用户名: 密码: 验证码:
纳米传感材料制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别利用苯胺的化学及电化学原位聚合制备了聚苯胺(PANI)纳米纤维,分别在丝网印刷电极(SPE)及石墨箔(GF)上,构建了PANI纳米纤维传感元件Nano-PANI/SPE及Nano-PANI/GF。通过电化学氧化膨胀石墨箔,制备了附着于石墨箔上的氧化石墨烯GONS。
     在丝网印刷电极分支间绝缘带上,采用0.2mol·dm-3苯胺的1.0mol·dm-3盐酸溶液,以FeCl3为氧化剂原位聚合苯胺,制备PANI纳米纤维,构建nano-PANI/SPE传感元件。利用SEM观测了位于Nano-PANI/SPE碳电极分支间绝缘带上PANI的形貌,发现PANI在以直径约60nm的纳米纤维形式存在,纳米纤维相互交叉,形成孔径约为300~400nm的均匀多孔结构。
     监测了Nano-PANI/SPE传感元件对挥发性有机化合物及氨气的电阻响应,分析了这些气体对PANI电阻的影响。Nano-PANI/SPE传感元件对氯代甲烷、小分子醇、甲苯、三乙胺及氨气均有迅速的电阻响应。由于氨气对PANI具有强脱质子掺杂作用,传感元件对氨气响应灵敏度最高、检测限最低,理论检测限达0.45ppb。Nano-PANI/SPE传感元件具有较好的电阻稳定性,空气中放置一周后,电阻仅增加3.86%。
     石墨箔为工作电极,在含有0.2mol·dm-3苯胺的1.0mol·dm-3的盐酸溶液中,通过循环伏安法进行苯胺的电化学聚合,制备了PANI纳米纤维修饰石墨箔电极Nano-PANI/GF。利用FTIR研究了修饰电极上聚合物的振动吸收,利用SEM观测了其形貌。用循环伏安法研究了Nano-PANI/GF修饰电极在0.1mol·dm-3的磷酸盐缓冲溶液(pH6.9)中的电化学活性。发现1~6次循环伏安扫描聚合后,制备的Nano-PANI/GF修饰电极的电化学活性随着聚合扫描次数增加而增加。但由于该PANI在中性溶液中的电化学活性源于石墨箔与PANI之间的电荷传递作用,增加循环伏安扫描次数继续聚合苯胺对电化学活性基本无贡献。
     利用循环伏安法研究了Nano-PANI/GF修饰电极对抗坏血酸电化学氧化的催化作用。计时电流实验结果表明,在0.2V电位条件下,1.7~2.0×103μmol·dm-3浓度范围内,抗坏血酸在Nano-PANI/GF修饰电极上的氧化电流与浓度成线性关系,线性方程式为i(mA)=0.0031+0.00013[AA](mmol·dm-3),R2=O.9994,灵敏度为0.13mA·cm-2·mmol-1·dm3,检测限为1.7μmol·dm-3。
     以石墨箔为原料,通过电化学氧化膨胀制备了附着于石墨箔表面的氧化石墨烯(GONS)。利用XPS和FTIR分析了氧化石墨烯组成,利用SEM观测其形貌,发现氧化石墨烯片层最低可达到4nm。
     利用循环伏安法研究了GONS对抗坏血酸(AA)电化学氧化的催化活性。OV的计时电流实验结果表明,在5.0×10-4~1.0mmol·dm-3浓度范围内,GONS上的响应电流与AA浓度成线性关系,线性方程式为i(mA)=0.0022+0.10[AA](mmol·dm-3),R2=0.9967;灵敏度为0.10mA·cm-2·mol-1·dm3,检测限为0.5μmol·dm-3。浓度为0.25mmol·dm-3的AA的3次测试相对标准偏差为3.8%。柠檬酸(CA)、葡萄糖(Glu)、乳酸(LA)、尿酸(UA)和多巴胺(DA)等常见干扰物在GONS上的氧化电位较高,对AA测试无明显干扰。利用GONS检测了三种饮料中的AA,加入标准样品的回收率达92.0~100.5%。
     循环伏安及脉冲伏安实验结果表明,GONS对多巴胺(DA)、尿酸(UA)和对乙酰氨基酚(APAP)也有很好的电流响应。在25~200μmol·dm-3浓度范围内,DA的氧化峰电流与其浓度呈现良好的线性关系,线性相关方程为ip(μA)=4.6+0.90[DA](μmol·dm-3),R2=0.9908。DA在GONS上的检测限为4.6μmol·dm-3,灵敏度为0.90μA·cm-2·μmol-1·dm3,3次测定80μmol·dm-3DA的相对标准偏差为2.3%。在25~130μmol·dm-3浓度范围内,UA的氧化峰电流与其浓度呈现良好的线性关系,线性相关方程为ip(μA)=0.010+0.90[UA](μmol·dm-3),R2=0.9975。UA在GONS上的检测限为2.4μmol·dm-3,灵敏度为0.90μA·cm-2·μmol-1·dm3,3次测定80μmol·dm-3UA得到相对标准偏差为4.3%。在40~200μmol·dm3浓度范围内,APAP的氧化峰电流与其浓度呈现良好的线性关系,线性相关方程为ip(μA)=-0.055+1.8[APAP](μmol·dm-3),R2=0.9961.APAP在GONS上的检测限为1.9μmol·dm-3,灵敏度为1.8μA·cm-2·μmol-1·dm3,3次测定200μmol·dm-3APAP得到相对标准偏差为4.4%。
     GONS的循环伏安曲线及差分脉冲伏安曲线上,AA、DA、UA和APAP的氧化峰相互独立,峰电位相差70mV以上,表明在磷酸盐缓冲溶液(pH6.9)的中,AA、DA、UA和APAP在GONS上同时检测有很好的可行性。
Polyaniline (PANI) nanofibers were prepared through in situ chemical and electrochemical polymerization of aniline. PANI nanofibers were fabricated onto screen-printed electrode (SPE) and graphite foil (GF) to construct sensors of Nano-PANI/SPE and Nano-PANI/GF respectively. Graphene oxide nano sheets (GONS) were prepared by electrochemical exfoliation of graphite foil.
     Nano-PANI/SPE sensor was constructed by in situ chemical polymerization of aniline on the insulate gap of the SPE by drop coating method, using iron chloride as oxidant. The morphologies of the PANI on the gap were investigated by scanning electron microscopy (SEM). It can be seen from the SEM images that the film was composed of interconnected nanofibers of ca.60nm in diameter to form pores of ca.300-400nm in diameter.
