强震作用下黄土边坡的动力响应机理和动力稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的黄土地区具有非常特殊的地质构造背景,其覆盖了我国的南北地震带、华北大地震带和祁连地震带,是我国地震灾害最频发的地区之一,发育了大量的历史强震。由于黄土具有强烈的地震易损性、震陷性和液化性,因此,这些地震诱发了大量的地质灾害,特别是1920年爆发的海原大地震,诱发了不计其数的黄土地震滑坡。
     本文以宁夏西吉—海原—固原地区作为研究区,研究了该区地震滑坡的分布、特征、破坏类型及发育机理,通过收集该区域范围的地震资料,得到了该区的地震动衰减关系,并人工合成典型滑坡点的地震动时程。在此基础上,对黄土的动应力—应变关系、震陷、液化特性,以及边坡的动力响应和动力稳定性进行了研究。
     通过本文的研究,主要取得以下几点创新性的成果:
     (1)对研究区地震滑坡的特征进行总结,提出了研究区地震滑坡具有集中发育、扎堆群发的分布特点,主要发育在高度较矮、坡度较缓、以及地貌破碎、单薄的山梁上,并且,研究区地震滑坡具有方向性、运动液化的特点,以及流线形和波浪形的微地貌特征。
     (2)首次从破坏机理上对黄土地震滑坡进行破坏模式分析,将该区黄土地震滑坡分为振动软化—剪切破坏、振动液化—流动破坏、振动崩塌破坏以及震后蠕变破坏四种破坏类型,并从地壳破裂几何投影中心、岩土分布特征、地貌特征、地震波频谱效应几个方面分析研究区地震滑坡密集发育的原因及机理。
     (3)收集了该区域范围的地震资料,通过统计回归分析和转换的方法,首次得到了适合于研究区的地震动衰减关系,并通过地震危险性分析,人工合成典型滑坡点不同超越概率的地震动时程,并据此作为该滑坡黄土动力特性试验、边坡动力响应,以及边坡动力稳定性分析的输入激振波。
     (4)对随机波作用下的黄土进行动力特性试验,得到了随机地震波作用下黄土的应力—应变关系;对黄土的震陷表达式进行修正,提出了随机波作用下的残余应变公式,并研究了地震波频谱特征和方向、固结比、含水量等变化的影响效应;首次提出了随机地震波作用下黄土的孔压增长模型,以及地震作用对黄土抗剪强度的影响效应。
     (5)根据所得到的地震动时程和应力应变关系编制子程序,对黄土边坡进行动力响应分析,得到了地震动时程幅值的大小、频谱特征、入射方向以及活断层的影响效应。
     (6)在对黄土边坡进行动力稳定性计算时,提出了要采用能体现边坡的地震地质构造背景、震源特征及传播介质特性的地震动时程进行动力响应分析和动力试验,在计算中要考虑振动引起的孔压增长、骨架抗剪强度损伤以及残余变形的影响的计算方法。
Science its special geological structure background, the regions covered by loess in china which include the south-north Seismic belt, north of china seismic belt and QI-Lian Seismic belt, is one of the regions with the maximum frequency of earthquake occurred in our country, and has the massive history strong earthquake records. For the reason of earthquake vulnerability, subsidence and liquation of loess, the history earthquake induced numerous of seismic geological disaster, especially the 1920 Hai Yuan earthquake, trigger a lot of loess landslides.
     In this paper, the XiJi-HaiYuan-GuYuan region in south of Ning Xia Province has been chosen as a investigation target area, and the distribution, characters and failure model, development mechanism of the landslide induced by earthquake has been studied, and then, the seismic data of this regions has been collected to build the attenuation relation of ground acceleration, and gained the seismic wave. Based on these, the dynamic constitutive equations, seismic subsidence and liquation of loess, the dynamic response and dynamic stability of loess slope has been studied.
     Some main innovative ideas are got as follows in this paper:
     (1) in the summary, with the centralized appearance and huddled together distribution characters, the earthquake landslides in the target area are mainly happened in the low, gentle slope and incised strongly, thin and weak loess side slope, and these landslides has specifically movement aspect, liquefaction phenomenon, and has streamline and undee physiognomy characters.
