辽宁西部湿陷性黄土特性与处治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以辽宁西部黄土为研究对象,以高速公路建设工程为依托,采用现场调查、测试和室内试验相结合的研究方法,通过对铁阜高速公路阜新一朝阳段湿陷性黄土的大量现场调查和勘察,利用三轴试验、14C测年法、X衍射法、扫描电子显微镜微观结构测试技术及计算机图像处理技术、人工神经网络技术、分形几何理论及基于扰动状态概念的建模方法,对辽西黄土的分布特征和工程特性进行了全面系统的研究和深入的探讨,开展了湿陷性黄土地基处理的试验研究,分析对比了试验前后黄土湿陷性的变化和黄土物理力学性质的改变,获得了各种湿陷性黄土地基处理方法的技术参数,为该地区工程项目的开展提供了科学的依据。
     论文的主要工作和成果如下:
     (1)阜朝高速公路沿线黄土分布于山前河流冲洪积平原、丘陵及低山地貌单元,主要分布于山前坡洪积扇及河谷阶地上。黄土为马兰黄土。黄土地貌形态特征并没有西北地区的黄土地貌特征明显,即没有典型的塬、梁、峁。不同地段的黄土均具有湿陷性,但不同地貌特征的黄土湿陷性具有一定的差异。在成因上可以认为是以风成为主后经重力和流水作用的综合成因,为冲洪积和坡洪积次生黄土。
     该地区黄土在颗粒成分上以粉粒为主,且其中以粗粉粒为主,粘粒含量变化较大,在粒度成分上有别于西北地区的黄土。黄土中的碎屑矿物以石英和长石为主,重矿物含量很小。粘土矿物以伊利石、伊蒙混层为主,绿泥石次之,高岭石含量很少。
     黄土中易溶盐平均含量为0.047%,中等溶盐平均含量为0.029%,难溶盐碳酸钙平均含量为2.46%,与我国其他地区的黄土中的可溶盐含量相比,易溶盐和难溶盐偏低。黄土的PH值在6.91-8.06之间变化,平均为7.47,呈弱碱性。
     (2)黄土的骨架颗粒的单粒状、集粒状和凝块状三种形式共存,粒状颗粒中单个的粉粒和由粘胶微细碎屑胶结成的集粒居多。黄土中粘粒含量较低时,骨架颗粒呈支架—镶嵌接触,随着粗颗粒含量的降低及粘粒含量的增高,骨架颗粒将由支架—镶嵌接触转变为分散分布,土体的强度和稳定性也随之增高。浅层黄土中大孔隙和中孔隙数量较多,说明存在较多的支架孔隙和其它大孔隙,而深层黄土的小孔隙和微孔隙则较多。黄土中孔隙具有自相似性,黄土中的孔隙分布具有分形特性,孔隙分布分维数在1.22-1.41变化。浅层黄土中的孔隙分布分维数较深部黄土略大。在深度20m内黄土的结构类型以支架大孔微胶结结构、支架大孔-镶嵌微孔半胶结结构、絮凝状胶结结构和凝块状胶结结构四种类型为主。浅部黄土的结构较松散,存在支架大孔微胶结结构,深度黄土的结构较为密实,为絮凝状胶结结构和凝块状胶结结构。由此,随着深度的增加,土体从松散逐渐趋于密实,土中孔隙逐渐减少,土颗粒从粒状逐渐聚集成凝块状,土粒间排列从微胶结结构逐渐变为胶结结构,稳定性逐渐提高,湿陷性逐渐降低。
     (3)黄土物理性质指标的变异性小于力学性质指标的变异性,力学指标离散性大。黄土的物理指标之间以及物理指标与力学指标之间相关性不好,相对而言,物理性质指标之间相关性要好于力学性质指标与物理性质指标之间的相关性。原状黄土饱和后的渗透系数大致为:竖向渗透系数的变化范围为4.13×10-5cm/s~9.13×10-5cm/s;水平向的渗透系数变化范围为1.67×10-5m/s-5.33×10-5cm/s;kz/kx值的变化范围1.54~4.65,渗透系数与渗透压力之间具有很好的幂函数关系,竖向渗透系数随深度具有较明显减小的规律。
     (4)辽西地区黄土具有有利于产生湿陷的基本原因,即特殊物质成分和特殊结构特征。深度1-5m的黄土的湿陷系数与物理指标之间的相关性并不明显。将人工神经网络方法用于黄土湿陷性判别,可以较好地利用物理指标进行湿陷性的预测。采用割线模量法建立了黄土湿陷变形的计算公式,可以用于湿陷性黄土地基的湿陷变形的计算。
     (5)在不同的试验条件试验获得强度指标是明显不同的,主要表现为不排水剪的抗剪强度指标c和(?)都明显较固结不排水剪获得的强度指标高。建议实际工程中采用有效应力强度指标。不排水剪的应力—应变关系主要表现为明显的应变软化型,但当固结压力较高时,应力—应变关系曲线变成应变硬化型;固结不排水剪获得的应力—应变关系主要呈弱应变软化型和应变弱硬化型;固结排水剪的应力—应变关系曲线为应变硬化型。这种强度和应力—应变特征主要受到黄土结构性、饱和程度、排水条件的影响。建立了描述黄土应变硬化和应变软化的扰动状态本构模型,可用于黄土路基的变形和稳定性分析。
     (6)冲击碾压法是处理浅层湿陷性黄土地基的一种有效方法,它可以增加地基土的干密度(密实度),增加地基土的承载能力,消除湿陷性黄土的湿陷性。冲击碾压的处治效果与湿陷性黄土的性质及设备冲击能有关,具体地段施工的效果应采用与施工地段地质条件相仿的路段试验确定。对于朝阳地区湿陷性黄土,25KJ三边形冲击碾压两试验段以12km/h冲碾速度碾压最优冲击遍数为40遍,冲击碾压的有效影响深度为0.90m。冲击碾压处治效果可采用动力触探的击数变化加以检验。