     The responses of the Nano-PANI/SPE sensor upon exposure to common volatile organic compounds (VOCs) and ammonia were investigated. It was found that the sensor responsed quickly on exposure to chloromethane, small molecular alcohols, toluene, triethylamine and ammonia. The sensor has higher sensitivity and lower detection limit (0.45ppb) when it was used in sensing ammonia because of the strong de-protonation of PANI by ammonia. The Nano-PANI/SPE sensor has better stability, the resistant of the sensor increased only about3.86%when it was on exposure to air for one week.
     Polyaniline nano fiber (Nano-PANI) modified graphite foil (GF), Nano-PANI/GF was prepared by electrochemical polymerization of aniline on GF electrode in a solution of0.2mol·dm-3aniline and1.0mol·dm-3HCl. The polymer on the modified electrode Nano-PANI/GF was characterized by FTIR. The morphologies of the modified electrode were investigated by SEM. The electrochemistry activity of Nano-PANI/GF was investigated in0.1mol·dm-3phosphate buffer solution (pH6.9) by cyclic voltammetry (CV). The electrochemistry activity of Nano-PANI/GF increased along with the cyclic number of CV for the electropolymerization of aniline in the first six cycles as the electroactivity was related to charge transfer between graphite foil and PANI.
     The electrocatalytic properties of the Nano-PANI/GF modified electrode towards ascorbic acid (AA) oxidation were studied through cyclic voltammetry. The current for AA oxidation on the modified electrode at0.2V showed linear response to the concentration of AA in the range of1.7~2.0×103μmol·dm-3. The linear equation is i(mA)=0.0031+0.00013[AA](mmol·dm-3), R2=0.9994and the sensitivity is0.13mA·cm-2·mmol-1·dm3. The detection limit of AA on the modified electrode is1.7μmol·dm-3
     Graphene oxide nano sheets (GONS) were prepared by electrochemical exfoliation of graphite foil. The composition of GONS was analyzed by XPS and FTIR, and the morphologies were investigated by SEM. It can be seen from the SEM images that the thickness of GONS is as thin as4nm.
     The electrocatalytic properties of GONS towards AA oxidation were studied through cyclic voltammetry. The current for AA oxidation on GONS at0V showed linear response to the concentration of AA in the range of5.0×10-4~1.0mmol·dm-3. The linear equation is i(mA)=0.0022+0.10[AA](mmol·dm-3), R2=0.9967, and the sensitivity is0.10mA·cm-2·mmol-1·dm3. The detection limit of AA on GONS is0.5μmol·dm-3. The relative standard deviation (RSD) is3.8%for three times detection of0.25mmol·dm-3AA. Common interfering substances (such as citric acid (CA), glucose (Glu), lactic acid (LA), uric acid (UA) and dopamine (DA)) have higher oxidation potential on GONS than AA, so they have no obvious influence on AA sensing. AA in three kinds of beverage were detected by GONS, the results showed the recovery of the additional standard sample was92.0~100.5%。
     The CV and differential pulse voltammetry (DPV) experimental results showed that GONS also had good current responses to dopamine (DA), uric acid (UA) and acetaminophen (APAP). The oxidant current of DA on GONS shows linear response to the concentration of DA in the range of25~200μmol·dm-3. The linear equation is ip (μA)=4.6+0.90[DA](μmol·dm-3), R2=0.9908, and the sensitivity is0.90μA·cm-2μmol-1·dm3. The detection limit of DA on GONS is4.6μmol·dm-3. The RSD is2.3%for three times detection of80μmol·dm-3DA. The oxidant current of UA on GONS shows linear response to the concentration of DA in the range of25~130μmol·dm-3. The linear equation is ip(μA)=0.010+0.90[UA](μmol·dm3), R2=0.9975, and the sensitivity is0.90μA·cm2·μmol-1·dm3. The detection limit of UA on GONS is2.4μmol·dm-3. The RSD is4.3%for three times detection of80μmol·dm-3UA.The oxidant current of APAP on GONS shows linear response to the concentration of APAP in the range of40~200μmol·dm-3. The linear equation is ip(μA)=-0.055+1.8[APAP](μmol·dm-3), R2=0.9961, and the sensitivity is1.8μA·cm-2·μmol-1·dm3. The detection limit of APAP on GONS is1.9μmol·dm-3. The RSD is4.4%for three times detection of200μmol·dm-3APAP.
     The oxidation potential on CV and DPV curves of AA, DA, UA and APAP on GONS were separated by more than70mV for each other. Based on the peak separations, simultaneous analysis of all these bioactive molecules is possible in0.1mol·dm-3phosphate buffer solution (pH6.9).
引文
[1]周继明,江世明.传感技术与应用(第2版)[M],长沙:中南大学出版社,2009.1.
    [2]左伯莉,刘国宏.化学传感器原理及应用[M],北京:清华大学出版社,2007.6.
    [3]吕泉.现代传感器原理及应用[M],北京:清华大学出版社,2006.6.
    [4]清山哲郎著,董万堂译.化学传感器[M],北京:化学工业出版社,1990.4.
    [5]Lee C Y, Lee G B. Humidity sensors:A review [J], Sensor Lett,2005,3 (1):1-15.
    [6]张学记,鞠烷先,王.约瑟夫主编,张书圣,李雪梅,杨涛等译.电化学与生物化学传感器——原理、设计及其在生物医学中的应用[M],北京:化学工业出版社,2009.6.
    [7]贾梦秋,杨文胜.应用电化学[M],北京:高等教育出版社,2004.7.
    [8]林玉池,曾周末.现代传感技术与系统[M],北京:机械工业出版社,2009.6.
    [9]Seiyama T, Kato A, Fujishi K, Nagatani M. A new detector for gaseous components using semiconductive thin films [J], Anal Chem,1962,34 (11):1502-1503.
    [10]陈艾.敏感材料与传感器[M],北京:化学工业出版社,2004.7.
    [11]王会才.高分子纳米复合气敏材料及气体传感器[D],杭州:浙江大学,2007.
    [12]杨晓红.W03基气敏传感器薄膜材料的性质及应用研究[D],重庆:重庆大学,2008.
    [13]Wurzinger O, Reinhardt G. CO-sensing properties of doped SnO2 sensors in H-2-rich gases [J], Sensor Actuat B-chem,2004,103 (1-2):104-110.