     (2) Based on its failure mechanism, the failure modeles are defined as the softened-sheared model, the liquefaction-flow model, and the falling model, hysteretic landslide model, and then, the reason and mechanism of landslide happened serriedly in the target regison are owed to its location, material and physiognomy, and predominant frequency of seismic wave.
     (3) the earthquake history data are collected, and the attenuation relation of ground acceleration induced by earthquake are gained by the methodes of statistic, regression and transform analysis, in succession, the artifical earthquake wave are produced after the earthquake fatalness analysis, which are used to research the loess dynamic triaxial test, dynamic response and dynamic stability loess slope.
     (4) after the dynamic triaxial test, the dynamic constitutive equations are gained, and the seismic subsidence mechanism of loess are disclosed, and its expression are revised, and gained the formula of subsidence in condition of seismic wave, as well as the effection of superexcellent frequency, maximum value and aspect of seismic wave, and the consolidation ratio, moisture content etc, and more farther, the por water pressure increase model of loess in seismic condition are gained, and the effect of shear strength by reason of earthquake wave acted on the sample.
     (5) based on the attenuation relation of ground acceleration and dynamic constitutive equations, the dynamic response of loess slope are studied as well as the effect of maximum value, superexcellent frequency and aspect of seismic wave, active fault.
     (6) when forecast the stability of loess slope in earthquake condition, a seismic wave which exhibit the geological and seismic structure background, epicenter and spread medium character should be chosen to obtain the dynamic response and test parameters, and the increase value of pore water pressure, the soften of loess framework shear strength and the seismic subsidence should be take into account.
引文
[1]刘东生.黄土与环境[M],北京:科学出版社,1985.
    [2]孙建中.黄土学[M],香港:香港考古学会出版社,2005.
    [3]石兆吉,王兰民.土壤动力特性、液化势及危害评价[M],北京:地震出版社,1999.
    [4]李善邦.中国地震[M],北京:地震出版社,1981.
    [5]张振中.黄土地震灾害预测[M],北京:地震出版社,1999.
    [6]国家地震局兰州地震研究所,陕甘宁青四省(区)强震目录(公元前1177年一公元1982年)[M],1985,西安:陕西科学技术出版社.
    [7]刘百篪等.1718年通渭地震和1654年天水地震区航空照片判读.地震科学研究,1984(1):1-7
    [8]国家地震局兰州地震研究所,宁夏地震局.1920年海原大地震[M],北京:地震出版社,1980.
    [9]Close, U., McCormick, E., Where the mountains walked [M], The National Geographic Magazine,1922,41 (5),445-464.
    [10]Zhu, H., The Geological characteristics of landslides induced by earthquakes in China[J], Proceedings of the Japan-China Symposium on Landslides and Debris Flows, Tokyo, 1989a, pp.161-168.
    [11]Zhu, H., Some types of seismic landslides in the Loess Area in China [J], Proc. International Field Workshop on Loess Geomorphological Processes and Hazards,1989b, pp.64-71.
    [12]邹谨敞,邵顺妹,蒋荣发.古浪地震滑坡与断裂带的关系[J],中国地震,10(2)168-174,1994.
    [13]郎煜华,中村浩之[日],曾思伟,等.兰州市永登5.8级地震滑坡及其特征[J].甘肃科学学报,1996,8(增刊),67-72.
    [14]陈永明,石玉成.中国西北黄土地区地震滑坡基本特征[J],地震研究,2006,vo1.29.No.3:276-280.
    [15]谢定义.土动力学[M].西安:西安交通大学出版社.1986.
    [16]谢定义,余雄飞,原状黄土动力特性中一些问题的讨论[A],全国土工建筑物及地基抗震学术讨论会论文汇编[C],西安:1986.
    [17]谢定义,刘奉银,余雄飞等.深厚湿陷性黄土层地基处理新途径的探讨[A],全国黄土会议论文集[C],新疆卫生出版社,1994.327~332.
    [18]谢定义.黄土力学特性与应用研究的过去,现在与未来[J].地下空间,1999,19(4):273-284.
    [19]谢定义,试论我国黄土力学研究中的若干新趋向[J],岩土工程学报,2001,23(1):3-13.
    [20]巫志辉、方彦,原状黄土在增湿时的震陷特性,全国第三届土动力学会议论文集,上海:同济大学出版社,1990.
