湿法无纺布型锂离子电池隔膜材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池就是一类具有战略意义的新型能源,被公认为应优先发展的技术。锂离子电池具有工作电压高、能量密度高、自放电小、安全环保性能好等优点,在新能源及环境保护等重大技术领域发展中都具有举足轻重的地位和作用。隔膜是锂离子电池的重要组成部分。在国内锂离子电池的三个主要材料中,正负极材料和电解液已完全国产化,且技术成熟。唯独隔膜材料完全依赖进口,薄薄的一片隔膜占了整个锂离子电池成本的20%,是制约我国电池行业发展的瓶颈。
     隔膜的主要作用是隔离正、负极并使电池内的电子不能自由穿过,同时能够让离子(电解质液中)在正负极间自由通过。因而其性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环性能等特性。性能优异的隔膜对提高电池的综合性能具有重要的作用。
     目前,锂电池隔膜的材料主要为多孔的聚合物薄膜(如PP, PP/PE/PP膜),以及无纺布(如玻璃纤维无纺布、合成纤维无纺布、陶瓷纤维纸等)。但随着锂离子动力电池等大容量电池的发展,商品化聚烯烃隔膜的耐温性、亲液保液性和透气性的局限对电池的安全性能构成重大威胁,开发一种新型的耐高温锂离子电池隔膜对推动锂离子电池的发展具有重要意义。近几年,日本三菱、王子、宝翎,德国德固萨等国际著名隔膜生产厂家都相继提出了制备耐高温性能良好、亲液保液性优异的无纺布型锂离子电池隔膜,关键技术围绕利用超细纤维原料或者涂覆纳米颗粒控制孔径。而在国内,锂离子电池隔膜还基本依赖进口。
     本论文的研究目的是采用湿法成型无纺布工艺生产锂离子电池隔膜材料,主要是利用无纺布可通过原料的选择容易获得优异耐高温性能的优点和造纸技术湿法成型工艺灵活、成型均匀等优势。通过锂离子电池隔膜材料的使用要求,可以总结出制备耐高温湿法无纺布型锂离子电池隔膜,关键技术在于控制厚度,同时保证孔径及机械强度满足要求。
     本文对锂离子电池的无纺布隔膜进行了综合研究。以直径从几十个纳米到几百个纳米之间的天丝原纤化纤维为主要原料,配抄PET纤维,通过湿法成型、添加纳米SiO2控制孔径、再与PP湿法复合、辊压等工艺制备锂离子电池隔膜材料。并对成纸进行了抗张强度、撕裂度、透气度和孔径性能测试,最终目标是制备出符合要求的无纺布隔膜。本论文第一部分对天丝纤维原纤化程度和原纤化方式对隔膜性能的影响做出了具体研究。通过槽式打浆,盘磨磨浆,PFI打浆三种方式制备一定打浆度的原纤化天丝纤维浆料,通过试验可知,轻刀槽式打浆天丝纤维原纤化结构丰富,其保水值最高,为73.7%,纤维长度最长,数均长度为1.35mm。纤维湿法成型的纸页的具有丰富的迷宫孔结构,其纸页孔径最小,透气度最大,分别为4.7μm和623ml/min。
     本论文第二部分对不同定量的天丝纤维与不同无纺布的复合成型和不同复合方式对隔膜性能的影响做出了具体研究。综合比较了湿法复合成型与湿法压榨、干法辊压三种复合方法纸页性能,以及比较了30 g/m2、20 g/m2、10 g/m2三种不同定量的天丝与PP复合的纸页性能。最终得出,20 g/m2定量天丝与PP湿法复合方法纸页性能最优。
     本论文第三部分根据隔膜实际使用情况设计了两种湿法成型工艺,分别研究了其对隔膜性能的影响。实验结果表明,天丝纤维与PET纤维按照不同配比混合抄造电池隔膜,PET含量20%时,30g/m2定量的隔膜不仅具有合适的厚度,合适的抗张强度,最大孔径控制在2.4μm;纳米SiO2添加在天丝纤维与PET纤维混合抄造电池隔膜中,复合隔膜的孔径及孔径分布均得到了进一步控制,添加量15%时,最大孔径有效控制在1μm以下为0.673μm,孔径最小达113nm。这两种工艺制备的隔膜都具有良好的透气性,其中,PET增强隔膜工艺简单,可控制孔径接近1μm且强度合适,是一种可行性较高的隔膜制备工艺。
Lithium-ion battery is one type of new energy of great importance,it is publicly considered to be a first developed technique. Lithium-ion battery has the characteristics of high voltage,high energy density,low self discharge,safty and environmental friendly,it plays an improtant role in the field of new energy and environment protection.Separator is an important part of lithium-ion battery.Of the three participants in lithium-ion battery,anode&cathode materials and electrolyte have been localization and the technique is well developed.Separator is the only participant depends on import,such a thin separator observes 20% of the cost of lithium-ion battery,and becomes the bottle neck in the field of battery.