    [14]Teterycz H, Kita J, Bauer R, Golonka L J, Licznerski B W, Nitsch K, Wisniewski K. New design of an SnO2 gas sensor on low temperature cofiring ceramics [J], Sensor Actuat B-chem,1998,47(1-3):100-103.
    [15]Baker S. Phthalocyanine langmuir blodgett film gas detector [J], IEE Proc, Part Ⅰ: Solid-State Electron Devices,1983,130 (5):260-264.
    [16]蒋亚东.电子聚合物气、湿敏特性及机理研究[D],电子科技大学,2001.
    [17]华莱士等著,吴世康译.导电活性聚合物——智能材料体系[M],北京:科学出版社,2007.7.
    [18]姚宗武.有机季铵盐型高分子湿敏材料及其湿度传感器[D],杭州:浙江大学,2006.
    [19]Pope M, Swenberg C E. Electronic Processes in Organic Solids [J], Annu Rev Phys Chem,1984,35(1):613-655.
    [20]佘勇.聚电解质电阻型湿敏材料及薄膜湿度传感器[D],杭州:浙江大学,2003.
    [21]张会锐.基于纳米材料的湿度传感器的研究[D],杭州:浙江大学,2004.
    [22]张立德.纳米材料学[M],沈阳:辽宁科学技术出版社,1994.
    [23]Shukla S, Seal S, Ludwig L, Parish C. Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor [J], Sensor Actuat B-Chem,2004,97 (2-3): 256-265.
    [24]Comini E. Metal oxide nano-crystals for gas sensing [J], Anal Chim Acta,2006,568 (1-2):28-40.
    [25]Li Z, Wu M H, Liu T B, Wu C, Jiao Z, Zhao B. Preparation of TiO2 nanowire gas nanosensor by AFM anode oxidation [J], Ultramicroscopy,2008,108 (10):1334-1337.
    [26]Rivas G A, Rubianes M D, Rodriguez M C, Ferreyra N E, Luque G L, Pedano M L, Miscoria S A, Parrado C. Carbon nanotubes for electrochemical biosensing [J], Talanta, 2007,74 (3):291-307.
    [27]Li X, Zhu Q Y, Tong S F, Wang W, Song W B. Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor [J], Sensor Actuat B-chem,2009,136 (2): 444-450.
    [28]Odaci D, Telefoncu A, Timur S. Pyranose oxidase biosensor based on carbon nanotube (CNT)-modified carbon paste electrodes [J], Sensor Actuat B-chem,2008,132 (1): 159-165.
    [29]Sayago I, Santos H, Horrillo M C, Aleixandre M, Fernandez M J, Terrado E, Tacchini I, Aroz R, Maser W K, Benito A M, Martinez M T, Gutierrez J, Munoz E. Carbon nanotube networks as gas sensors for NO2 detection [J], Talanta,2008,77 (2):758-764.
    [30]吴莉莉.纳米碳管气敏传感器及随机共振检测系统的研究[D],杭州:浙江大学,2007.
    [31]MacDiarmid A G. "Synthetic metals":A novel role for organic polymers (Nobel lecture) [J], Angew Chem Int Edit,2001,40 (14):2581-2590.
    [32]Shimano J Y, MacDiarmid A G. Polyaniline, a dynamic block copolymer:key to attaining its intrinsic conductivity? [J], Synthetic Met,2001,123 (2):251-262.
    [33]Anand J, Palaniappan S, Sathyanarayana D N. Conducting polyaniline blends and composites [J], Prog Polym Sci,1998,23 (6):993-1018.
    [34]Gospodinova N, terlemezyan L, Mokreva P, Kossev K. On the mechanism of oxidative polymerization of aniline [J], Polymer,1993,34 (11):2434-2437.
    [35]Kuzmany H, Sariciftci N S. In-situ spectro-electrochemical studies of polyaniline [J], Synth Met,1987,18 (1-3):353-358.
    [36]Yan H, Toshima N. Chemical Preparation of Polyaniline and Its Derivatives by Using Cerium(Iv) Sulfate [J], Synthetic Met,1995,69 (1-3):151-152.
    [37]Toshima N, Yan H, Ishiwatari M. Catalytic Polymerization of Aniline and Its Derivatives by Using Copper(Ii) Salts and Oxygen-New-Type of Polyaniline with Branched Structure [J], B Chem Soc Jpn,1994,67 (7):1947-1953.
    [38]Zhang D H, Wang Y Y. Synthesis and applications of one-dimensional nano-structured polyaniline:An overview [J], Mat Sci Eng B-Solid,2006,134 (1):9-19.
    [39]Bhadra S, Khastgir D, Singha N K, Lee J H. Progress in preparation, processing and applications of polyaniline [J], Prog Polym Sci,2009,34 (8):783-810.
    [40]Ko J M, Park D Y, Myung N V, Chung J S, Nobe K. Electrodeposited conducting polymer-magnetic metal composite films [J], Synthetic Met,2002,128 (1):47-50.
    [41]Biallozor S, Kupniewska A. Conducting polymers electrodeposited on active metals [J], Synthetic Met,2005,155 (3):443-449.
    [42]Castaneda L. Effects of palladium coatings on oxygen sensors of titanium dioxide thin films [J], Mat Sci Eng B-Solid,2007,139 (2-3):149-154.
    [43]Davila-Martinez R E, Cueto L F, Sanchez E M. Electrochemical deposition of silver nanoparticles on TiO2/FTO thin films [J], Surf Sci,2006,600 (17):3427-3435.
    [44]Liu X X, Zhang L, Li Y B, Bian L J, Su Z, Zhang L J. Electropolymerization of aniline in aqueous solutions at pH 2 to 12 [J], J Mater Sci,2005,40 (17):4511-4515.
    [45]Rajendran V, Gopalan A, Vasudevan T, Chen W C, Wen T C. Growth behaviour of polyaniline films deposited by pulse potentiostatic method [J], Mater Chem Phys,2000, 65 (3):320-328.
    [46]Zhou H H, Jiao S Q, Chen J H, Wei W Z, Kuang Y F. Relationship between preparation conditions, morphology and electrochemical properties of polyaniline prepared by pulse galvanostatic method (PGM) [J], Thin Solid Films,2004,450 (2):233-239.
    [47]Manigandan S, Majumder S, Ganguly S, Kargupta K. Formation of nano-rod and nano-particles of polyaniline using Langmuir-Blodgett technique [J], Mater Lett,2008, 62 (17-18):2758-2761.