    [21]段汝文,兰州黄土动力特性的实验研究,西北地震学报,Vol.1,No.2,1979.
    [22]段汝文、张振中、李兰等,黄土动力特性的进一步研究,西北地震学报,Vol.12,No.3,1990.
    [23]骆亚生,谢定义,董为民等,不同地区黄土振陷变形特性的对比分析[J].陕西水利发电,2001,(17):4-7.
    [24]骆亚生,非饱和黄土的动剪模量与阻尼比水利学报[J],2005,37(7):830-834.
    [25]陈存礼,杨鹏,何军芳,饱和击实黄土的动力特性研究[J],岩土力学,2007,28(8):1551-1556.
    [26]王建荣,张振中,王峻等.振动频率对原状黄土动本构关系的影响[J],西北地震学报,1999,21(3):310-314.
    [27]骆亚生.非饱和黄土在动、静复杂应力条件下的结构变化特性及结构性本构关系研究[D],西安理工大学博士论文,2004.
    [28]柴华友,崔玉军,卢应发.循环荷载下黄土特性模拟[J],岩石力学与工程学报,2004,24(23):4272-4281.
    [29]佘跃心,刘汉龙,高玉峰等.击实黄土孔压增长及循环软化特性试验研究[J],西北地震学报,2002,24(2):123-127.
    [30]刘红玫,袁中夏,王峻.基于内时理论的饱和黄土孔压增长模型的试验研究[J],西北地震学报,2004,26(4):371-373.
    [31]陈存礼,杨鹏,郭娟.等应力比应力路径下饱和原状黄土的孔压特性[J],水利学报,2007,38(8):907-913.
    [32]Dayan Wang, Wei Ma, Xiaoxiao Chang. Analyses of behavior of stress-strain of frozen Lanzhou loess subjected to Ko consolidation[J], Cold Regions Science and Technology, 2004, (40):19-29.
    [33]Qiu Yihui, Fan Shuju, Fan Weiyuan. Some aspects on the liquefaction potential of dynamically compacted loesslike sand loam[C]//Proc. of Ninth World Conference on Earthquake Engineering.1985,111 (12),1425-1445.
    [34]王兰民、张振中、王峻等,随机地震荷载作用下黄土动强度的实验方法,西北地震学报,vol.13,No.3,1991.
    [35]王兰民、张振中、王峻等,随机地震荷载作用下黄土动本构关系的实验研究,西北地震学报,vol.14,No.3,1992.
    [36]王兰民,袁中夏、石玉成等,黄土地震灾害区划指标与方法研究,自然灾害学报,Vol.8,No.3,pp:87~92,1999.
    [37]Wang Lanmin et al., Dynamic behaviors of loess under irregular seismic loading, Proceeding of the Second International Conference on Earthquake Construction and Design, vol.1, pp.187-194(berlin, Germany),1994.
    [38]王兰民等.黄土动力学[M],北京:地震出版社,2003.
    [39]王峻、王兰民、李兰,不同地震荷载对黄土动模量与阻尼比的影响,自然灾害学报,1992.
    [40]王峻,李兰.俄罗斯伊尔库茨克地区黄土动力特性试验研究[J].西北地震学报,2001,23(3):286-290.
    [41]何光、朱鸿博,黄土震陷研究,岩土工程学报,Vo1.17,No.6,pp.99~103,1995.
    [42]孙崇绍、石玉成,西北黄土的剪切波速,黄土地震灾害预测,北京:地震出版社,1998.
    [43]石玉成,郑明军,中国西北黄土的动剪切模量和阻尼比特征(英文),西北地震学报,Vol.19(增刊),PP.1449~150,1997.
    [44]胡瑞林、李焯芬、王思敬等,动荷载作用下黄土的强度特征及其结构变化机理研究,岩土工程学报,Vo1.22,No.2,PP.174~181,2000.
    [45]李兰,王兰民,刘旭,极震区黄土微结构的试验研究[J],中国地震,2005,21(3):369-377.
    [46]刘健,廖红建,李杭州.饱和重塑黄土动力反应的数值模拟[J],西安交通大学学报,2008,42(1):101-105.
    [47]孙崇绍,兰州市区地面脉动特征,西北地震学报,Vol.3,No.1,pp.61-71,1981.