     强夯法作为一种处治黄土湿陷性的有效方法,适合于辽宁西部地区的湿陷性黄土的处治。在同一场地条件、试验设备情况下,单点夯击次数的不同,处治的有效影响深度不同,单点夯击次数大,影响深度越大,但变化不大。经强夯处理后的湿陷性黄土,消除湿陷性后土的干密度值大于1.50 g/cm3,可以采用土的干密度值作为检测的参考指标。湿陷性黄土强夯前后的动力触探击数变化与土的密实度变化有较好的关联性,可以用作判定处治有效深度的技术指标。
     通过采用灰土挤密桩可以有效消除黄土湿陷性,但消除的效果与采用的设备和设计的桩间距有关;可以用试验前后的动力触探对比判定场地土的处治效果;灰土桩处治施工后黄土的干密度值一般大于1.5g/cm3,可将干密度值作为黄土湿陷性检测判定的参考指标。
Based on project of Fuxin-Chaoyang expressway, which is a section of Tieling to Chaoyang highway, the engineering characteristics of loess of west area in Liaoning is studied in this paper by the methods of field investigation, tests in-situ and tests in laboratory. So a lot of survey works and triaxial tests in laboratory have been done, then some advanced methods such as age test with 14C, X radial diffraction, test technique of scan electron microscope (SEM), computer image process technique, technique of artificial nerve network, theory of fraction geometry and modelling method based on disturbed state concept, are used to study and discuss systemically on loess distribution and its engineering properties. Furthermore, a great deal field tests are also studied on subgrade treatment of collapsible loess. Some technical parameters are obtained for collapsible loess subgrage treatment by contrasting the indexes after treatment and before treatment, such as collapsibility and physical and mechanical properties. All these results can provide scientific basis for future projects in this area.
     The main studies and creative results of this paper are shown in the following:
     (1) The loess in west area of Liaoning is mainly distributed in three unit of physiognomy, namely, the physiognomy of river alluvial, alluvial and flood plain and front area of mountain, the physiognomy of low mountain upland by tectonic erosion and the physiognomy of low mountain by tectonic erosion. The loess belongs to Malan loess. Loess geomorphology is characterized by no typical Yuan, Liang and Mao, which is significantly different from loess geomorphology of northwest in China. The loess in different location all have collapsibility, but there are some differences between different geomorphological units. From the view of origin, the loess is formed by winding and gravitational conveying and flow transporting, therefore the loess in this area can be regarded as secondary loess by alluvial-flood and slope-flood deposition.