    [48]Qiu H J, Zhai J, Li S H, Jiang L, Wan M X. Oriented growth of self-assembled polyaniline nanowire arrays using a novel method [J], Adv Funct Mater,2003,13 (12): 925-928.
    [49]Chiou N R, Epstein A J. Polyaniline nanofibers prepared by dilute polymerization [J], Adv Mater,2005,17 (13):1679-+.
    [50]Zhou Y X, Freitag M, Hone J, Staii C, Johnson A T, Pinto N J, MacDiarmid A G. Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm [J], Appl Phys Lett,2003,83 (18):3800-3802.
    [51]Du X S, Zhou C F, Wang G T, Mai Y W. Novel solid-state and template-free synthesis of branched polyaniline nanofibers [J], Chem Mater,2008,20 (12):3806-3808.
    [52]Rahy A, Sakrout M, Manohar S, Cho S J, Ferraris J, Yang D J. Polyaniline nanofiber synthesis by co-use of ammonium peroxydisulfate and sodium hypochlorite [J], Chem Mater,2008,20 (15):4808-4814.
    [53]Rahy A, Yang D J. Synthesis of highly conductive polyaniline nanofibers [J], Mater Lett, 2008,62 (28):4311-4314.
    [54]Chiou N R, Epstein A J. A simple approach to control the growth of polyaniline nanofibers [J], Synthetic Met,2005,153 (1-3):69-72.
    [55]Liu X X, Dou Y Q, Wu J, Peng X Y. Chemical anchoring of silica nanoparticles onto polyaniline chains via electro-co-polymerization of aniline and N-substituted aniline Grafted on surfaces of SiO2 [J], Electrochim Acta,2008,53 (14):4693-4698.
    [56]Pan L J, Pu L, Shi Y, Sun T, Zhang R, Zheng Y D. Hydrothermal synthesis of polyaniline mesostructures [J], Adv Funct Mater,2006,16 (10):1279-1288.
    [57]Han D X, Chu Y, Yang L K, Liu Y, Lv Z X. Reversed micelle polymerization:a new route for the synthesis of DBSA-polyaniline nanoparticles [J], Colloid Surface A,2005, 259(1-3):179-187.
    [58]Tang Z Y, Liu S Q, Wang Z X, Dong S J, Wang E K. Electrochemical synthesis of polyaniline nanoparticles [J], Electrochem Commun,2000,2 (1):32-35.
    [59]Zhang L J, Peng H, Zujovic Z D, Kilmartin P A, Travas-Sejdic J. Characterization of polyaniline nanotubes formed in the presence of amino acids [J], Macromol Chem Physic,2007,208 (11):1210-1217.
    [60]Kim J Y, Lee J H, Kwon S J. The manufacture and properties of polyaniline nano-films prepared through vapor-phase polymerization [J], Synthetic Met,2007,157 (8-9): 336-342.
    [61]Huang J X, Kaner R B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study [J], Angew Chem Int Edit,2004,43 (43):5817-5821.
    [62]Qiang J F, Yu Z H, Wu H C, Yun D Q. Polyaniline nanofibers synthesized by rapid mixing polymerization [J], Synthetic Met,2008,158 (13):544-547.
    [63]Huang J X, Kaner R B. The intrinsic nanofibrillar morphology of polyaniline [J], Chem Commun,2006, (4):367-376.
    [64]Li G C, Jiang L, Peng H R. One-dimensional polyaniline nanostructures with controllable surfaces and diameters using vanadic acid as the oxidant [J], Macromolecules,2007,40 (22):7890-7894.
    [65]Su C, Wang G C, Huang F R, Li X W. Effects of synthetic conditions on the structure and electrical properties of polyaniline nanofibers [J], J Mater Sci,2008,43 (1):197-202.
    [66]Guo Y P, Zhou Y. Polyaniline nanofibers fabricated by electrochemical polymerization:A mechanistic study [J], Eur Polym J,2007,43 (6):2292-2297.
    [67]Ding H J, Wan M X, Wei Y. Controlling the diameter of polyaniline nanofibers by adjusting the oxidant redox potential [J], Adv Mater,2007,19 (3):465-+.
    [68]Malinauskas A. Chemical deposition of conducting polymers [J], Polymer,2001,42 (9): 3957-3972.
    [69]Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors [J], Anal Chim Acta,2003,475 (1-2):1-15.
    [70]Stejskal J, Sapurina I, Prokes J, Zemek J. In-situ polymerized polyaniline films [J], Synthetic Met,1999,105 (3):195-202.
    [71]Virji S, Huang J X, Kaner R B, Weiller B H. Polyaniline nanofiber gas sensors: Examination of response mechanisms [J], Nano Lett,2004,4 (3):491-496.
    [72]Kukla A L, Shirshov Y M, Piletsky S A. Ammonia sensors based on sensitive polyaniline films [J], Sensor Actuat B-Chem,1996,37 (3):135-140.
    [73]Zeng X R, Ko T M. Structures and properties of chemically reduced polyanilines [J], Polymer,1998,39 (5):1187-1195.
    [74]Sharma S, Nirkhe C, Pethkar S, Athawale A A. Chloroform vapour sensor based on copper/polyaniline nanocomposite [J], Sensor Actuat B-Chem,2002,85 (1-2):131-136.
    [75]Tan C K, Blackwood D J. Interactions between polyaniline and methanol vapour [J], Sensor Actuat B-Chem,2000,71 (3):184-191.
    [76]Svetlicic V, Schmidt A J, Miller L L. Conductometric sensors based on the hypersensitive response of plasticized polyaniline films to organic vapors [J], Chem Mater,1998,10 (11):3305-+.
    [77]Krutovertsev S A, Ivanova O M, Sorokin S I. Sensing properties of polyaniline films doped with Dawson heteropoly compounds [J], J Anal Chem+,2001,56 (11): 1057-1060.
    [78]Matsuguchi M, Okamoto A, Sakai Y. Effect of humidity on NH3 gas sensitivity of polyaniline blend films [J], Sensor Actuat B-Chem,2003,94 (1):46-52.
    [79]Hao Q L, Kulikov V, Mirsky V A. Investigation of contact and bulk resistance of conducting polymers by simultaneous two-and four-point technique [J], Sensor Actuat B-Chem,2003,94 (3):352-357.
    [80]Prasad G K, Radhakrishnan T P, Kumar D S, Krishna M G. Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline [J], Sensor Actuat B-Chem,2005,106 (2):626-631.
    [81]Xie D, Jiang Y D, Pan W, Li D, Wu Z M, Li Y R. Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology [J], Sensor Actuat B-Chem. 2002,81 (2-3):158-164.