    [48]林学文,场地的脉动评价问题,第三届全国图动力学学术会议论文集,上海:同济大学出版社,pp.395~398,1990.
    [49]石玉成.黄土场地的脉动特征及地震工程意义[J],兰州大学学报(自然科学版),2001,37(5):105-110.
    [50]袁中夏,王兰民,李明勇,黄土动力学数据处理软件的研制[J],西北地震学报,2004,26(1):28-32.
    [51]张振中,段汝文.黄土震陷研究与震害研究[J].西北地震学报,1987,19(增):14-18.
    [52]C.B.麦德维杰夫,地震小区化[M],北京:地震出版社,1981.
    [53]齐吉琳.甘肃永登5.8级地震黄土震害特征及机理分析[J].西北地震学报,1998,20(1):70-75.
    [54]陈永明,石玉成等.1995年永登地震黄土震陷变形特征及其形成机理[J].西北地震学报,2000,22(4):465-470.
    [55]张冬丽,王兰民,1995年永登地震山体变形计算机模拟与机理分析[J],西北地震学报,2003,25(1):77-81.
    [56]王峻,王兰民,李兰,永登5.8级地震中黄土震陷灾害的探讨[J],地震研究,2005,28(4):393-397.
    [57]ZHANG Zhen-zhong, ZHANG Dong-lil, LIU Hong-mei, Comprehensive Study on Seismic Subsidence of Loess under Earthquake. Northwestern Seismological Journal, 2005,27(1):36-42.
    [58]王兰民,袁中夏,王峻等.干密度对击实黄土震陷性影响的试验研究[J].地震工程与振动,2000.20(1):87-92.
    [59]翁效林,熊元克,裴凯.黄土震陷变形特征的离心模型试验研究[J],矿物学报,2006,26(4):460-464.
    [60]李兰,王兰民.含粘粒量黄土抗震陷性能的试验研究[J],水文地质工程地质,2007,V.3:63-66.
    [61]贾革续,孔宪京,粗粒土动残余变形特性的试验研究[J],岩土工程学报,2004,26(1):26-30.
    [62]袁晓铭,孙锐,孟上九.土体地震大变形分析中Seed有效循环次数方法的局限性[J],岩土工程学报,2004,26(2):207-311.
    [63]袁晓铭,孟上九,孙锐,随机地震荷载下粘性土残余应变的半经验计算公式[J],水利学报,2004,(11):62-67.
    [64]石玉成,李兰,刘红玫.黄土的震陷性与其微结构特征的关系研究[J],西北地震学报, 2002,24(2):130-135.
    [65]石玉成,李兰.黄土震陷变形特征的细观分析[J],岩石力学与工程学报,2003,22(增2):2829~2833.
    [66]刘红玫,张振中.永登震后黄土微结构特征研究[J].西北地震学报,2005,27(2):174-177.
    [67]李兰,王兰民,王峻.永登5.8级地震极震区黄土微结构孔隙性的定量研究[J],地震研究,2005,28(3):282-287.
    [68]王兰民,邓津,黄媛.黄土震陷性的微观结构量化分析[J],岩石力学与工程学报,2007,26(1):3025-3031.
    [69]邓津,王兰民,张振中.黄土显微结构特征与震陷性[J],岩土工程学报,2007,29(4):542-548.
    [70]邓津,王兰民,张振中,甘肃永登湿陷性新近堆积黄土的微观结构分析[J],西北地震学报,2005,27(3):267-271.
    [71]陈永明,王兰民,刘红玫,剪切波速预测黄土场地震陷量的方法[J],岩石力学与工程学报,2003,22(增2):2834-2839.
    [72]徐舜华,王兰民,袁中夏,黄土震陷初判指标的界定研究[J],西北地震学报,2006,28(2): 140-143.
    [73]徐舜华,秋仁东,王平.黄土震陷下限深度研究[J],西北地震学报,2007,29(3):240-244.
    [74]王峻,王兰民.地震荷载作用下黄土地基震陷研究[J],世界地震工程,2007,23(4):44-47.
    [75]王兰民,孙军杰,黄雪峰.黄土场地震陷时桩基负摩阻力的现场试验研究[J],岩土工程学报,2008,30(3):341-348.
    [76]Prakash S, Puri V K. Liquefaction of loessial soils[A], Proceeding of 3rd international earthquake microzonation conference[C],1982.Vol.1:1101—1107.
