几种基于介孔结构的功能复合材料的合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用介孔材料高的比表面积和大的孔体积,孔径均一且在纳米尺寸范围可调,表面易官能团化等特点,制备出几种不同类型的具有介孔结构的复合物,研究了其在湿度传感器、吸附和可见光催化领域的应用价值,从而达到材料功能化的目的。
     首先,我们选择以介孔SBA-15为主体材料,分别采用固相研磨和溶液浸润混合两种合成方法,制备出两种不同类型的K_2CO_3/SBA-15复合材料并研究了其湿度敏感性质。实验结果表明,两种方法均能制备出湿敏性能良好的传感器件。固相研磨方法中最佳的混合比例为1g SBA-15中加入0.8g K_2CO_3;溶液浸润方法中最佳的负载比例为1g SBA-15中加入0.16g K_2CO_3,对于两种材料的湿敏机制我们给出了详细的分析。下一章节,通过利用介孔材料的结构特点能够提升材料对湿度的敏感性的启发,我们改进了实验方法采用原位合成的方法将金属氧化物和SiO_2材料复合在一起形成介孔孔壁,制备出介孔ZnO-SiO_2、Fe_2O_3/SiO_2复合物。该方法不仅操作简单,而且能形成稳定的介孔结构。通过调节金属氧化物与SiO_2的摩尔比例,最终得到最佳摩尔比例的湿敏器件。介孔ZnO-SiO_2复合物出现在Zn/Si=1:1处,介孔Fe_2O_3/SiO_2复合物出现在Fe/Si=0.5:1处,同样讨论了两种材料的湿敏机制。下个部分,我们将磁性材料与介孔材料复合在一起,目的在于得到的复合物兼具介孔材料的功能性和良好的磁学性质,通过外加磁场,能够将目标材料轻松回收并循环使用。首先,我们制备出单分散的Fe_3O_4微球并以其作为磁核展开下一步的包覆工作,为了便于介孔材料包覆成功,我们选择以实体SiO_2材料作为夹层。第一个部分,将介孔SiO_2包覆在磁核表面,制备出花状形貌的Fe_3O_4@SiO_2@meso-SiO_2复合材料,该材料对工业废水中的重金属离子具有良好的吸附性。第二部分,将介孔TiO_2包覆在磁核表面,得到Fe_3O_4@SiO_2@meso-TiO_2复合材料,并以其作为光催化剂,开展有机污染物降解和磁回收技术研究。这些方向同时涉及了物理学、化学、环境污染处理以及多孔材料科学等几大热点领域,具有一定的理论和现实意义。
Since the Mobil scientists first reported the synthesis of highly ordered M41S seriesof mesoporous silicate molecular sieve in1992, mesoporous materials with regularpore structure, high specific surface area and pore volume, uniform and adjustablepore size have been greatly concerned by the international physics, chemistry andmaterials academia. So far, the study on the synthesis of mesoporous materials hasachieved fruitful results. However, compared with the results achieved in thesynthesis of mesoporous materials, in the application areas of progress is slow. In thisthesis, the main line of mesoporous materials, different materials and methods havebeen adopted to synthesize functional composite materials with a mesoporousstructure and their application value on the field of humidity sensor, sewage treatment,photocatalysis have also been studied. Our researches make contribute to realizelarge-scale industrial application of mesoporous materials
     In the second chapter, mesoporous silicon-based materials SBA-15was used ashost materials to mix with K_2CO3to form K_2CO3/SBA-15composites by solid-phasegrinding and solution infiltration two different ways. Firstly, mesoporous SBA-15powders with two-dimensional hexagonal ordered structure, high thermal stabilitywere synthesized by hydrothermal method. In the solid-phase grinding process,different amount of K_2CO3was selected to mix with1g SBA-15by grinding with amortar, and finally formed K_2CO3/SBA-15composites through the calcination process.Compared with pure SBA-15, the sensitivity to humidity of K_2CO3/SBA-15wassignificantly improved. The optimal mixing ratio was1g SBA-15added0.8g K_2CO3. The composite formed by this ratio showed good humidity sensitive characteristics.However, in the calcination process, the mesoporous structure completely collapsed.Analysis on the humidity sensitivity mechanism of0.8g K_2CO3/SBA-15sample, webelieve the reason is that there are easily dissociatve potassium salts existed in thiscomposite. In solution infiltration method, different amount of K_2CO3was dissolvedin aqueous solution, and then mixed with1g SBA-15respectively, finally driedovernight to form K_2CO3/SBA-15composites. The composites obtained by thismethod have highly ordered mesoporous structure, and the optimal loading ratio is1gSBA-15added0.16g K_2CO3. Ordered pore structure, high specific surface area andpore volume created by this composite can adsorb lots of water molecule, acceleratethe transmission of the particles, which play a crucial role to improve the sensitivity ofthe material towards humidity.
     View on the research of the last chapter, we found that mesoporous structure hasgreat help to improve the sensitivity of materials to humidity. In the third chapter, weadopted the synchronous self-assembly techniques loading metal oxides on the SiO_2matrix to form the mesoporous wall by one-pot synthesis. This method is that whenthe surfactant molecules formed micelles in solution, synchronously adding siliconsource and metal oxide precursor by continuous stirring make the silicon source andprecursor evenly attach to the surface of the micelles. Finally, mesoporous structureformed by calcining process, and SiO_2and metal oxide mixed evenly to form porewall. We have chosen two different metal oxides, ZnO and Fe_2O3in this chapter. Theexperimental results show that this method not only operates easily, but also can formhighly ordered mesoporous structure after calcinations. Analysis on thehumid-sensitivity properties of two materials, we found that pure ZnO or Fe_2O3arenot sensitive to humidity, when loading two metal oxides to the pore walls, thehumidity sensitivity significantly improved. For amorphous ZnO-SiO_2composites,the best ratio is Zn/Si=1:1, and for highly crystallization Fe_2O3/SiO_2composites, thebest ratio is Fe/Si=0.5:1. For their humidity sensing mechanism, we were also doing adetailed study.
     We composed different types of materials with SiO_2in order to prepare newhumidity-sensitive materials, which broaden the ideas in the application ofmesoporous materials on the humidity sensor.
     Magnetic materials due to they can be easily removed from the reaction system byan external magnetic field have been highly concerned by many researchers.Functional materials composed with magnetic materials, which both havefunctionality and magnetism, can greatly increase the practicability of materials. Thefourth chapter, we first prepared Fe_3O_4microspheres, in which sodium citrate wasadded. Our aim is to graft hydrophilic group“–COOH” to the surface of magneticcore, showing a good dispersibility in polar solvents such as water or ethanol in orderto facilitate subsequent coating. The second step, the entity SiO_2coated on the surfaceof the magnetic core to form the monodisperse Fe_3O_4@SiO_2core-shell structure. Thethird step, CTAB as pore formed template, TEOS as silica source, by adjusting theratio of CTAB and TEOS, mesoporous SiO_2shell coated on the surface ofFe_3O_4@SiO_2microspheres to form Fe_3O_4@SiO_2@meso-SiO_2composites withflower-like morphology. This composite has monodisperse core-shell structure, largespecific surface area and pore volume, which has strong adsorption towards the heavymetal ions of Pb_(2+)、Cd_(2+)in industrial wastewater. Otherwise, the strong magnetismthis composite has makes great help for recovery and recycling from externalmagnetic fields. Therefore, this material can be used as a good adsorbent in sewagetreatment.
     TiO_2is an important semiconductor material. Due to its abundant source,non-toxicity, having a wide band gap and good photocatalytic activity in the nearultraviolet region, light and chemical corrosion resisted, TiO_2is widely used inphotocatalysis. Among them, mesoporous TiO_2due to the high surface area,developed pore structure causes the reaction active centers increased. Narrow anduniform pore size distribution is also beneficial for molecular to diffuse and reach thereactivity centers. Therefore, compared with non-porous TiO_2, mesoporous TiO_2has ahigher photocatalytic activity. The fifth chapter of this thesis continued the research ofthe fourth chapter, Mesoporous TiO_2shell was chosen to coat on the surface of Fe_3O_4microspheres。As direct coating will produce a photodissolution phenomenon in orderto reduce the photocatalytic activity of TiO_2,we still select the entity SiO_2as aninterlayer to prepare Fe_3O_4@SiO_2@meso-TiO_2composite. This composite both hasthe structure characteristics of mesoporous TiO_2and magnetic properties of Fe_3O_4. Inaddition, TiO_2shell exists as crystalline anatase phase. In the experiments on the degradation of Rhodamine B (RhB) under UV light, compared with non-porousFe3O4@SiO_2@TiO_2, Fe3O4@SiO_2@meso-TiO_2composite showed higherphotocatalytic activity. Excellent properties make this composite expected to be anew-type photocatalyst in the treatment of industrial wastewater.
     In Chapter4and5, combined with today’s hot of magnetic recovery, differentmesoporous materials were coated on the surface of the magnetic core to preparemagnetic nanocomposites with mesoporous structure, which not only increase theusefulness of functional materials, but also make a step toward the practicalapplication for mesoporous materials.
     In this thesis, by using different materials, different synthesis methods, several newfunctional composites based on mesoporous structure have been prepared. Our aim isto utilize the features of the ordered mesoporous structure to expand practicalapplication fields of mesoporous materials, so as to achieve the purpose of materialsserved application.
引文
[1] IUPAC Manual of Symbols and Terminology, appendix2, Part1, Colloid and SurfaceChemistry, Pure Appl. Chem.1972,31:578.
    [2] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use inCatalysis [J]. Chemical Reviews,1997,97(6):2373-2420.
    [3] Wan Y, Yang H F, Zhao D Y.“Host Guest” Chemistry in the Synthesis of OrderedNonsiliceous Mesoporous Materials [J]. Accounts of Chemical Research,2006,39(7):423-432.
    [4] Stein A, Melde B J, Schroden R C. Hybrid Inorganic–Organic MesoporousSilicates—Nanoscopic Reactors Coming of Age [J]. Advanced Materials,2000,12(19):1403-1419.
    [5] Davis M E. Ordered porous materials for emerging applications [J]. Nature,2002,417(6891):813-821.