     The function of separator is to prevent physical contact of the positive and negative electrodes while serving as an electrolyte reservoir to enable free ionic transport. The separator’s properties affect the surface structure,internal resistance,capacity and cycle performance of the battery.A high quality separator is of great importance to incease the performance of the battery.
     At present,the materials of lithium-ion separator are mainly porous polymer films(such as PP,PP/PE/PP film) and non-wonven cloth(such as glass fibre non-wonven cloth,synthetic fibre non-wonven cloth, ceramic fibre non-wonven cloth ). With the development of large capactity Li-ion battery,commercial polyolefin separator limitations in temperature resistance,wettability and permeability graduslly become a great threat to the battery safety,developing a new type of temperature resistance separator is very meaningful to the development of Li-ion battery. In the last few years, separator manufacturers, Janpanese Mitsubishi, Oji, Vilene & German Deggussa, etc, have put forward preparations of Li-ion battery non-woven separator with excellent temperature resistance, wettability & electolyte rentation. The key technology is pore size controlled by ultra-thin fiber & inorganic particles, ect. In China, Li-ion battery separator are almost imported.
     The aim of our research is to use wet laid non-wonven cloth process to produce Li-ion battery separator material.Advatages of non-woven are the raw materials’multi-selection & the designable sheet sturture. That of paper-making are the flexible process & good formation. Therefore, this paper presents the preparation of wet laid non-wonven separator. The key technology is controling separator thickness and pore size while ensuring enough mechanical strength.
     In this paper,complex research was carried out on the Li-ion non-wonven cloth separator. Tencel fibrils with diameter from scores to hundreds of nano meters were used as the major raw material,sheet formed with PET fibre,wet laid formation, and nano-meter SiO2 was used to control pore size,then complexed with PP by wet laid process and rolled to prepare non wonven cloth separator;the tensile strength,tearing strength,air permeability and pore size of the sheet were tested,the final goal was to prepare qualified non wonven cloth separator.
     First section was the rearch on impacts of tencel pulp fibrillation degree and fibrillation methods on separator properties. Tencel fibrils pulp with certain beating degree was prepared by trough beating, disc refiner refining and PFI beating,it could be concluded from the experiments that,in the form of light trough beating,the tencel fibrils had a variety of structure,a high water retention rate(73.7%) and a maximum fibril length,the number average length is 1.35mm.The sheet formed by wet laid had a variety of maze pore structure,a minimum pore size and maximum air permeability, 4.7μm and 623ml/min respectively.
     In the second section, impacts of basis weght and complex method of tencel fibril and different non wonven cloth on separator properties were studied. The comparison of sheet properties was carried out among wet complex formation, wet pressing and dry doll,and compared the sheet properties complexed by tencel fibril and PP with different tencel fibril basis weight of 30,20,10 g/m2.It was found that, the property of sheet was optimum when 20 g/m2 tencel fibril basis weight complexed with PP by wet complex formation.