    [82]Posudievskii O Y, Konoshchuk N V, Kukla A L, Pavlyuchenko A S, Linyuchev G V, Shirshov Y M, Pokhodenko V D. Effect of the Nature of the Dopant on the Response of a Sensor Array Based on Polyaniline [J], Theoretical and Experimental Chemistry,2003, 39 (4):219-224.
    [83]Jiang S, Chen J Y, Tang J, Jin E, Kong L R, Zhang W J, Wang C. Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor [J], Sensor Actuat B-Chem,2009,140 (2):520-524.
    [84]Srivastava S, Sharma S S, Kumar S, Agrawal S, Singh M, Vijay Y K. Characterization of gas sensing behavior of multi walled carbon nanotube polyaniline composite films [J], Int J Hydrogen Energ,2009,34 (19):8444-8450.
    [85]Srivastava S, Sharma S S, Agrawal S, Kumar S, Singh M, Vijay Y K. Study of chemiresistor type CNT doped polyaniline gas sensor [J], Synthetic Met,2010,160 (5-6):529-534.
    [86]Huang J, Virji S, Weiller B H, Kaner R B. Nanostructured polyaniline sensors [J], Chem-Eur J,2004,10(6):1314-1319.
    [87]Huang J X, Virji S, Weiller B H, Kaner R B. Polyaniline nanofibers:Facile synthesis and chemical sensors [J], J Am Chem Soc,2003,125 (2):314-315.
    [88]Huang J, Virji S, Weiller B H, Kaner R B. Nanostructured polyaniline sensors [J], Chem-Eur J,2004,10(6):1315-1319.
    [89]Virji S, Kaner R B, Weiller B H. Hydrogen sensors based on conductivity changes in polyaniline nanofibers [J], J Phys Chem B,2006,110 (44):22266-22270.
    [90]Ma X F, Li G, Wang M, Cheng Y N, Bai R, Chen H Z. Preparation of a nanowire-structured polyaniline composite and gas sensitivity studies [J], Chem-Eur J, 2006,12 (12):3254-3260.
    [91]Yan X B, Han Z J, Yang Y, Tay B K. NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization [J], Sensor Actuat B-Chem,2007,123 (1):107-113.
    [92]Liu J, Lin Y H, Liang L, Voigt J A, Huber D L, Tian Z R, Coker E, Mckenzie B, Mcdermott M J. Templateless assembly of molecularly aligned conductive polymer nanowires:A new approach for oriented nanostructures [J], Chem-Eur J,2003,9 (3): 605-611.
    [93]Dong H, Megalamane U, Jones W. Conductive polyaniline/PMMA coaxial nanofibers: Fabrication and chemical sensing. [J], Abstr Pap Am Chem S,2003,226 U401-U401.
    [94]Liu H Q, Kameoka J, Czaplewski D A, Craighead H G. Polymeric nanowire chemical sensor [J], Nano Lett,2004,4 (4):671-675.
    [95]Grennan K, Killard A J, Smyth M R. Chemically polymerized polyaniline films for the mass-production of biosensor devices [J], Electroanal,2005,17 (15-16):1360-1369.
    [96]Iwuoha E I, de Villaverde D S, Garcia N P, Smyth M R, Pingarron J M. Reactivities of organic phase biosensors.2. The amperometric behaviour of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film [J], Biosens Bioelectron,1997,12 (8):749-761.
    [97]Peng H, Zhang L J, Soeller C, Travas-Sejdic J. Conducting polymers for electrochemical DNA sensing [J], Biomaterials,2009,30 (11):2132-2148.
    [98]Lu B, Iwuoha E I, Smyth M R, OKennedy R. Development of an "electrically wired" amperometric immunosensor for the determination of biotin based on a non-diffusional redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase [J], Anal Chim Acta,1997,345 (1-3):59-66.
    [99]Chang H X, Yuan Y, Shi N L, Guan Y F. Electrochemical DNA biosensor based on conducting polyaniline nanotube array [J], Anal Chem,2007,79 (13):5111-5115.
    [100]Tian S J, Baba A, Liu J Y, Wang Z H, Knoll W, Park M K, Advincula R. Electroactivity of polyaniline multilayer films in neutral solution and their electrocatalyzed oxidation of beta-nicotinamide adenine dinucleotide [J], Adv Funct Mater,2003,13 (6):473-479.
    [101]Zhou H H, Chen H, Luo S L, Chen J H, Wei W Z, Kuang Y F. Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline [J], Biosens Bioelectron,2005,20 (7):1305-1311.
    [102]Kumar A, Whitaker G, Kumar A. Electro-deposit polyaniline on carbon electrode for voltammetric detection of lipase [J], Biosens Bioelectron,2005,21 (3):513-517.
    [103]Arora K, Prabhakar N, Chand S, Malhotra B D. Escherichia coli genosensor based on polyaniline [J], Anal Chem,2007,79 (16):6152-6158.
    [104]Zhang L, Zhang C H, Lian J Y. Electrochemical synthesis of polyaniline nano-networks on p-aminobenzene sulfonic acid functionalized glassy carbon electrode Its use for the simultaneous determination of ascorbic acid and uric acid [J], Biosens Bioelectron,2008, 24 (4):690-695.
    [105]Zhou D M, Xu J J, Chen H Y, Fang H Q. Ascorbate sensor based on'self-doped' polyaniline [J], Electroanal,1997,9 (15):1185-1188.
    [106]Casella I G, Guascito M R. Electrocatalysis of ascorbic acid ion the glassy carbon electrode chemically modified with polyaniline films [J], Electroanal,1997,9 (18): 1381-1386.
    [107]Wang H Y, Mu S L. Bioelectrochemical response of the polyaniline ascorbate oxidase electrode [J], J Electroanal Chem,1997,436 (1-2):43-48.
    [108]Gerard M, Malhotra B D. Application of polyaniline as enzyme based biosensor [J], Curr Appl Phys,2005,5 (2):174-177.
    [109]Luo X L, Killard A J, Morrin A, Smyth M R. Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline [J], Anal Chim Acta, 2006,575 (1):39-44.
    [110]Xu Q, Zhu J J, Hu X Y. Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction [J], Anal Chim Acta,2007,597 (1): 151-156.
    [111]Morrin A, Ngamna O, Killard A J, Moulton S E, Smyth M R, Wallace G G. An amperometric enzyme biosensor fabricated from polyaniline nanoparticles [J], Electroanal,2005,17 (5-6):423-430.