     Grain composition of loess consists mainly of silt particle, in which coarse silt grain is great. The content of clay grain varies in more large extent. So there is different in grain composition from northwest loess. Clastic minerals are mainly quartz and feldspar, heave mineral is little. The main clay mineral is illite and mixture layer of illite and montmorillonite, secondary composition is chlorite, and kaolinite is little in the loess. The average quality content of easy-soluble salt in loess is 0.047%, medium-soluble salt is 0.029% and difficult-soluble salt (CaCO3) is 2.46%. The value of PH varies between 6.91 and 8.06, and the average of PH is 7.47, that is, loess is in a state of alkalescence.
     (2) Framework grain in loess is in a state of coexistence of three types of single, aggregate, and clot grain, and single grain silt and aggregate is more which cemented by colloidal and fine clastic particle. When content of clay mineral is low, framework grain will be in a type of bracket-inlay contact, and which will change into disperse type with decreasing of coarse grain and increasing of clay grain, so the shear strength and stability of loess will be improved. The number of large and medium pores of loess in a shallow depth is much more than in a deep depth, and the number of small and micro pores much more than shallow loess. It shows that shallow loess is looser, in which exists a lot of bracket pores and other type pores, on the other hand, deep loess is denser, in which exists more lots of micro and small pores. The pore of loess has a characteristics of self-comparability and its distribution has a characteristics of fraction geometry. Fraction dimension of pore distribution varies between 1.22 and 1.41, and this index in shallow loess is slightly greater than in deep loess. In depth of 20m, four main types of structure are (A) bracket and large pore with weak-cemented structure, (B) bracket large pore and inlay and micro pore with half-cemented structure, (C) flocculent-cemented structure and (D) clotted-cemented structure respectively. The structure of loess is looser in shallow depth, in which is in structure of A, and denser in deep layer, in which is in type of C and D. Therefore, it is shown that with the depth increasing, the structure tends to dense, the number of pores is getting to decrease, the type of grain is getting to change from single to aggregate, cemented characteristics among particles varies from weak-cemented into cemented type, so stability of soil enhances and collapsibility reduces gradually.
     (3) The variabilities for physical property indexes of loess are less than mechanical property indexes, that is, the great scatter distribution for the latter. Further analysis results express that there is neither a very good statistical relationship among physical property indexes, nor relation between physical and mechanical property indexes, and comparatively the former is slightly better. The coefficient of permeability for undisturbed loess sample after saturated is about from 4.13×10-5cm/s to 9.13×10-5cm/s in vertical direction and from 1.67×10-5 cm/s to 5.33×10-5 cm/s in horizontal direction. The ratio of kz to kx is between 1.54 and 4.65. There is a power relation between coefficient of permeability and seepage pressure. The vertical permeability coefficient decreases more obviously with depth.
     (4) The loess has basic reasons which lead to collapse, namely, special composition and special structure characteristics. It doesn't have a very obvious statistical relation between coefficient of collapsibility and physical property indexes. It is found that technique of artificial nerve network (ANN) can used to predict reasonably the collapsibility of loess according to physical indexes. Here an expression which based on method of secant modulus also suggest to calculate rationally collapsible deformation of loess subgrade.
     (5) The indexes of shear strength determined from different test conditions are different. Results show that the c andφfrom the unconsolidated-undrained shear test (UU) are all larger than the indexes from consolidated-undrained shear test (CU). So indexes of effective shear strength is suggested to adopt in practical project. The stress-stain relation is mainly in a stain-soften pattern under UU condition, but will be transmitted to a strain-harden pattern when consolidated pressure is large. The stress-stain relation is mainly in a little stain-soften and little strain-harden pattern under CU condition, and it is a stain-soften relation under consolidated-drained test condition. These characteristics of stress-strain relation are influenced by structure, degree of saturation and drainage condition. Then a constitutive model, which can describe the characteristics of strain-harden and strain-soften, is established which can calculate deformation and stability of loess subgrade.