     In the third section, two kinds of wet formation process were designed on the basis of separator actually application,and their impacts on the properties of separator were studied.It could be concluded from the experiments that,baterry separator prepared by tencel fabril and PET fabril,when PET composite was 20%,the 30 g/m2 separator had a proper thickness, proper tensile strength and maximum pore size was controlled at 2.4μm;when nano SiO2 was added to the separator prepared by tencel fabril and PET fabril,the pore size and pore size distribution was further controlled,when 15% nano SiO2 was added,maximum valid pore size was controlled under 1μm,that was 0.673μm,the minimum pore size reached 113nm.Separator prepared by these two processes observe good air permeability,among them,the PET reinforced process was simple,the controlled pore size reached 1μm and had proper strength, and could be a feasible separator process.
引文
[1]陈玉红,唐致远,卢星河,谭才渊.锂离子电池爆炸机理研究[J].化学进展,2006,18(6):825-831
    [2]刘元刚,唐致远,陈玉红,徐强,商品化石墨作为聚合物锂离子电池负极材料的性能表征,材料热处理学报, 2007.02
    [3]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术,化学工业出版社,2008年第一版:6-50
    [4] Ceder G, Chiang Y M , Sadoway D R , et al1 Identification ofcathode materials for lithium batteries guided by first2principles cal2culations[J ]1 Nature ,1998 , 392 : 694– 6961
    [5] Whittingham, M.S. Chem. Rev. 2004,104, 4271.
    [6]吴大勇,刘昌炎,锂离子电池隔膜研究进展.新材料产业. 2006.09
    [7]伊廷锋,胡信国,高昆,锂离子电池隔膜的研究和发展现状.电池. 2005.06
    [8]黄锦娴,吴耀根,廖凯明,张伟.锂离子电池聚烯烃隔膜安全性[J].塑料制造,2009, (3):67-71
    [9] P. G. Balakrishnan, R. Ramesh, T. Prem Kumar. Safety mechanisms in lithium-ion batteries. Journal of Power Sources, 2006, 155(2):401-414
    [10]伊廷锋,胡国信,高昆.锂离子电池隔膜的研究及发展现状.电池,2005, 35(6) :468~470
    [11]刘培生,马晓明.多孔材料检测方法. 2006年,第一版:63-77
    [12] Pankaj Arora, Zhengming (John) Zhang. Battery Separators. Chem. Rev, 2004, 104(10):4419-4462
    [13] Sheng Shui Zhang. A review on separators of liquid electrolyte Li-ion batteries. Journal of power sources, 2006, 155(10):1-14
    [14] E. P. Roth, D. H. Doughty, D. L. Pile. Effects of separator breakdown on abuse response of 18650 Li-ion cells. Journal of Power Sources, 2007, (174):579-583
    [15]杨军,解晶莹,王久林.化学电源测试原理与技术. 2006年,第一版:282-285
    [16] A. J. Bard, L. R. Faulkner.电化学方法:原理与应用.化学工业出版社,1986年第一版:45-77
    [17] F. Anson.电化学和电分析化学.北京大学出版社,1983年第一版:18-23
    [18]王洪,邓璋琼,陈鸣才.一种用于锂离子电池的无机复合隔膜.复合材料学报,2009,26(1):5-64
    [19]刘元刚,唐致远,陈玉红,徐强.商品化石墨作为聚合物锂离子电池负极材料的性能表征.材料热处理学报, 2007,28(2):17-21
    [20] Ni Shibori Yasushi, Muramoto Yoshiaki, Kimura Noritoshi. Separator for Lithium secondary battery and Lithium secondary battery. JP2005-019026, 2005
    [21] Nakano Shigekazu, Nakayama Yasuaki.Separator for nonaqueous secondary battery. JP2003-123728, 1998
    [22] Shimizu Shigetomo, Watabe Tetsuya. Organic extra-superfine fiber sheet. JP2003-129393
