限元数值模拟[J].锻压装备与制造技术,2007:65-67.
    [58]闫洪,包忠诩,柳和生.型材挤压过程三维弹塑性有限元模拟[J].轻合金加工技术,2000,28(11):30-33.
    [59]彭颖红,周飞,阮雪榆。汽车联轴节壳体挤压成形过程三维有限元数值模拟[J].上海交通大学学报,1998,32(5):18-22.
    [60]张建,崔宏祥,赵润娴等.等通道转角挤压过程有限元模拟[J].重型机械,2002,(3):43-46.
    [61]J. T. Oden, D. R. Bhandari et al. A New Approach to the Finite Element Formulation and Solution of a Class of Problems in Coupled Thermoelasto visco-plasticity of Crystalline Solids[J]. Nuclear. Engng. Des.1973, (24):420-435
    [62]O. C. Zienkiewicz, E. Onateetal. A General Formulation for Coupled Thermal Flow of Metals Using Finite Elements[J]. Int. J. Num. Meth. Engng,1981, (17):1497-1514.
    [63]N. Rebelo, S. Kobayashi. A Coupled Analysis of Viscoplastic Deformation and Heat Transfer[J]. Int. J. of Mech. Sci.1980, (22):688-705.
    [64]N. Soyris, J. J. Brioist. Three Dimensional Finite Element Calculation of the Whole Forging Process of an Automotive Part[J]. Proc. The 3rd ICTP, Tokyo, Japan,1990:165-170.
    [65]S. Shamasundar, A.A. Tsengetal. Numerical and Experimental study of the Thermal Behavior of Coining and Upsetting Processes[J]. Journal of Materials Processing Technology, 1993,36(2):199-221.
    [66]郭晓锋,杨合,孙志超等.三通件多向加载成形热力耦合有限元分析[J].塑性工程学报,2009,16(4):85-90.
    [67]喻海良,刘相华.多道次立—平轧制热力耦合有限元分析[J].热加工工艺,2007,36(1):85-88.
    [68]刘才,崔振山.板材热轧热力耦合有限元模拟[J].机械工程学报,1998,34(4):35-39.
    [69]马新武.体积成形过程数值模拟与优化技术及其系统开发研究[D].山东大学,2002.
    [70]李传民.DEFORM5.03金属成形有限元实例指导教程[M].机械工业出版社,北京,2007.
    [71]张艳娥.直齿锥齿轮精密锻造工艺与模具设计方法[D].山东大学,2007.
    [72]荀志国.大型履带起重机支重轮与履带板设计技术研究[D].大连理工大学,2007.
    [73]吴登虎.推土机三角履带板的改进设计[J].工程机械,1997,(3):20-21.
    [74]高军,郝滨海,李辉平.模具设计及CAD[M].化学工业出版社,北京,2006.
    [75]程联军.汽车转向节锻造智能设计系统的研究与开发[D].山东大学,2008.
    [76]胡建军,李小平.DEFORM-3D塑性成形CAE应用教程[M].北京大学出版社,北京,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700