     (6) Impact-rolling method is an effective method to treat shallow collapsible loess which can increase dry density of soil and improve bearing capacity of subsoil, and eliminate the collapsibility of loess. The effect of impact-rolling method is related with property of collapsible loess and impactive effort, so the treatment effect should be determined by tests in a section of highway with similar geological condition. For Chaoyang collapsible loess the effective influence depth of impact-rolling can reach about 0.90m under impacting and rolling 40 times in the velocity of 12km/h with triangle impact-rolling machine in power of 25kJ.
     As a effective ground treatment method, dynamic compaction is propitious to treat the collapsible loess of west area in Liaoning. In the same field condition and test equipment, different compacted times, effective influence depth is different. The more of compacted times, the greater of influence depth, but in small variation. The value of dry density of soil can be greater than 1.50g/cm3 after collapsibility is eliminated. So the dry density can be reference index to examine the compacted effect. And there is a better relationship between number of dynamic penetration and degree of dense, so the number can be used as a technical index to determine the effective depth.
     Lime soil pile can effectively eliminate collapsibility of loess, but its effect relates with equipment and pile spacing. Treatment effect of this method can also be judged by comparing number of dynamic compaction before compact and after. The value of dry density of soil can be greater than 1.50g/cm3 after treating with lime soil pile, and can take dry density as a reference to examine collapsibility which is eliminated or not.
引文
1. 孙建中.黄土学[M],香港:香港考古学会出版,2005.
    2. 刘东生.黄土的物质成分和结构[M],北京:科学出版社,1966.
    3. 钱鸿缙,王继唐等.湿陷性黄土地基[M],北京:中国建筑工业出版社,1985.
    4. 冯连昌,郑晏武.中国湿陷性黄土[M],北京:中国铁道出版社,1982.
    5. 王永焱,林在贯.中国黄土的结构特性及物理力学性质[M],北京:科学出版社,1990.
    6. 中国科学院土木建筑研究所研究报告.黄土基本性质的研究[M],北京:科学出版社,1959.
    7. 陈宗基,我国西北黄土的基本性质及其工程建议[[J],岩土工程学报,1989,11(6)9-24.
    8. 高国瑞.黄土显微结构分类与湿陷性[J],中国科学(A辑),1980,(12):1203-1208.
    9. 雷祥义.中国黄土的孔隙类型与湿陷性[J],中国科学(B辑),1987,(12):1309-1316.
    10.关文章.湿陷性黄土工程性能新篇.西安交通大学出版社,1990.
    11.张炜.我国黄土工程性质研究的发展[J],岩土工程学报,1995,17(6):10-18.
    12.高国瑞.兰州黄土显微结构和湿陷机理的探讨[J],兰州大学学报(自然科学报),1979(2):123-128.
    13.张建丽.太原东山黄土静力性质的试验研究[J],科技情报开发与经济,2005,15(15):170-171.
    14.邵生俊,李彦兴,周飞飞.湿陷性黄土结构损伤演化特性[J],岩石力学与工程学报,2004,23(24):4161-4165.
    15.邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J],岩土工程学报,2004,26(4):531-536.
    16.林斌,赵法锁.黄土的小形变本构特征及参数研究[J],工程地质学报,2006,14(3)356-359.
    17.米海珍,李如梦,牛军贤.兰州原状黄土剪切强度特性的试验研究[J],兰州理工大学学报,2006,32(4):109-111.
    18.石玉成,李兰,刘红玫.黄土的震陷性与其微结构特征的关系研究[J],西北地震学报,2002,24(2):129-134
    19.雷胜友,唐文栋,王晓谋等.原状黄土损伤破坏过程的CT扫描分析(Ⅱ)[J],铁道科学与工程学报,2005,2(1):53-56
    20.卢全中,彭建兵.黄土体工程地质的研究体系及若干问题探讨[J],吉林大学学报(地球科学版),2006,36(3):404-409
    21.李萍,李同录.黄土物理性质与湿陷性的关系及其工程意义[J],工程地质学报,2007,15(04):506-512.
    22.辽宁省地质局水文地质大队.辽宁第四纪[M],北京:地质出版社,1983.
    23.邢玉东,王常明.辽西黄土的物质组成与微观结构特征[J],岩土工程技术,2008,22(3):152-156.