    [6] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, OlsonD H, Sheppard E W. A new family of mesoporous molecular sieves prepared with liquid crystaltemplates [J]. Journal of the American Chemical Society,1992,114(27):10834-10843.
    [7] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S, Ordered mesoporous molecularsieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(6397):710-712.
    [8] Wan Y, Zhao D Y, On the Controllable Soft-Templating Approach to Mesoporous Silicates [J].Chemical Reviews,2007,107(7):2821-2860.
    [9] Tiemann M. Repeated Templating [J]. Chemistry of Materials,2007,20(3):961-971.
    [10] Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell R S, Stucky G D, et al.Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures[J]. Science,1993,261(5126):1299-1303.
    [11] Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, et al. Cooperativeorganization of inorganic-surfactant and biomimetic assemblies [J]. Science,1995,267(5201):1138-1143.
    [12] Wan Y, Shi Y F, Zhao D Y. Designed synthesis of mesoporous solids vianonionic-surfactant-templating approach [J]. Chemical Communications,2007(9):897-926.
    [13] Lu Y F, Ganguli R, Drewien C A, Anderson M T, Brinker C J, Gong W L, Guo Y X, et al.Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating[J]. Nature,1997,389(6649):364-368.
    [14] Grosso D, Cagnol F, Solerlllia G J de A A, Crepaldi E L, Amenitsch H, Brunet-Bruneau A,Bourgeois A, Sanchez C. Fundamentals of Mesostructuring Through Evaporation-InducedSelf-Assembly [J]. Advanced Functional Materials,2004,14(4):309-322.
    [15] Yang H F, Zhao D Y, Synthesis of replica mesostructures by the nanocasting strategy [J].Journal of Materials Chemistry,2005,15(12):1217-1231.
    [16] Lu A H, Schüth F. Nanocasting: A Versatile Strategy for Creating Nanostructured PorousMaterials [J]. Advanced Materials,2006,18(14):1793-1805.
    [17] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporousmolecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(6397):710-712.
    [18] Vartuli J. C., Kresge C. T., Leonowicz M. E., Chu A. S., Mccullen S. B., Johnson I.D..Sheppard E. W. Synthesis of Mesoporous Materials: Liquid-Crystal Templating versusIntercalation of Layered Silicates [J]. Chemistry of Materials,1994,6(11):2070-2077.
    [19] Vartuli J C, Schmitt K D, Kresge C T, Roth W J, Leonowicz M E, Mccullen S B, Hellring S D,Beck J S, Schlenker J L. Effect of Surfactant/Silica Molar Ratios on the Formation of MesoporousMolecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and MechanisticImplications [J]. Chemistry of Materials,1994,6(12):2317-2326.
    [20] Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from alayered polysilicate [J]. Journal of the Chemical Society, Chemical Communications,1993(8):680-682.
    [21] Huo Q. Generalized syntheses of periodic surfactant/inorganic composite materials [R].DTIC Document,1994.
    [22] Huo Q S, Margolese D I, Ciesla U, Demuth D G., Feng P Y, Gier T E, Sieger P, Firouzi A,Chmelka B F. Organization of Organic Molecules with Inorganic Molecular Species intoNanocomposite Biphase Arrays [J]. Chemistry of Materials,1994,6(8):1176-1191.
    [23] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D, Nonionic Triblock and StarDiblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, HydrothermallyStable, Mesoporous Silica Structures [J]. Journal of the American Chemical Society,1998,120(24):6024-6036.
    [24] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D.Triblock Copolymer Syntheses of Mesoporous Silica with Periodic50to300Angstrom Pores [J].Science,1998,279(5350):548-552.
    [25] Yu C Z, Yu Y H, Zhao D Y. Highly ordered large caged cubic mesoporous silica structurestemplated by triblock PEO-PBO-PEO copolymer [J]. Chemical Communications,2000(7):575-576.
    [26] Shen S D, Li Y Q, Zhang Z D, Fan J, Tu B, Zhou W Z, Zhao D Y, A novel ordered cubicmesoporous silica templated with tri-head group quaternary ammonium surfactant [J]. ChemicalCommunications,2002(19):2212-2213.
    [27] Shen S D, Garcia-Bennett A E, Liu Z, Lu Q Y, Shi Y F, Yan Y, Yu C Z, et al.Three-Dimensional Low Symmetry Mesoporous Silica Structures Templated fromTetra-Headgroup Rigid Bolaform Quaternary Ammonium Surfactant [J]. Journal of the AmericanChemical Society,2005,127(18):6780-6787.
    [28] Liu X Y, Tian B Z, Yu C Z, Gao F, Xie S H, Tu B, Che R C, Peng L M, Zhao D Y.Room-Temperature Synthesis in Acidic Media of Large-Pore Three-Dimensional BicontinuousMesoporous Silica with Ia3d Symmetry [J]. Angewandte Chemie International Edition,2002,41(20):3876-3878.
    [29] Fan J, Yu C Z, Lei J, Zhang Q, Li T C, Tu B, Zhou W Z, Zhao D Y. Low-TemperatureStrategy to Synthesize Highly Ordered Mesoporous Silicas with Very Large Pores [J]. Journal ofthe American Chemical Society,2005,127(31):10794-10795.
    [30] Fan J, Yu C Z, Gao F, Lei J, Tian B Z, Wang L M, Luo Q, et al. Cubic Mesoporous Silica withLarge Controllable Entrance Sizes and Advanced Adsorption Properties [J]. Angewandte ChemieInternational Edition,2003,42(27):3146-3150.
    [31] Kim T W, Kleitz F, Paul B, Ryoo R. MCM-48-like Large Mesoporous Silicas with TailoredPore Structure: Facile Synthesis Domain in a Ternary Triblock Copolymer-Butanol-Water System[J]. Journal of the American Chemical Society,2005,127(20):7601-7610.
    [32] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication toplatinum nanowires, carbon nanorods and carbon nanotubes [J]. Chemical Communications,2003(17):2136-2137.
    [33] Kleitz F, Liu D N, Anilkumar G M, Park I S, Solovyov L A, Shmakov A N, Ryoo R. LargeCage Face-Centered-Cubic Fm3m Mesoporous Silica: Synthesis and Structure [J]. The Journal ofPhysical Chemistry B,2003,107(51):14296-14300.
    [34] Kim S S, Karkamkar A, Pinnavaia T J, Kruk M, Jaroniec M. Synthesis and Characterizationof Ordered, Very Large Pore MSU-H Silicas Assembled from Water-Soluble Silicates [J]. TheJournal of Physical Chemistry B,2001,105(32):7663-7670.
    [35] Kim S S, Zhang W Z, Pinnavaia T J. Ultrastable Mesostructured Silica Vesicles [J]. Science,1998,282(5392):1302-1305.
    [36] Kim S S, Pauly T R, Pinnavaia T J. Non-ionic surfactant assembly of ordered, very large poremolecular sieve silicas from water soluble silicates [J]. Chemical Communications,2000(17):1661-1662.
    [37] Che S, Garcia-Bennett A E, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T. A novelanionic surfactant templating route for synthesizing mesoporous silica with unique structure [J].Nat Mater,2003,2(12):801-805.
    [38] Che S N, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T. Synthesis andcharacterization of chiral mesoporous silica [J]. Nature,2004,429(6989):281-284.
    [39] Gao C B, Qiu H B, Zeng W, Sakamoto Y, Terasaki O, Sakamoto K, Chen Q, Che S N.Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica [J]. Chemistry ofMaterials,2006,18(16):3904-3914.
    [40] Lu A H, Schmidt W, Taguchi A, Spliethoff B, Tesche B, Schüth F. Taking Nanocasting OneStep Further: Replicating CMK-3as a Silica Material [J]. Angewandte Chemie InternationalEdition,2002,41(18):3489-3492.
    [41] Lu A H, Schmidt W, Spliethoff B, Schüth F. Synthesis and Characterization of NanocastSilica NCS-1with CMK-3as a Template [J]. Chemistry-A European Journal,2004,10(23):6085-6092.
    [42] Kim J Y, Yoon S B, Yu J S. Template Synthesis of a New Mesostructured Silica from HighlyOrdered Mesoporous Carbon Molecular Sieves [J]. Chemistry of Materials,2003,15(10):1932-1934.
    [43] Antonelli D M, Nakahira A, Ying J Y. Ligand-Assisted Liquid Crystal Templating inMesoporous Niobium Oxide Molecular Sieves [J]. Inorganic Chemistry,1996,35(11):3126-3136.
    [44] Antonelli D M, Ying J Y. Synthesis of a Stable Hexagonally Packed Mesoporous NiobiumOxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism [J].Angewandte Chemie International Edition in English,1996,35(4):426-430.
    [45] Antonelli D M. Synthesis of macro-mesoporous niobium oxide molecular sieves by aligand-assisted vesicle templating strategy [J]. Microporous and Mesoporous Materials,1999,33(1-3):209-214.
    [46] Antonelli D M. Synthesis of phosphorus-free mesoporous titania via templating with aminesurfactants [J]. Microporous and Mesoporous Materials,1999,30(2-3):315-319.
    [47] Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B, Zhao D Y. A Facile Aqueous Route toSynthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Ia3dBicontinuous Cubic Structure [J]. Journal of the American Chemical Society,2005,127(39):13508-13509.
    [48] Zhang F Q, Meng Y, Gu D, Yan Y, Chen Z X, Tu B, Zhao D Y. An Aqueous CooperativeAssembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures andMorphology [J]. Chemistry of Materials,2006,18(22):5279-5288.
    [49] Yang H F, Yan Y, Liu Y, Zhang F Q, Zhang R Y, Meng Y, Li M, et al. A Simple MeltImpregnation Method to Synthesize Ordered Mesoporous Carbon and Carbon Nanofiber Bundleswith Graphitized Structure from Pitches [J]. The Journal of Physical Chemistry B,2004,108(45):17320-17328.
    [50] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves viaTemplate-Mediated Structural Transformation [J]. The Journal of Physical Chemistry B,1999,103(37):7743-7746.
    [51] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y. OrderedMesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templatingand Direct Transformation [J]. Angewandte Chemie International Edition,2005,44(43):7053-7059.