    [112]Cho W J, Huang H J. An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode [J], Anal Chem,1998,70 (18):3946-3951.
    [113]Halliwell C M, Simon E, Toh C S, Bartlett P N, Cass A E G. Immobilisation of lactate dehydrogenase on poly(aniline)-poly(acrylate) and poly(aniline)-poly-(vinyl sulphonate) films for use in a lactate biosensor [J], Anal Chim Acta,2002,453 (2):191-200.
    [114]Gerard M, Ramanathan K, Chaubey A, Malhotra B D. Immobilization of lactate dehydrogenase on electrochemically prepared polyaniline films [J], Electroanal,1999, 11 (6):450-452.
    [115]Ivanov A N, Lukachova L, Evtugyn G A, Karyakina E E, Kiseleva S G, Budnikov H C, Orlov A V, Karpacheva G P, Karyakin A A. Polyaniline-modified cholinesterase sensor for pesticide determination [J], Bioelectrochemistry,2002,55 (1-2):75-77.
    [116]Singh S, Solanki P R, Pandey M K, Malhotra B D. Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor [J], Anal Chim Acta,2006,568 (1-2):126-132.
    [117]Dhand C, Singh S P, Arya S K, Datta B, Malhotra B D. Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension [J], Anal Chim Acta,2007,602 (2):244-251.
    [118]Arora K, Sumana G, Saxena V, Gupta R K, Gupta S K, Yakhmi J V, Pandey M K, Chand S, Malhotra B D. Improved performance of polyaniline-uricase biosensor [J], Anal Chim Acta,2007,594 (1):17-23.
    [119]Kan J Q, Pan X H, Chen C. Polyaniline-uricase biosensor prepared with template process [J], Biosens Bioelectron,2004,19 (12):1635-1640.
    [120]Dhand C, Arya S K, Datta M, Malhotra B D. Polyaniline-carbon nanotube composite film for cholesterol biosensor [J], Anal Biochem,2008,383 (2):194-199.
    [121]Cui S Y, Park S M. Electrochemistry of conductive polymers XXIII:polyaniline growth studied by electrochemical quartz crystal microbalance measurements [J], Synthetic Met, 1999,105 (2):91-98.
    [122]Morrin A, Wilbeer F, Ngamna O, Moulton S E, Killard A J, Wallace G G, Smyth M R. Novel biosensor fabrication methodology based on processable conducting polyaniline nanoparticles [J], Electrochem Commun,2005,7 (3):317-322.
    [123]Michira I, Akinyeye R, Somerset V, Klink M J, Sekota M, Al-Ahmed A, Baker P G L, Iwuoha E. Synthesis, characterisation of novel polyaniline nanomaterials and application in amperometric biosensors [J], Macromol Symp,2007,255 57-69
    [124]Bartlett P N, Birkin P R, Wallace E N K. Oxidation of beta-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes [J], J Chem Soc Faraday T, 1997,93(10):1951-1960.
    [125]Li C M, Mu S L. The electrochemical activity of sulfonic acid ring-substituted polyaniline in the wide pH range [J], Synthetic Met,2005,149 (2-3):143-149.
    [126]Bartlett P N, Simon E. Poly(aniline)-poly(acrylate) composite films as modified electrodes for the oxidation of NADH [J], Phys Chem Chem Phys,2000,2 (11): 2599-2606.
    [127]Bartlett P N, Wallace E N K. The oxidation of beta-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes Part II. Kinetics of reaction at poly(aniline)-poly(styrenesulfonate) composites [J], J Electroanal Chem,2000,486 (1):23-31.
    [128]Simon E, Halliwell C M, Toh C S, Cass A E G, Bartlett P N. Immobilisation of enzymes on poly(aniline)-poly(anion) composite films. Preparation of bioanodes for biofuel cell applications [J], Bioelectrochemistry,2002,55 (1-2):13-15.
    [129]Raitman O A, Katz E, Buckmann A F, Willner I. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports:An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems [J], J Am Chem Soc,2002,124 (22):6487-6496.
    [130]Castillo-Ortega M M, Rodriguez D E, Encinas J C, Plascencia M, Mendez-Velarde F A, Olayo R. Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites [J], Sensor Actuat B-Chem,2002,85 (1-2):19-25.
    [131]Milczarek G. Electrochemical conversion of poly-aniline into a redox polymer in the presence of nordihydroguaiaretic acid [J], J Electroanal Chem,2009,626 (1-2): 143-148.
    [132]Zhou H H, Jiao S Q, Chen J H, Wei W Z, Kuang Y F. Effects of conductive polyaniline (PANI) preparation and platinum electrodeposition on electroactivity of methanol oxidation [J], J Appl Electrochem,2004,34 (4):455-459.
    [133]Granot E, Katz E, Basnar B, Willner I. Enhanced bioelectrocatalysis using Au-nanoparticle/polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes [J], Chem Mater,2005,17 (18):4600-4609.
    [134]Yan X B, Han Z J, Yang Y, Tay B K. Fabrication of carbon nanotube-polyaniline composites via electrostatic adsorption in aqueous colloids [J], J Phys Chem C,2007, 111 (11):4125-4131.
    [135]Kocherginsky N M, Wang Z. Transmembrane redox reactions through polyaniline membrane doped with fullerene C-60 [J], Synthetic Met,2006,156 (7-8):558-565.
    [136]Langer J J, Framski G, Golczak S, Gibinski T. Fullerene-doped polyaniline. [J], Synthetic Met,2001,119 (1-3):359-360.
    [137]Lim H Y, Jeong S K, Suh J S, Oh E J, Park Y W, Ryu K S, Yo C H. Preparation and Properties of Fullerene Doped Polyaniline [J], Synthetic Met,1995,70 (1-3): 1463-1464.
    [138]Liu J Y, Tian S J, Knoll W. In neutral solution and their application for stable low-potential detection of reduced beta-nicotinamide adenine dinucleotide [J], Langmuir, 2005,21 (12):5596-5599.
    [139]Dhand C, Arya S K, Singh S P, Singh B P, Datta M, Malhotra B D. Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route [J], Carbon,2008,46 (13):1727-1735.
    [140]Zhou H J, Lin Y Q, Yu P, Su L, Mao L Q. Doping polyaniline with pristine carbon nanotubes into electroactive nanocomposite in neutral and alkaline media [J], Electrochem Commun,2009,11 (5):965-968.