    24.常兰玉.黄土湿陷性的评价方法及本构关系研究[D],辽宁工程技术大学,2003.
    25.陕西省计划委员会.GB 50025-2004,湿陷性黄土地区建筑规范[S],北京:中国建筑工业出版社,2004.
    26. D. Sheng, S. W. Sloan, A. Gens, A constitutive model for unsaturated soils: thermomechanical and computational aspects [J], Computational Mechanics,2004, 54(1):1-17
    27. E.A. Ibijola, On some fundamental concepts of Continuum Damage Mechanics [J], Comput. Methods Appl. Mech. Engrg.,2002,191:1505-1520
    28. V.I.Osipov, V.N.Sokolov. Factors and mechanism of loess collapsibility[A]. In:Genesis and properties of collapsible soils [C]. Proc,workshop,Loughborough,1994, ed E.Derbyshire&others, (Kluwer; NATO ASI Series C,468),1995,49-63.
    29. I.F.Jefferson. D.Evstatiev, D.Karastanev, et al. LJ.Smalley. Engineering geology of loess and loess-like deposits:a commentary on the Russian literature [J]. Engineering Geology,2003,68:333-351
    30. I.F.Jeffersona, Nadirs Mavlyanova, K.O'Hara-Dhand, et al. The engineering geology of loess ground:15 tasks forinvestigators-the Mavlyanov programme of loess research[J].Engineering Geology,2004,74:33-37.
    31. P Lu, I F.Jefferson, M.S.Rosenbaum, et al. Fractal characteristics of loess fonnation:evidence from laboratory experiments [J]. Engineering Geology, 2003,69:287-293
    32.高国瑞.黄土湿陷变形的结构理论[J],岩土工程学报,1990(4):1-10.
    33.高国瑞.我国黄土湿陷性质的形成研究[J],南京建筑工程学院学报,1994,(2):10-16.
    34.赵景波.黄土的孔隙与湿陷性研究[J],工程地质学报.1994,2(2):34-40.
    35.朱海之.黄河中游马兰黄土颗粒及结构的若干特征[J],地质科学,1963,(2):35-43.
    36.陈正汉,刘祖典.黄土的湿陷变形机理[J],岩土工程学报,1986,8(2):1-12.
    37.汤连生.黄土湿陷性的微结构不平衡吸力成因论[J],工程地质学报,2003,11(1):24-30
    38.谢定义.试论我国黄土力学研究中的若干新趋向[J],岩土工程学报,2001,23(1):3-12.
    39.张彬等.土本构模型研究的现状及展望[J],桂林工学院学报,2003,23(3):10-15.
    40.刘祖典.陕西关中黄土变形特性和变形参数的探讨[J],岩土工程学报,1984,6(3):12-17.
    41.刘祖典,郭增玉等.陕西黄土的变形特性[J],中国土木工程学会第四届土力学及基础工程学术会议论文选集,武汉:中国建筑工业出版社,1983.
    42.刘祖典.黄土力学与工程[M],西安:陕西科学出版社,1997.
    43.谢定义.黄土力学特性与应用研究的过去、现在与末来[J],地下空间,1999,19(4):27-32.
    44.邢义川.黄土力学性质研究的发展和展望[J],水力发电学报,2004:54-65.
    45. Roscoe K H, Schofield A N, Wroth C P. On the yielding of soils[J], Geotechnique, 1958,8 (1)
    46. Roscoe K H, Schofield A N, Thurairajah A. Yielding of clays in states wetter than critical[J], Geotechnique,1963,13 (3)
    47. Borland J B. Effective stresses in partly saturated soils[J], Geotechnique,1964,14 (1):65-68.
    48. Fredlund D G. Second Canadian Geobechnical Colloquium:Appropriate concepts and technology for unsaturated soils. Can. Geotech. J.,1979,16 (1):121-139.
    49.沈珠江.当前非饱和土力学研究的若于问题,区域性土的岩土工程问题学术讨论会论文集[A],南京:原子能出版社,1996:1-9.