    [52] Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, et al. A Family of HighlyOrdered Mesoporous Polymer Resin and Carbon Structures from Organic Organic Self-Assembly[J]. Chemistry of Materials,2006,18(18):4447-4464.
    [53] Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S. Synthesis of a Large-Scale HighlyOrdered Porous Carbon Film by Self-Assembly of Block Copolymers [J]. Angewandte ChemieInternational Edition,2004,43(43):5785-5789.
    [54] Lee J W, Yoon S H, Hyeon T, Oh S M, Kim K B. Synthesis of a new mesoporous carbon andits application to electrochemical double-layer capacitors [J]. Chemical Communications,1999(21):2177-2178.
    [55] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of New,Nanoporous Carbon with Hexagonally Ordered Mesostructure [J]. Journal of the AmericanChemical Society,2000,122(43):10712-10713.
    [56] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays ofcarbon supporting high dispersions of platinum nanoparticles [J]. Nature,2001,412(6843):169-172.
    [57] Che S N, Garcia-Bennett A E, Liu X Y, Hodgkins R P, Wright P A, Zhao D Y, Terasaki O,Tatsumi T. Synthesis of Large-Pore Ia3d Mesoporous Silica and Its Tubelike Carbon Replica [J].Angewandte Chemie International Edition,2003,42(33):3930-3934.
    [58] Jiao F, Bruce P G. Two-and Three-Dimensional Mesoporous Iron Oxides with MicroporousWalls [J]. Angewandte Chemie International Edition,2004,43(44):5958-5961.
    [59] Jiao K, Zhang B, Yue B, Ren Y, Liu S X, Yan S R, Dickinson C, Zhou W Z, He H. Growth ofporous single-crystal Cr2O3in a3-D mesopore system [J]. Chemical Communications,2005(45):5618-5620.
    [60] Sinha A K, Suzuki K. Three-Dimensional Mesoporous Chromium Oxide: A Highly EfficientMaterial for the Elimination of Volatile Organic Compounds [J]. Angewandte ChemieInternational Edition,2005,44(2):271-273.
    [61] Tian B Z, Liu X Y, Tu B, Yu C Z, Fan J, Wang L M, Xie S H, Stucky G D, Zhao D Y.Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs [J]. Nat Mater,2003,2(3):159-163.
    [62] Tian B Z, Liu X Y, Yang H F, Xie S H, Yu C Z, Tu B, Zhao D Y. General Synthesis ofOrdered Crystallized Metal Oxide Nanoarrays Replicated by Microwave-Digested MesoporousSilica [J]. Advanced Materials,2003,15(16):1370-1374.
    [63] Attard G S, Bartlett P N, Coleman N R B, Elliott J M, Owen J R, Wang J H. MesoporousPlatinum Films from Lyotropic Liquid Crystalline Phases [J]. Science,1997,278(5339):838-840.
    [64] Bartlett P N, Marwan J. Preparation and characterization of H1–e rhodium films [J].Microporous and Mesoporous Materials,2003,62(1-2):73-79.
    [65] Whitehead A H, Elliott J M, Owen J R, Attard G S. Electrodeposition of mesoporous tin films[J]. Chemical Communications,1999(4):331-332.
    [66] Liu Z, Terasaki O, Ohsuna T, Hiraga K, Shin H J, Ryoo R. An HREM Study of ChannelStructures in Mesoporous Silica SBA-15and Platinum Wires Produced in the Channels [J].ChemPhysChem,2001,2(4):229-231.
    [67] Yamauchi Y, Momma T, Yokoshima T, Kuroda K, Osaka T. Highly ordered mesostructured Niparticles prepared from lyotropic liquid crystals by electroless deposition: the effect of reducingagents on the ordering of mesostructure [J]. Journal of Materials Chemistry,2005,15(20):1987-1994.
    [68] Braun P V, Osenar P, Tohver V, Kennedy S B. Stupp Samuel I. Nanostructure Templating inInorganic Solids with Organic Lyotropic Liquid Crystals [J]. Journal of the American ChemicalSociety,1999,121(32):7302-7309.
    [69] Jiang T, Ozin G A. Tin(IV) sulfide-alkylamine composite mesophase: a new class ofthermotropic liquid crystals [J]. Journal of Materials Chemistry,1997,7(11):2213-2222.
    [70] Li J Q, Kessler H, Soulard M, Khouchaf L, Tuilier M H. Nanosized Zinc Sulfide Obtained inthe Presence of Cationic Surfactants [J]. Advanced Materials,1998,10(12):946-949.
    [71] Sayari A, Karra V R., Reddy J S, Moudrakovski I L. Synthesis of mesostructured lamellaraluminophosphates [J]. Chemical Communications,1996(3):411-412.
    [72] Kimura T, Sugahara Y, Kuroda K. Synthesis and Characterization of Lamellar and HexagonalMesostructured Aluminophosphates Using Alkyltrimethylammonium Cations asStructure-Directing Agents [J]. Chemistry of Materials,1999,11(2):508-518.
    [73] Lim M H, Blanford C F, Stein A. Synthesis of Ordered Microporous Silicates withOrganosulfur Surface Groups and Their Applications as Solid Acid Catalysts [J]. Chemistry ofMaterials,1998,10(2):467-470.
    [74] Sutra P, Brunel D. Preparation of MCM-41type silica-bound manganese(III) Schiff-basecomplexes [J]. Chemical Communications,1996(21):2485-2486.
    [75] Lee J J, Han S J, Kim H, Koh J H, Hyeon T, Moon S H. Performance of CoMoS catalystssupported on nanoporous carbon in the hydrodesulfurization of dibenzothiophene and4,6-dimethyldibenzothiophene [J]. Catalysis Today,2003,86(1-4):141-149.
    [76] Huwe H, Fr ba M. Synthesis and characterization of transition metal and metal oxidenanoparticles inside mesoporous carbon CMK-3[J]. Carbon,2007,45(2):304-314.
    [77] Huang M H, Choudrey A, Yang P D. Ag nanowire formation within mesoporous silica [J].Chemical Communications,2000(12):1063-1064.
    [78] Cheng Q L, Pavlinek V, Lengalova A, Li C Z, Belza T, Saha P. Electrorheological propertiesof new mesoporous material with conducting polypyrrole in mesoporous silica [J]. Microporousand Mesoporous Materials,2006,94(1-3):193-199.
    [79] Li B S, Ma W, Liu J J, Han C Y, Zuo S L, Li X F. Synthesis of the well-ordered hexagonalmesoporous silicate incorporated with phosphotungstic acid through a novel method and itscatalytic performance on the oxidative desulfurization reaction [J]. Catalysis Communications,2011,13(1):101-105.
    [80] Urrego S, Serra E, Alfredsson V, Blanco R M, Díaz I. Bottle-around-the-ship: A method toencapsulate enzymes in ordered mesoporous materials [J]. Microporous and MesoporousMaterials,2010,129(1-2):173-178.
    [81] Luan Z H, Cheng C F, Zhou W Z, Klinowski J. Mesopore Molecular Sieve MCM-41Containing Framework Aluminum [J]. The Journal of Physical Chemistry,1995,99(3):1018-1024.
    [82] Vinu A, Sawant D P, Ariga K, Hossain K Z, Halligudi S B, Hartmann M, Nomura M. DirectSynthesis of Well-Ordered and Unusually Reactive FeSBA-15Mesoporous Molecular Sieves [J].Chemistry of Materials,2005,17(21):5339-5345.
    [83] Vinu A, Srinivasu P, Miyahara M, Ariga K. Preparation and Catalytic Performances ofUltralarge-Pore TiSBA-15Mesoporous Molecular Sieves with Very High Ti Content [J]. TheJournal of Physical Chemistry B,2005,110(2):801-806.
    [84] Huwe H, Fr ba M. Iron (III) oxide nanoparticles within the pore system of mesoporouscarbon CMK-1: intra-pore synthesis and characterization [J]. Microporous and MesoporousMaterials,2003,60(1-3):151-158.
    [85] Shi Y F, Wan Y, Zhao D Y. Ordered mesoporous non-oxide materials [J]. Chemical SocietyReviews,2011,40(7):3854.
    [86] Hu F Q, Wei L, Zhou Z, Ran Y L, Li Z, Gao M Y. Preparation of Biocompatible MagnetiteNanocrystals for In Vivo Magnetic Resonance Detection of Cancer [J]. Advanced Materials,2006,18(19):2553-2556.
    [87] Li Z, Sun Q, Gao M Y. Preparation of Water-Soluble Magnetite Nanocrystals from HydratedFerric Salts in2-Pyrrolidone: Mechanism Leading to Fe3O4[J]. Angewandte Chemie InternationalEdition,2005,44(1):123-126.
    [88] Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T.Ultra-large-scale syntheses of monodisperse nanocrystals [J]. Nat Mater,2004,3(12):891-895.
    [89] Sun S H, Murray C B, Weller D, Folks L, Moser A. Monodisperse FePt Nanoparticles andFerromagnetic FePt Nanocrystal Superlattices [J]. Science,2000,287(5460):1989-1992.
    [90] Sun S H, Zeng H. Size-Controlled Synthesis of Magnetite Nanoparticles [J]. Journal of theAmerican Chemical Society,2002,124(28):8204-8205.
    [91] Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G X. MonodisperseMFe2O4(M=Fe, Co, Mn) Nanoparticles [J]. Journal of the American Chemical Society,2003,126(1):273-279.
    [92] Wang C, Daimon H, Onodera T, Koda T, Sun S H. A General Approach to the Size-andShape-Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen[J]. Angewandte Chemie International Edition,2008,47(19):3588-3591.
    [93] Zeng H, Li J, Liu J P, Wang Z L, Sun S H. Exchange-coupled nanocomposite magnets bynanoparticle self-assembly [J]. Nature,2002,420(6914):395-398.
    [94] Bee A, Massart R, Neveu S. Synthesis of very fine maghemite particles [J]. Journal ofMagnetism and Magnetic Materials,1995,149(1-2):6-9.
    [95] Ishikawa T, Kataoka S, Kandori K. The influence of carboxylate ions on the growth ofβ-FeOOH particles [J]. Journal of Materials Science,1993,28(10):2693-2698.