    [141]Klinke C, Chen J, Afzali A, Avouris P. Charge transfer induced polarity switching in carbon nanotube transistors [J], Nano Lett,2005,5 (3):555-558.
    [142]Collins P G, Zettl A. Unique characteristics of cold cathode carbon-nanotube-matrix field emitters [J], Phys Rev B,1997,55 (15):9391-9399.
    [143]李圣华.炭和石墨制品[M],北京:冶金工业出版社,1983.9.
    [144]Allen M J, Tung V C, Kaner R B. Honeycomb Carbon:A Review of Graphene [J], Chem Rev,2010,110(1):132-145.
    [145]Si Y, Samulski E T. Synthesis of water soluble graphene [J], Nano Lett,2008,8 (6): 1679-1682.
    [146]Li D, Kaner R B. Materials science-Graphene-based materials [J], Science,2008,320 (5880):1170-1171.
    [147]Geim A K, Novoselov K S. The rise of graphene [J], Nat Mater,2007,6 (3):183-191.
    [148]Park S, Lee K S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. Graphene oxide papers modified by divalent ions-Enhancing mechanical properties via chemical cross-linking [J], Acs Nano,2008,2 (3):572-578.
    [149]Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials [J], Nature, 2006,442 (7100):282-286.
    [150]Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Electronic confinement and coherence in patterned epitaxial graphene [J], Science,2006,312 (5777):1191-1196.
    [151]Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov AN, Conrad E H, First P N, de Heer W A. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics [J], J Phys Chem B,2004, 108(52):19912-19916.
    [152]Gilje S, Han S, Wang M, Wang K L, Kaner R B. A chemical route to graphene for device applications [J],Nano Lett,2007,7 (11):3394-3398.
    [153]Chen J H, Ishigami M, Jang C, Hines D R, Fuhrer M S, Williams E D. Printed graphene circuits [J], Adv Mater,2007,19 (21):3623-+.
    [154]Park N, Hong S, Kim G, Jhi S H. Computational study of hydrogen storage characteristics of covalent-bonded graphenes [J], J Am Chem Soc,2007,129 (29): 8999-9003.
    [155]Liu Z, Robinson J T, Sun X M, Dai H J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs [J], J Am Chem Soc,2008,130 (33):10876-+.
    [156]Fowler J D, Allen M J, Tung V C, Yang Y, Kaner R B, Weiller B H. Practical Chemical Sensors from Chemically Derived Graphene [J], Acs Nano,2009,3 (2):301-306.
    [157]Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S. Detection of individual gas molecules adsorbed on graphene [J], Nat Mater,2007,6 (9): 652-655.
    [158]Lu J, Drzal L T, Worden R M, Lee I. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets Nation membrane [J], Chem Mater,2007,19 (25):6240-6246.
    [159]Wang H L, Hao Q L, Yang X J, Lu L D, Wang X. Graphene oxide doped polyaniline for supercapacitors [J], Electrochem Commun,2009,11 (6):1158-1161.
    [160]Vivekchand S R C, Rout C S, Subrahmanyam K S, Govindaraj A, Rao C N R. Graphene-based electrochemical supercapacitors [J], J Chem Sci,2008,120 (1):9-13.
    [161]Seger B, Kamat P V. Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells [J], J Phys Chem C,2009,113 (19): 7990-7995.
    [162]Wang X, Zhi L J, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells [J], Nano Lett,2008,8 (1):323-327.
    [163]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets [J], Nat Nanotechnol,2008,3 (2):101-105.
    [164]Jeong H K, Lee Y P, Lahaye R J W E, Park M H, An K H, Kim I J, Yang C W, Park C Y, Ruoff R S, Lee Y H. Evidence of graphitic AB stacking order of graphite oxides [J], J Am Chem Soc,2008,130 (4):1362-1366.
    [165]Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J H, Chen D M, Ruoff R S. Synthesis and solid-state NMR structural characterization of C-13-labeled graphite oxide [J], Science, 2008,321(5897):1815-1817.
    [166]Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'homme R K, Car R, Saville D A, Aksay I A. Functionalized single graphene sheets derived from splitting graphite oxide [J], J Phys Chem B,2006,110 (17):8535-8539.
    [167]Li Z Y, Zhang W H, Luo Y, Yang J L, Hou J G. How Graphene Is Cut upon Oxidation? [J], J Am Chem Soc,2009,131 (18):6320-+.
    [168]Gomez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets [J], Nano Lett,2007,7 (11):3499-3503.
    [169]Park S, Ruoff R S. Chemical methods for the production of graphenes [J], Nat Nanotechnol,2009,4 (4):217-224.
    [170]Wu Z S, Ren W C, Gao L B, Liu B L, Jiang C B, Cheng H M. Synthesis of high-quality graphene with a pre-determined number of layers [J], Carbon,2009,47 (2):493-499.
    [171]Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Preparation and characterization of graphene oxide paper [J], Nature,2007,448 (7152):457-460.
    [172]Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals [J], P Natl Acad Sci USA,2005,102 (30): 10451-10453.
    [173]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films [J], Science,2004, 306 (5296):666-669.
    [174]Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium [J], Nat Mater,2008, 7 (5):406-411.
    [175]Di C A, Wei D C, Yu G, Liu Y Q, Guo Y L, Zhu D B. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors [J], Adv Mater, 2008,20 (17):3289-+.
    [176]Wu J S, Pisula W, Mullen K. Graphenes as potential material for electronics [J], Chem Rev,2007,107 (3):718-747.
    [177]Li X L, Zhang G Y, Bai X D, Sun X M, Wang X R, Wang E, Dai H J. Highly conducting graphene sheets and Langmuir-Blodgett films [J], Nat Nanotechnol,2008,3 (9):538-542.
    [178]McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J], Chem Mater,2007,19 (18):4396-4404.
    [179]Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) [J], J Mater Chem,2006,16 (2): 155-158.
    [180]Brodie B C. Note sur un nouveau procede pour la purification et la desagregation du graphite [J], Ann Chim Phys,1855,45 351-353.
    [181]Staudenmaier L. [J], Ber Dtsch Chem Ges,1898,31 1484-1486.
    [182]Hummers W S, Offeman R E. Preparation of Graphitic Oxide [J], J Am Chem Soc, 1958,80(6):1339-1339.
    [183]Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite [J], Adv Funct Mater,2008,18 (10):1518-1525.
    [184]Antisari M V, Montone A, Jovic N, Piscopiello E, Alvani C, Pilloni L. Low energy pure shear milling:A method for the preparation of graphite nano-sheets [J], Scripta Mater, 2006,55(11):1047-1050.