    [23] Takase Toshiaki, Tanaka Masanao. Nnon-woven favric and separator for Lithium-ion secondary battery. JP2004-115980, 2004
    [24] Ueno Hiroyoshi, Ikeda Hideki, Toyoshima Setsuo. Thin porous paper. JP10-292289, 1998
    [25] Kobayashi Takeshi, Kimura Noritoshi. Wet nonwoven fabric, method for manufacturing wet nonwoven fabric, separator for electric doublelayer capacotpr, separator for Lithium ion secondary cell, electric double layer capacitor, and Lithium ion secondary cell. JP2005-159283, 2005
    [26] Kimura Noritoshi. Separator for Lithium ion secondary battery, and Lithium ion secondary battery. JP2006-019191, 2006
    [27] Nakayama Yasuaki, Nakamo Shigekazu. Separator for Lithium ion secondary battery and battery using it. JP2004-031084, 2004
    [28] Volker Heninge, Christian Hying, Gerhard Horpel. Electrical separator, method for making same and use therof in high-power Lithium cells. US2005-0255769, 2005
    [29] Volker Heninge, Christian Hying, Gerhard Horpel. Separator for us in high-energy batteries and method for the production thereof. US2006-0024569, 2006
    [30]张传文,严玉蓉,区炜锋,朱锐钿.静电纺丝法制备锂离子电池隔膜的研究进展.产业用纺织品,2009,(1):1-6
    [31]赵治贞.电纺制备聚偏氟乙烯超细纤维膜及性能研究,天津大学硕士学位论文,2004:34
    [32]程琥,杜洪彦,杨勇.新型锂电池用复合隔膜的制备及其电化学性能表征.电化学,2004,10(3):303-306
    [33] Kubo, Yoshiyo. Separator paper for alkaline battery and the alkaline battery[P]. US20060014080, 2006
    [34] Williams, et al. Wet-laid nonwoven polyolefm battery separatorsubstrate[P]. US 6174826, 2001
    [35] Turner. High-strength vylon battery separator material and related method of manufacture[P]. US5202178, 1993
    [36] Hayashi, Hideo. Separator for alkaline batteries[P]. US08/069512, 1993
    [37] Randell, Christopher Fred. Paper separators for electrochemical cells[P]. JP. 09-068259, 1999
    [38] Gary Lee, Audebert Jean-francois, Feistner Hans-joachim, et.al. Nonwoven separator for electrochemical cell[P]. US20030096171, 2003
    [39] Takase Toshiaki, Sato Yoshinori, Tanaka Masanao. Nonwoven fabric, battery using the nonwoven fabric and capactor using the nonwoven fabric[P]. JP2003105660, 2003
    [40] Ito Yasuhiro, Kondo Yoshihiko, Tanaka Masanao. Separator for battery, and battery using the same[P]. JP2005190778, 2005
    [41] Takeuchi Masataka, WadaTetsuo, Oota Teruhito. Electrolytic capacitor, material thereof and method for manufacturing the same[P]. JP2002324732, 2002
    [42] Shigematsu Toshihiro, Aizawa Wakana. Separator for battery[P]. JP2004319261, 2004
    [43]翟黎莉,Lyocell织物原纤化的研究及评价.青岛大学,2006.
    [44]张慧慧,碳纤维用Lyocell原丝力学性能改进研究.华东大学,2005
    [45]彭顺金,高强Lyocell纤维及其用于碳纤维原丝的研究.华东大学,2004
    [46]沈葵忠,房桂干,刘明山,撕裂度与撕裂度机理的新认识.江苏造纸, 2006.04
    [47]赵长生,纸张抗张强度的浅析.湖北造纸, 2001.02
    [48]梁健文,谈谈箱纸板耐破度的测定.造纸科学与技术, 2005.03

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700