    [96] Wang X, Zhuang J, Peng Q, Li Y D. A general strategy for nanocrystal synthesis [J]. Nature,2005,437(7055):121-124.
    [97] Deng H, Li X L, Peng Q, Wang X, Chen J P, Li Y D. Monodisperse Magnetic Single-CrystalFerrite Microspheres [J]. Angewandte Chemie International Edition,2005,44(18):2782-2785.
    [98] Wang J, Sun J J, Sun Q, Chen Q W. One-step hydrothermal process to prepare highlycrystalline Fe3O4nanoparticles with improved magnetic properties [J]. Materials ResearchBulletin,2003,38(7):1113-1118.
    [99] Cai W, Wan J Q. Facile synthesis of superparamagnetic magnetite nanoparticles in liquidpolyols [J]. Journal of Colloid and Interface Science,2007,305(2):366-370.
    [100] Fievet F, Lagier J P, Blin B, Beaudoin B, Figlarz M. Homogeneous and heterogeneousnucleations in the polyol process for the preparation of micron and submicron size metal particles[J]. Solid State Ionics,32-33, Part1(0):198-205.
    [101] Wang J Y, Ren F L, Yi R, Yan A, Qiu G Z, Liu X H. Solvothermal synthesis and magneticproperties of size-controlled nickel ferrite nanoparticles [J]. Journal of Alloys and Compounds,2009,479(1-2):791-796.
    [102] Xuan S H, Wang F, Wang Yi-Xiang J, Yu J C, Leung K Cham-Fai. Facile synthesis ofsize-controllable monodispersed ferrite nanospheres [J]. Journal of Materials Chemistry,2010,20(24):5086-5094.
    [103] Xu H, Cui L L, Tong N H, Gu H C. Development of High MagnetizationFe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/Emulsion Polymerization [J].Journal of the American Chemical Society,2006,128(49):15582-15583.
    [104] Xu H, Tong N H, Cui L L, Lu Y, Gu H C. Preparation of hydrophilic magnetic nanosphereswith high saturation magnetization [J]. Journal of Magnetism and Magnetic Materials,2007,311(1):125-130.
    [105] Wu P G, Zhu J H, Xu Z H. Template-Assisted Synthesis of Mesoporous MagneticNanocomposite Particles [J]. Advanced Functional Materials,2004,14(4):345-351.
    [106] Yi D K, Lee S S, Papaefthymiou G C, Ying J Y. Nanoparticle Architectures Templated bySiO2/Fe2O3Nanocomposites [J]. Chemistry of Materials,2006,18(3):614-619.
    [107] Zhang L, Qiao S Z, Jin Y G, Yang H G, Budihartono S, Stahr F, Yan Z F, et al. Fabricationand Size-Selective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered PeriodicMesostructure [J]. Advanced Functional Materials,2008,18(20):3203-3212.
    [108] Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I.Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery [J]. ACS Nano,2008,2(5):889-896.
    [109] Lin Y S, Haynes C L. Synthesis and Characterization of Biocompatible and Size-TunableMultifunctional Porous Silica Nanoparticles [J]. Chemistry of Materials,2009,21(17):3979-3986.
    [110] Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, et al. Magnetic FluorescentDelivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with MonodisperseMagnetic and Semiconductor Nanocrystals [J]. Journal of the American Chemical Society,2005,128(3):688-689.
    [111] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T.Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and aMesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for DrugDelivery [J]. Angewandte Chemie International Edition,2008,47(44):8438-8441.
    [112] Lin Y S, Wu S H, Hung Y, Chou Y H, Chang C, Lin M L, Tsai C P, Mou C Y.Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous [J].Chemistry of Materials,2006,18(22):5170-5172.
    [113] Ruiz-Hernández E, López-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-RegíM. Aerosol-Assisted Synthesis of Magnetic Mesoporous Silica Spheres for Drug Targeting [J].Chemistry of Materials,2007,19(14):3455-3463.
    [114] Deng Y H, Qi D W, Deng C H, Zhang X M, Zhao D Y. SuperparamagneticHigh-Magnetization Microspheres with an Fe3O4@SiO2Core and Perpendicularly AlignedMesoporous SiO2Shell for Removal of Microcystins [J]. Journal of the American ChemicalSociety,2007,130(1):28-29.
    [115] Guo X H, Deng Y H, Gu D, Che R C, Zhao D Y. Synthesis and microwave absorption ofuniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites [J]. Journalof Materials Chemistry,2009,19(37):6706-6712.
    [116] Yang P P, Quan Z W, Hou Z Y, Li C X, Kang X J, Cheng Z Y, Lin J. A magnetic,luminescent and mesoporous core–shell structured composite material as drug carrier [J].Biomaterials,2009,30(27):4786-4795.
    [117] Gai S L, Yang P P, Li C X, Wang W X, Dai Y L, Niu N, Lin J. Synthesis of Magnetic,Up-Conversion Luminescent, and Mesoporous Core–Shell-Structured Nanocomposites as DrugCarriers [J]. Advanced Functional Materials,2010,20(7):1166-1172.
    [118] Wang C, Tao S Y, Wei W, Meng C G, Liu F Y, Han M. Multifunctional mesoporous materialfor detection, adsorption and removal of Hg2+in aqueous solution [J]. Journal of MaterialsChemistry,2010,20(22):4635-4641.
    [119] Wang P, Shi Q H, Shi Y F, Clark K K, Stucky G D, Keller A A. Magnetic PermanentlyConfined Micelle Arrays for Treating Hydrophobic Organic Compound Contamination [J].Journal of the American Chemical Society,2008,131(1):182-188.
    [120] Nakamura T, Yamada Y, Yano K. Novel synthesis of highly monodispersed γ-Fe2O3/SiO2and ε-Fe2O3/SiO2nanocomposite spheres [J]. Journal of Materials Chemistry,2006,16(25):2417-2419.
    [121] Yiu H H P, Keane M A, Lethbridge Z A D, Lees M R, El Haj A J, Dobson J. Synthesis ofnovel magnetic iron metal–silica (Fe–SBA-15) and magnetite–silica (Fe3O4-SBA-15)nanocomposites with a high iron content using temperature-programed reduction [J].Nanotechnology,2008,19(25):255606.
    [122] Zhu Y F, Kaskel S, Ikoma T, Hanagata N. Magnetic SBA-15/poly(N-isopropylacrylamide)composite: Preparation, characterization and temperature-responsive drug release property [J].Microporous and Mesoporous Materials,2009,123(1-3):107-112.
    [123] Alam S, Anand C, Logudurai R, Balasubramanian V V, Ariga K, Bose A C, Mori T,Srinivasu P, Vinu A. Comparative study on the magnetic properties of iron oxide nanoparticlesloaded on mesoporous silica and carbon materials with different structure [J]. Microporous andMesoporous Materials,2009,121(1-3):178-184.
    [124] Alam S, Anand C, Ariga K, Mori T, Vinu A. Unusual Magnetic Properties of Size-ControlledIron Oxide Nanoparticles Grown in a Nanoporous Matrix with Tunable Pores [J]. AngewandteChemie International Edition,2009,48(40):7358-7361.
    [125] Wang X Q, Chen M, Li L, Jin D F, Jin H X, Ge H L. Magnetic properties of SBA-15mesoporous nanocomposites with CoFe2O4nanoparticles [J]. Materials Letters,2010,64(6):708-710.
    [126] Lee K R, Kim S, Kang D H, Lee J I, Lee Y J, Kim W S, Cho D H, et al. Highly UniformSuperparamagnetic Mesoporous Spheres with Submicrometer Scale and Their Uptake into Cells[J]. Chemistry of Materials,2008,20(21):6738-6742.
    [127] Du Y C, Liu S, Ji Y Y, Zhang Y L, Xiao N, Xiao F S. Ordered mesoporous silica materials(SBA-15) with good heat-resistant magnetism [J]. Journal of Magnetism and Magnetic Materials,2008,320(13):1932-1936.
    [128] Kim H J, Ahn J E, Haam S, Shul Y G, Song S Y, Tatsumi T. Synthesis and characterizationof mesoporous Fe/SiO2for magnetic drug targeting [J]. Journal of Materials Chemistry,2006,16(17):1617-1621.
    [129] Shevchenko E V, Talapin D V, Schnablegger H, Kornowski A, Festin O, Svedlindh P, HaaseM, Weller H. Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic AlloyNanocrystals: The Role of Nucleation Rate in Size Control of CoPt3Nanocrystals [J]. Journal ofthe American Chemical Society,2003,125(30):9090-9101.
    [130] Garcia C B W, Zhang Y M, Mahajan S, Disalvo F, Wiesner U. Self-Assembly Approachtoward Magnetic Silica-Type Nanoparticles of Different Shapes from Reverse Block CopolymerMesophases [J]. Journal of the American Chemical Society,2003,125(44):13310-13311.
    [131] Garcia C, Zhang Y M, Disalvo F, Wiesner U. Mesoporous Aluminosilicate Materials withSuperparamagnetic γ-Fe2O3Particles Embedded in the Walls [J]. Angewandte ChemieInternational Edition,2003,42(13):1526-1530.
    [132] Zhu Y F, Kockrick E, Ikoma T, Hanagata N, Kaskel S. An Efficient Route to Rattle-TypeFe3O4@SiO2Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates [J].Chemistry of Materials,2009,21(12):2547-2553.
    [133] Zhu Y F, Ikoma T, Hanagata N, Kaskel S. Rattle-Type Fe3O4@SiO2Hollow MesoporousSpheres as Carriers for Drug Delivery [J]. Small,2010,6(3):471-478.
    [134] Zhao W R, Chen H R, Li Y S, Li L, Lang M D, Shi J L. Uniform Rattle-type HollowMagnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property [J].Advanced Functional Materials,2008,18(18):2780-2788.
    [135] Zhang L, Qiao S Z, Jin Y G, Chen Z G, Gu H C, Lu G Q. Magnetic Hollow Spheres ofPeriodic Mesoporous Organosilica and Fe3O4Nanocrystals: Fabrication and Structure Control [J].Advanced Materials,2008,20(4):805-809.