    [185]Sun G L, Li X J, Qu Y D, Wang X H, Yan H H, Zhang Y J. Preparation and characterization of graphite nanosheets from detonation technique [J], Mater Lett,2008, 62 (4-5):703-706.
    [186]Chen G H, Weng W G, Wu D J, Wu C L, Lu J R, Wang P P, Chen X F. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique [J], Carbon, 2004,42 (4):753-759.
    [187]Chen G H, Wu D J, Weng W U, Wu C L. Exfoliation of graphite flake and its nanocomposites [J], Carbon,2003,41 (3):619-621.
    [188]Hong T D, Edgington S, Ellis R H, de Muro M A, Moore D. Saturated salt solutions for humidity control and the survival of dry powder and oil formulations of Beauveria bassiana conidia [J], J Invertebr Pathol,2005,89 (2):136-143.
    [189]迪安主编,尚久方等译.兰氏化学手册[M],北京:科学出版社,1991.3.
    [190]Ghanbari K, Mousavi M F, Shamsipur M. Preparation of polyaniline nanofibers and their use as a cathode of aqueous rechargeable batteries [J], Electrochim Acta,2006,52 (4):1514-1522.
    [191]Xing S X, Zhao C, Jing S Y, Wang Z C. Morphology and conductivity of polyaniline nanofibers prepared by 'seeding' polymerization [J], Polymer,2006,47 (7):2305-2313.
    [192]Pham Q M, Kim J S, Kim S. Polyaniline nanofibers synthesized in compressed CO2 [J], Synthetic Metals,2010,160 (5-6):394-399.
    [193]Ayad M M, El-Hefnawey G, Torad N L. Quartz crystal microbalance sensor coated with polyaniline emeraldine base for determination of chlorinated aliphatic hydrocarbons [J], Sensor Actuat B-Chem,2008,134 (2):887-894.
    [194]Athawale A A, Kulkarni M V. Polyaniline and its substituted derivatives as sensor for aliphatic alcohols [J], Sensor Actuat B-Chem,2000,67 (1-2):173-177.
    [195]Li Z F, Blum F D, Bertino M F, Kim C S, Pillalamarri S K. One-step fabrication of a polyaniline nanofiber vapor sensor [J], Sensor Actuat B-Chem,2008,134 (1):31-35.
    [196]Ji S Z, Li Y, Yang M J. Gas sensing properties of a composite composed of electrospun poly(methyl methacrylate) nanofibers and in situ polymerized polyaniline [J], Sensor Actuat B-Chem,2008,133 (2):644-649.
    [197]Zhang T, Nix M B, Yoo B Y, Deshusses M A, Myung N V. Electrochemically functionalized single-walled carbon nanotube gas sensor [J], Electroanal,2006,18 (12): 1153-1158.
    [198]Zeng F W, Liu X X, Diamond D, Lau K T. Humidity sensors based on polyaniline nanofibres [J], Sensor Actuat B-Chem,2010,143 (2):530-534.
    [199]Delvaux M, Duchet J, Stavaux P Y, Legras R, Demoustier-Champagne S. Chemical and electrochemical synthesis of polyaniline micro- and nano-tubules [J], Synthetic Metals, 2000,113 (3):275-280.
    [200]Liu X X, Zhang L, Li Y B, Bian L J, Huo Y Q, Su Z. Electrosynthesis of Polyaniline/SiO2 composite at high pH in the absence of extra supporting electrolyte [J], Polym Bull,2006,57 (6):825-832.
    [201]Hino T, Namiki T, Kuramoto N. Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate and several water soluble polymers [J], Synthetic Metals,2006,156 (21-24):1327-1332.
    [202]Liu X X, Bian L J, Zhang L, Zhang L J. Composite films of polyaniline and molybdenum oxide formed by electrocodeposition in aqueous media [J], J Solid State Electr,2007,11 (9):1279-1286.
    [203]Ramesh P, Sampath S. Selective determination of uric acid in presence of ascorbic acid and dopamine at neutral pH using exfoliated graphite electrodes [J], Electroanal,2004, 16 (10):866-869.
    [204]Miland E, Ordieres A J M, Blanco P T, Smyth M R, Fagain C O. Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid [J], Talanta,1996,43 (5):785-796.
    [205]Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication [J], Nat Nanotechnol,2009,4 (1):30-33.
    [206]He H Y, Riedl T, Lerf A, Klinowski J. Solid-state NMR studies of the structure of graphite oxide [J], J Phys Chem-Us,1996,100 (51):19954-19958.
    [207]Wang X B, You H J, Liu F M, Li M J, Wan L, Li S Q, Li Q, Xu Y, Tian R, Yu Z Y, Xiang D, Cheng J. Large-Scale Synthesis of Few-Layered Graphene using CVD [J], Chem Vapor Depos,2009,15 (1-3):53-56.
    [208]Lerf A, He H Y, Forster M, Klinowski J. Structure of graphite oxide revisited [J], J Phys Chem B,1998,102 (23):4477-4482.
    [209]Hontorialucas C, Lopezpeinado A J, Lopezgonzalez J D D, Rojascervantes M L, Martinaranda R M. Study of Oxygen-Containing Groups in a Series of Graphite Oxides-Physical and Chemical Characterization [J], Carbon,1995,33 (11):1585-1592.
    [210]Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene [J], Anal Chem,2009, 81 (6):2378-2382.
    [211]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J], Carbon,2007,45 (7):1558-1565.
    [212]Park S, An J H, Piner R D, Jung I, Yang D X, Velamakanni A, Nguyen S T, Ruoff R S. Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets [J], Chem Mater,2008,20 (21):6592-6594.
    [213]Stankovich S, Piner R D, Nguyen S T, Ruoff R S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets [J], Carbon,2006,44 (15):3342-3347.
    [214]Wu Z S, Ren W C, Gao L B, Zhao J P, Chen Z P, Liu B L, Tang D M, Yu B, Jiang C B, Cheng H M. Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation [J], Acs Nano,2009,3 (2): 411-417.
    [215]Paredes J I, Villar-Rodil S, Martinez-Alonso A, Tascon J M D. Graphene oxide dispersions in organic solvents [J], Langmuir,2008,24 (19):10560-10564.
    [216]Titelman G I, Gelman V, Bron S, Khalfin R L, Cohen Y, Bianco-Peled H. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide [J], Carbon,2005,43 (3):641-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700