    50. Coleman J D. Stress/strain relation far pardy satura}ad soils[J],Geotechnique, (correspondence),1962,12 (4):348-350.
    51. Fredlund D G and Morgensbern N R Constitutive relations for volume change in unsaturated soils[J], Can. Goetech. J.,1976,13 (3):262-276.
    52. Bolzon G, Scherefler B A and Zienkiewicz O C. Elastoplastic soil constitutive law generalized to partially saturated states[J], Geotechnique,1996,46 (2):279-289.
    53.张苏民.湿陷性黄土的增湿变形特征[J],岩土工程学报,1990,12(4):25-30.
    54.张苏民.减湿和增湿时黄土的湿陷性[J],岩土工程学报,1992,14(2):34-40.
    55.陈正汉,周海清.非饱和压实黄土的本构关系研究[J],西部探矿工程,1996,8(增刊):1-4
    56.陈正汉.重塑非饱和黄土的变形、强度、屈服和水量变化特征[J],岩土工程学报,1999,21(1):82-90.
    57.苗天德,刘忠玉,任九牛.湿陷性黄土的变形机理与本构关系[J],岩土工程学报,1999,21(4):383-387.
    58.沈珠江.土体结构性的数学模型——21世纪力学的核心问题[J],岩土工程学报,1996,18(1):95-97.
    59.沈珠江.广义吸力和非饱和土的统一变形理论[J],岩土工程学报,1996,Vol.18(2):1-9.
    60.沈珠江.理论土力学[M],北京:水利水电出版社,2000.
    61.沈珠江,胡再强.黄土的二元介质模型[J],水利学报,2003,(7):1-6.
    62.罗宇生.湿陷性黄土地基评价[J],岩土工程学报,1998,20(4):87-91.
    63.陈洪志,麻凤海.湿陷性黄土地基处理[J],辽宁工程技术大学学报,2005,24(S)98-100.
    64.石刚,支喜兰,谢永利等.冲击压实和强夯加固地基效果分析[J],交通运输工程学报,2006,16(4):52-56.
    65.龚晓南.高等级公路地基处理设计指南[M],人民交通出版社,2005,11:282-285.
    66.张伯平,席丁民,张玉香.关中西部黄土地基强夯处理工程效果研究[J],西北农业大学学报,2000,28(5):95-99.
    67.李大忠.强夯处理后湿陷性黄土的承载力计算方法[J],土工基础,2000,14(4):11-14.
    68.万德臣.用强夯处理湿陷性黄土地基的技术研究与实践[J],华东公路,2001,13(1):22-25.
    69.缪林昌,刘松玉.强夯法加固地基的有效范围研究[J],勘察科学技术,2001,(5):3-6
    70.韩庆祝.冲击碾压技术在湿陷性黄土路基施工中的应用[J],路基工程,2000,92:49-51.
    71.王生新,韩文峰,谌文武.冲击压实法加固湿陷性黄土路基的应用研究[J],岩石力学与工程学报,2003,22(S2):2848-2852.
    72.景宏君,张斌.黄土地区公路路基冲击压实试验[J],长安大学学报(自然科学)2004,24(1):25-29.
    73.王吉利,刘怡林,沈兴付,等.冲击碾压法处理黄土地基的试验研究[J],岩土力学,2005,26(5):755-758.
    74.蒋红英,鲁进步,苗天德.挤密桩消除黄土湿陷性的可靠研究[J],岩石力学与工程学报,2003,22(10):1840-1845.
    75.陈莉.灰土挤密桩在湿陷性黄土地基中的设计与应用[J],兰州铁道学院学报,2000,19(6):60-62
    76.刘东生.黄土与环境[M],北京:科学出版社,1985.
    77.孙继敏.中国黄土的物质来源及其粉尘的产生机制与搬运过程[J],第四纪研究,2004,24(2):175-183.
    78. Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J], Earth and Planetary Science Letters,2002 20 (3):845-859.
    79.刘乐军,李培英,王永吉.鲁中黄土粒度特征及其成因探讨[J],海洋地质与第四纪 地质,2000,20(1):81-86.
    80.雷祥义.秦岭黄土的粒度分析及其成因初步探讨[J],地质学报,1998,72(2)178-188.
    81.刘东生.黄土的物质成分和结构[M],北京:科学出版社,1966.