    [136] Niu D C, Li Y S, Qiao X L, Li L, Zhao W R, Chen H R, Zhao Q L, Ma Z, Shi J L. A facileapproach to fabricate functionalized superparamagnetic copolymer-silica nanocomposite spheres[J]. Chemical Communications,2008(37):4463-4465.
    [137] Liu Jian, Qiao Shi Zhang, Budi Hartono Sandy.Lu Gao Qing Monodisperse Yolk–ShellNanoparticles with a Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors [J].Angewandte Chemie International Edition,2010,49(29):4981-4985.
    [138] Lin Y S, Wu S H, Tseng C T, Hung Y, Chang C, Mou C Y. Synthesis of hollow silicananospheres with a microemulsion as the template [J]. Chemical Communications,2009(24):3542-3544.
    [139] Li L, Choo E S G, Tang X S, Ding J, Xue J M. A facile one-step route to synthesizecage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles in theirshells [J]. Chemical Communications,2009(8):938-940.
    [140] Lu A H, Schmidt W, Matoussevitch N, B nnemann H, Spliethoff B, Tesche B, Bill E, KieferW, Schüth F. Nanoengineering of a Magnetically Separable Hydrogenation Catalyst [J].Angewandte Chemie International Edition,2004,43(33):4303-4306.
    [141] Souza K C, Salazar-Alvarez G, Ardisson J D, Macedo W A A, Sousa E M B. Mesoporoussilica–magnetite nanocomposite synthesized by using a neutral surfactant [J]. Nanotechnology,2008,19(18):185603.
    [142] Zhou J H, He J P, Li G X, Wang T, Sun D, Ding X C, Zhao J Q, Wu S C. DirectIncorporation of Magnetic Constituents within Ordered Mesoporous Carbon SilicaNanocomposites for Highly Efficient Electromagnetic Wave Absorbers [J]. The Journal ofPhysical Chemistry C,2010,114(17):7611-7617.
    [143] Guo L M, Zeng S Z, Li J T, Cui F M, Cui X Z, Bu W B, Shi J L. An easy co-casting methodto synthesize mesostructured carbon composites with high magnetic separability and acidresistance [J]. New Journal of Chemistry,2009,33(9):1926-1931.
    [144] Fuertes A B, Tartaj P. Monodisperse Carbon–Polymer Mesoporous Spheres with MagneticFunctionality and Adjustable Pore-Size Distribution [J]. Small,2007,3(2):275-279.
    [145] Lee J, Jin S M, Hwang Y, Park J G, Park H M, Hyeon T. Simple synthesis of mesoporouscarbon with magnetic nanoparticles embedded in carbon rods [J]. Carbon,2005,43(12):2536-2543.
    [146] Yao J Y, Li L X, Song H H, Liu C Y, Chen X H. Synthesis of magnetically separable orderedmesoporous carbons from F127/[Ni(H2O)6](NO3)2/resorcinol-formaldehyde composites [J].Carbon,2009,47(2):436-444.
    [147] Zhai Y P, Dou Y Q, Liu X X, Tu B, Zhao D Y. One-pot synthesis of magnetically separableordered mesoporous carbon [J]. Journal of Materials Chemistry,2009,19(20):3292-3300.
    [148] Han Y J, Stucky G D, Butler A. Mesoporous Silicate Sequestration and Release of Proteins[J]. Journal of the American Chemical Society,1999,121(42):9897-9898.
    [149] Fan J, Lei J, Wang L M, Yu C Z, Tu B, Zhao D Y. Rapid and high-capacity immobilizationof enzymes based on mesoporous silicas with controlled morphologies [J]. ChemicalCommunications,2003(17):2140-2141.
    [150] Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink J I, Nel A E.Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles andAllows Safe Delivery of siRNA and DNA Constructs [J]. ACS Nano,2009,3(10):3273-3286.
    [151] Giri S, Trewyn B G, Stellmaker M P, Lin V S-Y. Stimuli-Responsive Controlled-ReleaseDelivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles [J].Angewandte Chemie International Edition,2005,44(32):5038-5044.
    [152] Antochshuk V, Olkhovyk O, Jaroniec M, Park I S, Ryoo R. Benzoylthiourea-ModifiedMesoporous Silica for Mercury(II) Removal [J]. Langmuir,2003,19(7):3031-3034.
    [153] Delac te C, Gaslain F O M, Lebeau B, Walcarius A. Factors affecting the reactivity ofthiol-functionalized mesoporous silica adsorbents toward mercury(II)[J]. Talanta,2009,79(3):877-886.
    [154] Feng X, Fryxell G E, Wang L-Q, Kim A Y, Liu-J, Kemner K M. FunctionalizedMonolayers on Ordered Mesoporous Supports [J]. Science,1997,276(5314):923-926.
    [155] Zhang L X, Zhang W H, Shi J L, Hua Z L, Li Y S, Yan J N. A new thioether functionalizedorganic-inorganic mesoporous composite as a highly selective and capacious Hg2+adsorbent [J].Chemical Communications,2003(2):210-211.
    [156] Guo L M, Li J T, Zhang L X, Li J B, Li Y S, Yu C C, Shi J L, Ruan M l, Feng J W. A facileroute to synthesize magnetic particles within hollow mesoporous spheres and their performance asseparable Hg2+adsorbents [J]. Journal of Materials Chemistry,2008,18(23):2733-2738.
    [157] Yan Z, Tao S Y, Yin J X, Li G T. Mesoporous silicas functionalized with a high density ofcarboxylate groups as efficient absorbents for the removal of basic dyestuffs [J]. Journal ofMaterials Chemistry,2006,16(24):2347-2353.
    [158] Ho K Y, Mckay G, Yeung K L. Selective Adsorbents from Ordered Mesoporous Silica [J].Langmuir,2003,19(7):3019-3024.
    [159] Zhuang X, Wan Y, Feng C M, Shen Y, Zhao D Y. Highly Efficient Adsorption of Bulky DyeMolecules in Wastewater on Ordered Mesoporous Carbons [J]. Chemistry of Materials,2009,21(4):706-716.
    [160] Wu Z X, Webley P A, Zhao D Y. Comprehensive Study of Pore Evolution, MesostructuralStability, and Simultaneous Surface Functionalization of Ordered Mesoporous Carbon (FDU-15)by Wet Oxidation as a Promising Adsorbent [J]. Langmuir,2010,26(12):10277-10286.
    [161] Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, Li H, Lu Y F. Mesoporous TitaniaSpheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity [J]. Journal of theAmerican Chemical Society,2007,129(27):8406-8407.
    [162] Stone V F, Davis R J. Synthesis, Characterization, and Photocatalytic Activity of Titania andNiobia Mesoporous Molecular Sieves [J]. Chemistry of Materials,1998,10(5):1468-1474.
    [163] Yu J C, Yu J G, Zhao J C. Enhanced photocatalytic activity of mesoporous and ordinary TiO2thin films by sulfuric acid treatment [J]. Applied Catalysis B: Environmental,2002,36(1):31-43.
    [164] Taguchi A, Schüth F. Ordered mesoporous materials in catalysis [J]. Microporous andMesoporous Materials,2005,77(1):1-45.
    [165] Armengol E, Cano M L, Corma A, Garcia H, Navarro M T. Mesoporous aluminosilicateMCM-41as a convenient acid catalyst for Friedel-Crafts alkylation of a bulky aromatic compoundwith cinnamyl alcohol [J]. Journal of the Chemical Society, Chemical Communications,1995(5):519-520.
    [166] Blasco T, Corma A, Navarro M T, Pariente J P. Synthesis, Characterization, and CatalyticActivity of Ti-MCM-41Structures [J]. Journal of Catalysis,1995,156(1):65-74.
    [167] Blasco T, Corma A, Martínez A, Martínez-Escolano P. Supported heteropolyacid (HPW)catalysts for the continuous alkylation of isobutane with2-butene: The benefit of using MCM-41with larger pore diameters [J]. Journal of Catalysis,1998,177(2):306-313.
    [168] Ma G C, Yan X Q, Li Y L, Xiao L P, Huang Z J, Lu Y P, Fan J. Ordered Nanoporous Silicawith Periodic3060nm Pores as an Effective Support for Gold Nanoparticle Catalysts withEnhanced Lifetime [J]. Journal of the American Chemical Society,2010,132(28):9596-9597.
    [169] Wang J, Zhu H O. Alkylation of1-Dodecene with Benzene over H3PW12O40Supported onMesoporous Silica SBA-15[J]. Catalysis Letters,2004,93(3):209-212.
    [170] Batail N, Bendjeriou A, Djakovitch L, Dufaud V. Larock indole synthesis using palladiumcomplexes immobilized onto mesoporous silica [J]. Applied Catalysis A: General,2010,388(1-2):179-187.
    [171] Kuschel A, Drescher M, Kuschel T, Polarz S. Bifunctional Mesoporous OrganosilicaMaterials and Their Application in Catalysis: Cooperative Effects or Not?[J]. Chemistry ofMaterials,2010,22(4):1472-1482.
    [172] Bhaumik A, Inagaki S. Mesoporous Titanium Phosphate Molecular Sieves withIon-Exchange Capacity [J]. Journal of the American Chemical Society,2001,123(4):691-696.
    [173] Serre C, Auroux A, Gervasini A, Hervieu M, Férey G. Hexagonal and Cubic ThermallyStable Mesoporous Tin(IV) Phosphates with Acidic and Catalytic Properties [J]. AngewandteChemie International Edition,2002,41(9):1594-1597.
    [174] Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M. Electrochemical biosensor for thedetection of formaldehyde based on enzyme immobilization in mesoporous silica materials [J].Sensors and Actuators B: Chemical,2008,135(1):268-275.
    [175] Shimomura T, Itoh T, Sumiya T, Hanaoka T A, Mizukami F, Ono M. Amperometricdetection of phenolic compounds with enzyme immobilized in mesoporous silica prepared byelectrophoretic deposition [J]. Sensors and Actuators B: Chemical,2011,153(2):361-368.
    [176] Wang D, Hu P, Xu J Q, Dong X W, Pan Q Y. Fast response chlorine gas sensor based onmesoporous SnO2[J]. Sensors and Actuators B: Chemical,2009,140(2):383-389.
    [177] Innocenzi P, Martucci A, Guglielmi M, Bearzotti A, Traversa E. Electrical and structuralcharacterisation of mesoporous silica thin films as humidity sensors [J]. Sensors and Actuators B:Chemical,2001,76(1-3):299-303.
    [178] Bearzotti A. Relative humidity and alcohol sensors based on mesoporous silica thin filmssynthesised from block copolymers [J]. Sensors and Actuators B: Chemical,2003,95(1-3):107-110.
    [1] Yang M J, Li Y, Camaioni N, Casalbore-Miceli G, Martelli A, Ridolfi G. Polymer electrolytesas humidity sensors: progress in improving an impedance device [J]. Sensors and Actuators B:Chemical,2002,86(2-3):229-234.
    [2] Cho N B, Lim T H, Jeon Y M, Gong M S. Humidity sensors fabricated with photo-curableelectrolyte inks using an ink-jet printing technique and their properties [J]. Sensors and ActuatorsB: Chemical,2008,130(2):594-598.
    [3] Traversa E. Ceramic sensors for humidity detection: the state-of-the-art and futuredevelopments [J]. Sensors and Actuators B: Chemical,1995,23(2-3):135-156.
    [4] Bayhan M, Kavaso lu N. A study on the humidity sensing properties of ZnCr2O4–K2CrO4ionic conductive ceramic sensor [J]. Sensors and Actuators B: Chemical,2006,117(1):261-265.
    [5] Sakai Y, Sadaoka Y, Matsuguchi M. Humidity sensors based on polymer thin films [J]. Sensorsand Actuators B: Chemical,1996,35(1-3):85-90.
    [6] Li Y, Chen Y, Zhang C, Xue T X, Yang M J. A humidity sensor based on interpenetratingpolymer network prepared from poly(dimethylaminoethyl methacrylate) and poly(glycidylmethacrylate)[J]. Sensors and Actuators B: Chemical,2007,125(1):131-137.
    [7] Innocenzi P, Martucci A, Guglielmi M, Bearzotti A, Traversa E. Electrical and structuralcharacterisation of mesoporous silica thin films as humidity sensors [J]. Sensors and Actuators B:Chemical,2001,76(1-3):299-303.
    [8] Bearzotti A. Relative humidity and alcohol sensors based on mesoporous silica thin filmssynthesised from block copolymers [J]. Sensors and Actuators B: Chemical,2003,95(1-3):107-110.
    [9] Wang C T, Wu C L, Chen I C, Huang Y H. Humidity sensors based on silica nanoparticleaerogel thin films [J]. Sensors and Actuators B: Chemical,2005,107(1):402-410.
    [10] Hu L H, Ji S F, Xiao T C, Guo C X, Wu P Y, Nie P Y. Preparation and Characterization ofTungsten Carbide Confined in the Channels of SBA-15Mesoporous Silica [J]. The Journal ofPhysical Chemistry B,2007,111(14):3599-3608.
    [11] Gao F, Lu Q Y, Liu X Y, Yan Y S, Zhao D Y. Controlled Synthesis of Semiconductor PbSNanocrystals and Nanowires Inside Mesoporous Silica SBA-15Phase [J]. Nano Letters,2001,1(12):743-748.
    [12] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D.Triblock Copolymer Syntheses of Mesoporous Silica with Periodic50to300Angstrom Pores [J].Science,1998,279(5350):548-552.
    [13] Greenspan L. Humidity fixed points of binary saturated aqueous solutions [J]. Journal ofResearch of the National Bureau of Standards,1977,81(1):89-96.
    [14] Wang C T, Wu C L. Electrical sensing properties of silica aerogel thin films to humidity [J].Thin Solid Films,2006,496(2):658-664.
    [15] Chytil S, Haugland L, Blekkan E A. On the mechanical stability of mesoporous silicaSBA-15[J]. Microporous and Mesoporous Materials,2008,111(1-3):134-142.
    [16] Agarwal S, Sharma G L. Humidity sensing properties of (Ba, Sr) TiO3thin films grown byhydrothermal–electrochemical method [J]. Sensors and Actuators B: Chemical,2002,85(3):205-211.
    [17] Anderson J H, Parks G A. Electrical conductivity of silica gel in the presence of adsorbedwater [J]. The Journal of Physical Chemistry,1968,72(10):3662-3668.
    [18] Ernsberger F M. The Nonconformist Ion [J]. Journal of the American Ceramic Society,1983,66(11):747-750.
    [19] Casalbore-Miceli G, Yang M J, Camaioni N, Mari C M, Li Y, Sun H, Ling M. Investigationson the ion transport mechanism in conducting polymer films [J]. Solid State Ionics,2000,131(3-4):311-321.
    [20] Park I S, Choi S Y, Ha J S. High-performance titanium dioxide photocatalyst on orderedmesoporous carbon support [J]. Chemical Physics Letters,2008,456(4-6):198-201.
    [21] Jiang T S, Shen W, Zhao Q, Li M, Chu J Y, Yin H B. Characterization of CoMCM-41mesoporous molecular sieves obtained by the microwave irradiation method [J]. Journal of SolidState Chemistry,2008,181(9):2298-2305.
    [22] Jiang Q, Wu Z Y, Wang Y M, Cao Y, Zhou C F, Zhu J H. Fabrication of photoluminescentZnO/SBA-15through directly dispersing zinc nitrate into the as-prepared mesoporous silicaoccluded with template [J]. Journal of Materials Chemistry,2006,16(16):1536-1542.
    [23] Zhang Y, Zheng X J, Zhang T, Gong L J, Dai S H, Chen Y Q. Humidity sensing properties ofthe sensor based on Bi0.5K0.5TiO3powder [J]. Sensors and Actuators B: Chemical,2010,147(1):180-184.
    [24] Wang J, Su M Y, Qi J Q, Chang L Q. Sensitivity and complex impedance of nanometerzirconia thick film humidity sensors [J]. Sensors and Actuators B: Chemical,2009,139(2):418-424.
    [25] Hu S M, Chen H B, Fu G, Meng F M. Humidity sensitive properties of K+-dopedSnO2–LiZnVO4[J]. Sensors and Actuators B: Chemical,2008,134(2):769-772.
    [1] Qi Q, Zhang T, Liu L, Zheng X J, Yu Q J, Zeng Y, Yang H B. Selective acetone sensor basedon dumbbell-like ZnO with rapid response and recovery [J]. Sensors and Actuators B: Chemical,2008,134(1):166-170.
    [2] Carotta M C, Cervi A, di Natale V, Gherardi S, Giberti A, Guidi V, Puzzovio D, et al. ZnO gassensors: A comparison between nanoparticles and nanotetrapods-based thick films [J]. Sensors andActuators B: Chemical,2009,137(1):164-169.
    [3] Ahn M W, Park K S, Heo J H, Kim D W, Choi K J, Park J G. On-chip fabrication ofZnO-nanowire gas sensor with high gas sensitivity [J]. Sensors and Actuators B: Chemical,2009,138(1):168-173.
    [4] Wang X H, Ding Y F, Zhang J, Zhu Z Q, You S Z, Chen S Q, Zhu J Z. Humidity sensitiveproperties of ZnO nanotetrapods investigated by a quartz crystal microbalance [J]. Sensors andActuators B: Chemical,2006,115(1):421-427.
    [5] Erol A, Okur S, Ya murcukarde N, Ar kan M C. Humidity-sensing properties of a ZnOnanowire film as measured with a QCM [J]. Sensors and Actuators B: Chemical,2011,152(1):115-120.
    [6] Erol A, Okur S, Comba B, Mermer, Ar kan M C. Humidity sensing properties of ZnOnanoparticles synthesized by sol–gel process [J]. Sensors and Actuators B: Chemical,2010,145(1):174-180.
    [7] Pelino M, Cantalini C, Sun H T, Faccio M. Silica effect on α-Fe2O3humidity sensor [J].Sensors and Actuators B: Chemical,1998,46(3):186-193.
    [8] Tongpool R, Jindasuwan S. Sol-gel processed iron oxide-silica nanocomposite films asroom-temperature humidity sensors [J]. Sensors and Actuators B: Chemical,2005,106(2):523-528.
    [9] Khalil K, Makhlouf S A. Humidity sensing properties of porous iron oxide/silicananocomposite prepared via a formamide modified sol-gel process [J]. Sensors and Actuators A:Physical,2008,148(1):39-43.
    [10] Lu Q, Wang Z, Li J, Wang P, Ye X. Structure and Photoluminescent Properties of ZnOEncapsulated in Mesoporous Silica SBA-15Fabricated by Two-Solvent Strategy [J]. Nanoscaleresearch letters,2009,4(7):646-654.
    [11] Wang Y M, Wu Z Y, Shi L Y, Zhu J H. Rapid Functionalization of Mesoporous Materials:Directly Dispersing Metal Oxides into As-Prepared SBA-15Occluded with Template [J].Advanced Materials,2005,17(3):323-327.
    [12] Jiang Q, Wu Z Y, Wang Y M, Cao Y, Zhou C F, Zhu J H. Fabrication of photoluminescentZnO/SBA-15through directly dispersing zinc nitrate into the as-prepared mesoporous silicaoccluded with template [J]. J. Mater. Chem.,2006,16(16):1536-1542.
    [13] Wang Y M, Wu Z Y, Zhu J H. Surface functionalization of SBA-15by the solvent-freemethod [J]. Journal of Solid State Chemistry,2004,177(10):3815-3823.
    [14] Wang C T, Wu C L. Electrical sensing properties of silica aerogel thin films to humidity [J].Thin Solid Films,2006,496(2):658-664.
    [15] Benter T, Liesner M, Schindler R, Skov H, Hjorth J, Restelli G. REMPI-MS and FTIR Studyof NO2and Oxirane Formation in the Reactions of Unsaturated Hydrocarbons with NO3Radicals[J]. The Journal of Physical Chemistry,1994,98(41):10492-10496.
    [16] Stevens W J J, Lebeau K, Mertens M, Van T G, Cool P, Vansant E F. Investigation of themorphology of the mesoporous SBA-16and SBA-15materials [J]. The Journal of PhysicalChemistry B,2006,110(18):9183-9187.