    82.张济忠.分形[M],北京:清华大学出版社,1995.
    83. Desai.C.S. A consistent finite element technique for work softening behavior[A], Proc. Int. Conf. On Computer Methods in Nonlinear Mechanics, University of Texas, Austin, TX,1974.
    84. Desai.C.S, Somasundaram.S, Frantziskonis.G. A hierarchical approach for constitutive modeling of geologic materials[J], Int. J. Numer. Anal. Mech. Geomech.,1986,10: 225-257.
    85. Desai.C.S. Mechanics of materials and interfaces:the disturbed state concept[M]. CRC Press LLC. Baca Raton,2001.
    86. Desai.C.S, Basaran.C, Zhang.W. Numerical algorithms and mesh dependance in the disturbed state concept[J], International journal of numerical methods in engineering,1997,40 (16):3059-3083.
    87. Pal.S, Wathugala.G.W. Disturbed state model for sand-geosynthetic interfaces and appliction to pull-out tests[J], Int. J. Numer. Anal. Mech.Geomech.,1999,23: 1873-1892.
    88. Liu.M.D, Carter.J.P, Desai.C.S, Xu.K.J. Analysis of the compression of structured soils using the disturbed state concept[J], Int. J. Numer. Anal. Mech. Geomech., 2000,24:723-735.
    89.吴刚.工程材料的扰动状态本构模型Ⅰ—扰动状态概念及其理论基础[J],岩石力学与工程学报,2002.2(6):759-765.
    90.吴刚.工程材料的扰动状态本构模型Ⅱ——基于扰动状态概念的有限元数值模拟[J],岩石力学与工程学报,2002.8,21(8):1107-1110.
    91.王国欣.软土结构性及其扰动状态模型研究:吉林大学博士论文[D],长春:吉林大学,2003.
    92.郑建业,葛修润,蒋宇等.扰动状态概念方法的参数标定及应用初探[J],上海交通大学学报,2004,38(6):972-975.
    93.陈锦剑,吴刚,王建华等.基于扰动状态概念模型的饱和软粘土力学特性[J],上海交通大学学报,2004,38(6):952-955.
    94.叶为民,崔玉军,黄雨等.黄土的湿陷性及其评价准则[J],岩石力学与工程学报,2006,25(3):550-555.
    95.李喜安,彭建兵.用改进后的BP神经网络评价黄土质边坡稳定性[J],地质灾害与环 境保护,2002,13(4):56-59.
    96.徐洪钟,吴浩,李琦.基于人工神经网络的砂土液化势评价[J],水文地质工程地质,1998,(1):16-18
    97.陈祥光,裴旭东.人工神经网络技术及应用[M],北京:中国电力出版社,2003.
    98. G.Habibagahi and M.Mohhberi.A hyperbolic model for volume change Behavior of collapsible soils[J], Can Geotech,1998,35 (2):264-272.
    99.刘祖典.黄土地基变形计算的形变法[J],陕西机械学院学报,1986,23(2):1-6.
    100.刘祖典.黄土的湿陷变形[J],土木工程学报,1985,18(1):69-76.
    101.张苏民.用湿陷势能来评价黄土的湿陷性[J],工程勘察,1988,(1):5-8.
    102.魏汝龙.整理压缩试验资料的一种新方法[J],水利水运科学研究,1980,(3):90-93.
    103.刘保健,张军丽.土工压缩试验成果分析方法与应用[J],中国公路学报,1999,12(1):16-21.
    104.刘保健,谢定义,郭增玉.黄土地基增湿变形的实用算法[J],岩土力学,2004,25(2):270-274.
    105.王常明,陈英姿,张淑华.软土非线性蠕变压缩模型[J],吉林大学学报(地球科学版),2004,34(3):420-424.
    106.邢玉东,王常明,张立新等.阜新至朝阳高速公路段湿陷性路基处理方法及效果[J],吉林大学学报(地学版),2008,38(1):98-104.
    107.邢玉东,王常明,张立新等.辽西湿陷性黄土路基强夯试验的研究[J],中国土木工程学会第十届土力学及岩土工程学术会议论文集(下册),2007:144-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700