    [17] Salavati-Niasari M, Mir N, Davar F. ZnO nanotriangles: Synthesis, characterization andoptical properties [J]. Journal of Alloys and Compounds,2009,476(1-2):908-912.
    [18] Yao B, Shi H, Bi H, Zhang L. Optical properties of ZnO loaded in mesoporous silica [J].Journal of Physics: Condensed Matter,2000,12:6265.
    [19] Fu Z, Yang B, Li L, Dong W, Jia C, Wu W. An intense ultraviolet photoluminescence insol–gel ZnO–SiO2nanocomposites [J]. Journal of Physics: Condensed Matter,2003,15:2867.
    [20] Mikheeva E P, Koscheev S V, Ruzankin S P, Zhidomirov G M, Leontiev S A, Devjatov V G.,Cherkashin A E. An effect of the Zn3d-states on UV and X-ray spectra in ZnO [J]. Journal ofElectron Spectroscopy and Related Phenomena,1998,94(1–2):59-71.
    [21] Yuan Q, Geng W C, Li N, Tu J C, Wang R, Zhang T, Li X T. Study on humidity sensitiveproperty of K2CO3-SBA-15composites [J]. Applied Surface Science,2009,256(1):280-283.
    [22] Wang Z Y, Chen C, Zhang T, Guo H L, Zou B, Wang R, Wu F Q. Humidity sensitiveproperties of K+-doped nanocrystalline LaCo0.3Fe0.7O3[J]. Sensors and Actuators B: Chemical,2007,126(2):678-683.
    [23] Wang W, Li Z Y, Liu L, Zhang H N, Zheng W, Wang Y, Huang H M, Wang Z J, Wang C.Humidity sensor based on LiCl-doped ZnO electrospun nanofibers [J]. Sensors and Actuators B:Chemical,2009,141(2):404-409.
    [24] Tu J C, Wang R, Geng W C, Lai X Y, Zhang T, Li N, Yue N L, Li X T. Humidity sensitiveproperty of Li-doped3D periodic mesoporous silica SBA-16[J]. Sensors and Actuators B:Chemical,2009,136(2):392-398.
    [25] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D.Triblock Copolymer Syntheses of Mesoporous Silica with Periodic50to300Angstrom Pores [J].Science,1998,279(5350):548-552.
    [26] Vinu A, Murugesan V, Hartmann M. Adsorption of lysozyme over mesoporous molecularsieves MCM-41and SBA-15: influence of pH and aluminum incorporation [J]. The Journal ofPhysical Chemistry B,2004,108(22):7323-7330.
    [27] Li Y, Zhang W, Zhang L, Yang Q, Wei Z, Feng Z, Li C. Direct synthesis of Al-SBA-15mesoporous materials via hydrolysis-controlled approach [J]. The Journal of Physical Chemistry B,2004,108(28):9739-9744.
    [28] Zhang R, Dai H, Du Y, Zhang L, Deng J, Xia Y, Zhao Z, Meng X, Liu Y. P123-PMMADual-Templating Generation and Unique Physicochemical Properties of Three-DimensionallyOrdered Macroporous Iron Oxides with Nanovoids in the Crystalline Walls [J]. InorganicChemistry,2011.
    [29] Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganicnanocomposite materials [J]. Chemistry of materials,2001,13(10):3169-3183.
    [30] Choi S Y, Mamak M, Coombs N, Chopra N, Ozin G A. Thermally Stable Two‐DimensionalHexagonal Mesoporous Nanocrystalline Anatase, Meso-nc-TiO2: Bulk and Crack‐Free ThinFilm Morphologies [J]. Advanced Functional Materials,2004,14(4):335-344.
    [31] Traversa E, Gnappi G, Montenero A, Gusmano G. Ceramic thin films by sol-gel processing asnovel materials for integrated humidity sensors [J]. Sensors and Actuators B: Chemical,1996,31(1-2):59-70.
    [32] Sun A, Huang L, Li Y. Study on humidity sensing property based on TiO2porous film andpolystyrene sulfonic sodium [J]. Sensors and Actuators B: Chemical,2009,139(2):543-547.
    [33] Ernsberger F M. The Nonconformist Ion [J]. Journal of the American Ceramic Society,1983,66(11):747-750.
    [34] Feng C D, Sun S L, Wang H, Segre C U, Stetter J R. Humidity sensing properties of Nationand sol-gel derived SiO2/Nafion composite thin films [J]. Sensors and Actuators B: Chemical,1997,40(2-3):217-222.
    [1] Zhao W R, Chen H R, Li Y S, Li L, Lang M D, Shi J L. Uniform Rattle-type Hollow MagneticMesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property [J].Advanced Functional Materials,2008,18(18):2780-2788.
    [2] Zhang L, Wang W Z, Zhou L, Shang M, Sun S M. Fe3O4coupled BiOCl: A highly efficientmagnetic photocatalyst [J]. Applied Catalysis B: Environmental,2009,90(3–4):458-462.
    [3] Wang L, Neoh K G, Kang E T, Shuter B, Wang S C. Superparamagnetic HyperbranchedPolyglycerol-Grafted Fe3O4Nanoparticles as a Novel Magnetic Resonance Imaging ContrastAgent: An In Vitro Assessment [J]. Advanced Functional Materials,2009,19(16):2615-2622.
    [4] Hou C H, Hou S M, Hsueh Y S, Lin J, Wu H C, Lin F H. The in vivo performance ofbiomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy [J]. Biomaterials,2009,30(23–24):3956-3960.
    [5] Guo S J, Dong S J, Wang E K. A General Method for the Rapid Synthesis of Hollow Metallicor Bimetallic Nanoelectrocatalysts with Urchinlike Morphology [J]. Chemistry-A EuropeanJournal,2008,14(15):4689-4695.
    [6] Gong P, Li H M, He X X, Wang K M, Hu J B, Tan W H, Zhang S C, Yang X H. Preparationand antibacterial activity of Fe3O4@Ag nanoparticles [J]. Nanotechnology,2007,18:285604.
    [7] Salgueiri o-Maceira V, Correa-Duarte M A, Spasova M, Liz-Marzán L M, Farle M. CompositeSilica Spheres with Magnetic and Luminescent Functionalities [J]. Advanced Functional Materials,2006,16(4):509-514.
    [8] Liu X W, Hu Q Y, Fang Z, Zhang X J, Zhang B B. Magnetic Chitosan Nanocomposites: AUseful Recyclable Tool for Heavy Metal Ion Removal [J]. Langmuir,2008,25(1):3-8.
    [9] Zhao W R, Gu J L, Zhang L X, Chen H R, Shi J L. Fabrication of uniform magneticnanocomposite spheres with a magnetic core/mesoporous silica shell structure [J]. Journal of theAmerican Chemical Society,2005,127(25):8916-8917.
    [10] Deng Y H, Qi D W, Deng C H, Zhang X M, Zhao D Y. Superparamagnetichigh-magnetization microspheres with an Fe3O4@SiO2core and perpendicularly alignedmesoporous SiO2shell for removal of microcystins [J]. Journal of the American Chemical Society,2008,130(1):28-29.
    [11] Guo X H, Deng Y H, Gu D, Che R C, Zhao D Y. Synthesis and microwave absorption ofuniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites [J]. Journalof Materials Chemistry,2009,19(37):6706.
    [12] Liu J, Sun Z K, Deng Y H, Zou Y, Li C Y, Guo X H, Xiong L Q, et al. HighlyWater-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by CitrateGroups [J]. Angewandte Chemie,2009,121(32):5989-5993.
    [13] Deng H, Li X L, Peng Q, Wang X, Chen J P, Li Y D. Monodisperse Magnetic Single-CrystalFerrite Microspheres [J]. Angewandte Chemie,2005,44(18):2782-2785.
    [14] Luo B, Song X J, Zhang F, Xia A, Yang W L, Hu J H, Wang C C. Multi-FunctionalThermosensitive Composite Microspheres with High Magnetic Susceptibility Based on MagnetiteColloidal Nanoparticle Clusters [J]. Langmuir,2009,26(3):1674-1679.
    [15] Gao Q, Chen F H, Zhang J L, Hong G Y, Ni J Z, Wei X, Wang D J. The study of novelFe3O4@γ-Fe2O3core/shell nanomaterials with improved properties [J]. Journal of Magnetism andMagnetic Materials,2009,321(8):1052-1057.
    [16] Xu Z H, Li C X, Kang X J, Yang D M, Yang P P, Hou Z Y, Lin J. Synthesis of amultifunctional nanocomposite with magnetic, mesoporous, and near-IR absorption properties [J].The Journal of Physical Chemistry C,2010.
    [1] A rmor J N. A history of industrial catalysis [J]. Catalysis Today,2011,163(1):3-9.
    [2] Cornils B, Herrmann W A. Concepts in homogeneous catalysis: the industrial view [J]. Journalof Catalysis,2003,216(1–2):23-31.
    [3] Badawy M I, Wahaab R A, El-Kalliny A S. Fenton-biological treatment processes for theremoval of some pharmaceuticals from industrial wastewater [J]. Journal of Hazardous Materials,2009,167(1–3):567-574.
    [4] Wang Y, Wang Y, Meng Y L, Ding H M, Shan Y K, Zhao X, Tang X Z. A Highly EfficientVisible-Light-Activated Photocatalyst Based on Bismuth-and Sulfur-Codoped TiO2[J]. TheJournal of Physical Chemistry C,2008,112(17):6620-6626.
    [5] Pillai S C, Periyat P, George R, Mccormack D E, Seery M K, Hayden H, Colreavy J, Corr D,Hinder S J. Synthesis of High-Temperature Stable Anatase TiO2Photocatalyst [J]. The Journal ofPhysical Chemistry C,2007,111(4):1605-1611.
    [6] Pan H, Qiu X F, Ivanov I N, Meyer H M, Wang W, Zhu W G, Paranthaman M P, et al.Fabrication and characterization of brookite-rich, visible light-active TiO2films for water splitting[J]. Applied Catalysis B: Environmental,2009,93(1–2):90-95.
    [7] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use inCatalysis [J]. Chemical Reviews,1997,97(6):2373-2420.
    [8] Raja P, Nadtochenko V, Klehm U, Kiwi J. Structure and performance of a novelTiO2-phosphonate composite photocatalyst [J]. Applied Catalysis B: Environmental,2008,81(3–4):258-266.
    [9] Teng D H, Yu Y H, Liu H Y, Yang X P, Ryu S, Lin Y H. Facile fabrication of heterostructuredTiO2xNx/CNFs as an efficient visible-light responsive photocatalyst [J]. CatalysisCommunications,2009,10(5):442-446.
    [10] Fateh R, Ismail A A, Dillert R, Bahnemann D W. Highly Active Crystalline Mesoporous TiO2Films Coated onto Polycarbonate Substrates for Self-Cleaning Applications [J]. The Journal ofPhysical Chemistry C,2011,115(21):10405-10411.
    [11] Liu J K, An T C, Li G Y, Bao N Z, Sheng G Y, Fu J M. Preparation and characterization ofhighly active mesoporous TiO2photocatalysts by hydrothermal synthesis under weak acidconditions [J]. Microporous and Mesoporous Materials,2009,124(1–3):197-203.
    [12] Kim D S, Kwak S Y. The hydrothermal synthesis of mesoporous TiO2with high crystallinity,thermal stability, large surface area, and enhanced photocatalytic activity [J]. Applied Catalysis A:General,2007,323(0):110-118.
    [13] Sugishita N, Kuroda Y, Ohtani B. Preparation of decahedral anatase titania particles withhigh-level photocatalytic activity [J]. Catalysis Today,2011,164(1):391-394.
    [14] Shen L M, Bao N Z, Zheng Y Q, Gupta A, An T C, Yanagisawa K. Hydrothermal Splitting ofTitanate Fibers to Single-Crystalline TiO2Nanostructures with Controllable Crystalline Phase,Morphology, Microstructure, and Photocatalytic Activity [J]. The Journal of Physical Chemistry C,2008,112(24):8809-8818.
    [15] Yu J C, Zhang L Z, Yu J G. Direct Sonochemical Preparation and Characterization of HighlyActive Mesoporous TiO2with a Bicrystalline Framework [J]. Chemistry of Materials,2002,14(11):4647-4653.
    [16] Zhang Z B, Wang C C, Zakaria R, Ying J Y. Role of Particle Size in NanocrystallineTiO2-Based Photocatalysts [J]. The Journal of Physical Chemistry B,1998,102(52):10871-10878.
    [17] Periyat P, Baiju K V, Mukundan P, Pillai P K, Warrier K G K. High temperature stablemesoporous anatase TiO2photocatalyst achieved by silica addition [J]. Applied Catalysis A:General,2008,349(1–2):13-19.
    [18] Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Generalized syntheses oflarge-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature,1998,396(6707):152-155.
    [19] Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Block CopolymerTemplating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths andSemicrystalline Framework [J]. Chemistry of Materials,1999,11(10):2813-2826.
    [20] Bartl M H, Puls S P, Tang J, Lichtenegger H C, Stucky G D. Cubic Mesoporous Frameworkswith a Mixed Semiconductor Nanocrystalline Wall Structure and Enhanced Sensitivity to VisibleLight [J]. Angewandte Chemie International Edition,2004,43(23):3037-3040.
    [21] Tian B Z, Liu X Y, Tu B, Yu C Z, Fan J, Wang L M, Xie S H, Stucky G D, Zhao D Y.Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs [J]. Nat Mater,2003,2(3):159-163.
    [22] Li D L, Zhou H S, Honma I. Design and synthesis of self-ordered mesoporous nanocompositethrough controlled in-situ crystallization [J]. Nat Mater,2004,3(1):65-72.
    [23] Choi S Y, Mamak M, Coombs N, Chopra N, Ozin G A. Thermally Stable Two-DimensionalHexagonal Mesoporous Nanocrystalline Anatase, Meso-nc-TiO2: Bulk and Crack-Free Thin FilmMorphologies [J]. Advanced Functional Materials,2004,14(4):335-344.
    [24] Yu J G, Wang W G, Cheng B, Su B L. Enhancement of Photocatalytic Activity of MesporousTiO2Powders by Hydrothermal Surface Fluorination Treatment [J]. The Journal of PhysicalChemistry C,2009,113(16):6743-6750.
    [25] Huang C H, Yang Y T, Doong R A. Microwave-assisted hydrothermal synthesis ofmesoporous anatase TiO2via sol–gel process for dye-sensitized solar cells [J]. Microporous andMesoporous Materials,2011,142(2–3):473-480.
    [26] Lencka M M, Riman R E. Thermodynamics of the Hydrothermal Synthesis of CalciumTitanate with Reference to Other Alkaline-Earth Titanates [J]. Chemistry of Materials,1995,7(1):18-25.
    [27] Jung H G, Yoon C S, Prakash J, Sun Y K. Mesoporous Anatase TiO2with High Surface Areaand Controllable Pore Size by F-Ion Doping: Applications for High-Power Li-Ion Battery Anode[J]. The Journal of Physical Chemistry C,2009,113(50):21258-21263.
    [28] Liu H, Liang Y G, Hu H J, Wang M Y. Hydrothermal synthesis of mesostructurednanocrystalline TiO2in an ionic liquid–water mixture and its photocatalytic performance [J]. SolidState Sciences,2009,11(9):1655-1660.
    [29] Wang C, Li Q, Wang R D. Synthesis and characterization of mesoporous TiO2with anatasewall [J]. Materials Letters,2004,58(9):1424-1426.
    [30] Kao L H, Hsu T C, Cheng K K. Novel synthesis of high-surface-area ordered mesoporousTiO2with anatase framework for photocatalytic applications [J]. Journal of Colloid and InterfaceScience,2010,341(2):359-365.
    [31] Anandan S, Yoon M. Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites [J].Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2003,4(1):5-18.
    [32] Byrne J A, Eggins B R, Brown N M D, Mckinney B, Rouse M. Immobilisation of TiO2powder for the treatment of polluted water [J]. Applied Catalysis B: Environmental,1998,17(1–2):25-36.
    [33] Haarstrick A, Kut O M, Heinzle E. TiO2-Assisted Degradation of Environmentally RelevantOrganic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactor [J]. EnvironmentalScience&Technology,1996,30(3):817-824.
    [34] Beydoun D, Amal R. Implications of heat treatment on the properties of a magnetic ironoxide–titanium dioxide photocatalyst [J]. Materials Science and Engineering: B,2002,94(1):71-81.
    [35] Beydoun D, Amal R, Low G, Mcevoy S. Occurrence and prevention of photodissolution atthe phase junction of magnetite and titanium dioxide [J]. Journal of Molecular Catalysis A:Chemical,2002,180(1–2):193-200.
    [36] Song X F, Gao L. Fabrication of Bifunctional Titania/Silica-Coated Magnetic Spheres andtheir Photocatalytic Activities [J]. Journal of the American Ceramic Society,2007,90(12):4015-4019.
    [37] Wang C X, Yin L W, Zhang L Y, Kang L, Wang X F, Gao R. Magnetic(γ-Fe2O3@SiO2)n@TiO2Functional Hybrid Nanoparticles with Actived Photocatalytic Ability [J].The Journal of Physical Chemistry C,2009,113(10):4008-4011.
    [38] Xu S H, Shangguan W F, Yuan J, Chen M X, Shi J W, Jiang Z. Synthesis and performance ofnovel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-likestructure [J]. Nanotechnology,2008,19:095606.
    [39] Ye M M, Zhang Q, Hu Y X, Ge J P, Lu Z D, He L, Chen Z L, Yin Y D. MagneticallyRecoverable Core–Shell Nanocomposites with Enhanced Photocatalytic Activity [J]. Chemistry-AEuropean Journal,2010,16(21):6243-6250.
    [40] Ortega D, Garitaonandia J S, Barrera-Solano C, Ramírez-Del-Solar M, Blanco E, DomínguezM. γ-Fe2O3/SiO2nanocomposites for magneto-optical applications: Nanostructural and magneticproperties [J]. Journal of Non-Crystalline Solids,2006,352(26–27):2801-2810.
    [41] Xu S H, Shangguan W F, Yuan J, Chen M X, Shi J W. Preparations and photocatalyticproperties of magnetically separable nitrogen-doped TiO2supported on nickel ferrite [J]. AppliedCatalysis B: Environmental,2007,71(3–4):177-184.
    [42] Shibata H, Ogura T, Mukai T, Ohkubo T, Sakai H, Abe M. Direct Synthesis of MesoporousTitania Particles Having a Crystalline Wall [J]. Journal of the American Chemical Society,2005,127(47):16396-16397.
    [43] Liu J, Sun Z K, Deng Y H, Zou Y, Li C Y, Guo X H, Xiong L Q, et al. HighlyWater-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by CitrateGroups [J]. Angewandte Chemie,2009,121(32):5989-5993.
    [44] Peng T Y, Hasegawa A, Qiu J R, Hirao K. Fabrication of Titania Tubules with High SurfaceArea and Well-Developed Mesostructural Walls by Surfactant-Mediated Templating Method [J].Chemistry of Materials,2003,15(10):2011-2016.
    [45] Jung K Y, Park S B. Enhanced photoactivity of silica-embedded titania particles prepared bysol–gel process for the decomposition of trichloroethylene [J]. Applied Catalysis B:Environmental,2000,25(4):249-256.
    [46] Ding Z, Lu G Q, Greenfield P F. Role of the Crystallite Phase of TiO2in HeterogeneousPhotocatalysis for Phenol Oxidation in Water [J]. The Journal of Physical Chemistry B,2000,104(19):4815-4820.
    [47] Liu Z Y, Quan X, Fu H B, Li X Y, Yang K. Effect of embedded-silica on microstructure andphotocatalytic activity of titania prepared by ultrasound-assisted hydrolysis [J]. Applied CatalysisB: Environmental,2004,52(1):33-40.
    [48] Wang X, Wang L Y, He X W, Zhang Y K, Chen L X. A molecularly imprinted polymer-coatednanocomposite of magnetic nanoparticles for estrone recognition [J]. Talanta,2009,78(2):327-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700