    [77]Puri V K.Liquefaction behavior and dynamic properties of loessial (silty) soils [D].Rolla: University of Missouri-Rolla,1984.
    [78]Shannon S. Liquefaction and settlement characteristics of silt soils [D].Rolla:University of Missouri-Rolla,1989.
    [79]Prakash S and Sandoval J A. Liquefaction of low plasticity silts [J], Journal of Soil Dynamic and Earthquake Engineering,1992,71(7):373-397.
    [80]Prakash, S., Guo. T, Liquefaction of silts and silt-clay mixtures, Geotechnical Earthquake Eng. and Soil Dynamics III, ASCE, vol.1, pp.337-346, Seattle, Wash.1998.
    [81]Guo T Q, Prakash S. Liquefaction of silts and silt-clay mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1999,125(8):706-710.
    [82]Ishihara K, Okusa S, Oyagi N, et al. Liquefaction-induced flow slide in the collapsive loess deposit in Soviet Tajik[J].Soils and Foundations,1990,30(4):73-89.
    [83]白铭学、张苏民,高烈度地震时黄土地层的液化移动,工程勘察,NO.6,PP.1~5,1990.
    [84]Seed H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J] Journal of Geotechnical Engineering Division, ASCE,1979,105(2): 201~255.
    [85]Seed H B, Idriss I M, Arango I. Evaluation of liquefaction potential using field performance data[J] Journal of Geotechnical Engineering Division, ASCE,1983,109(3): 458-482.
    [86]Ishihara K. Liquefaction and flow failure during earthquake [J]. Geotechnique,1993, 43(3):351—415.
    [87]Castro G. Liquefaction of sand [D].Boston:Harvard University,1969.
    [88]Poulos S J, Castro G, France J W. Liquefaction evaluation procedure [J] Journal of Geotechnical Engineering Division, ASCE,1985,111(6):772—792.
    [89]Poulos S J. The steady state of deformation[J] Journal of Geotechnical Engineering Division, ASCE,1981,107(5):553—562.
    [90]Castro G, Poulos S J. Factors affecting liquefaction and cyclic mobility [J] Journal of Geotechnical Engineering Division, ASCE,1977,103(6):501—516.
    [91]Kramer S L, Seed H B. Initiation of soil liquefaction under static loading conditions[J] Journal of Geotechnical Engineering, ASCE,1988,114(4):412—430.
    [92]刘公社,巫志辉.动荷载下饱和黄土的孔压演化规律及其在地基动力分析中的应用[J].工业建筑,1994(3):40-44.
    [93]Wang Lanmin et al., Liquation problem in seismic microzonation in loess areas, Proc.5th International Conference on Seismic Zonation, pp.917~923,1995.
    [94]王兰民、王峻、李兰.随机地震荷载作用下黄土液化的试验预测[A].第四届全国土动力学学术会议论文集[C].杭州:浙江大学出版社,1994,134-137.
    [95]王兰民、王峻、李兰等,城市黄土场地液化的预测方法,西北地震学报,vol.19(增刊),pp.7~12,1997.
    [96]李兰.饱和黄土动力特性的几点探讨[A].第五届全国土动力学学术会议论文集[C],大连:大连理工大学出版社,1998,138-143.
    [97]段汝文,王峻,李兰.饱和黄土振动液化问题探讨[A].第五届全国土动力学学术会议论文集[C],大连:大连理工大学出版社,1998,144-148.
    [98]王兰民、刘红玫、李兰等,饱和黄土液化机理与特性的实验研究,岩土工程学报,,2000,22(1):89~94.
    [99]刘红玫,王兰民.黄土孔隙微结构的定量研究及其与黄土液化的相关关系[A],北京:中国建筑工业出版社,2001.
    [100]李兰,饱和黄土液化标准的试验研究[A],北京:中国建筑工业出版社,2001.
    [101]李兰,刘红玫.任意波荷载下饱和黄土液化特性的试验研究[A],土动力学与岩土地震工程[C],北京:中国建筑工业出版社,2002,140-145.
    [102]中国建筑科学研究院地基基础研究所,固原黄土动力特性试验报告,1983.
    [103]何开明,王兰民,王峻等.黄土液化与砂土液化的差异浅析[J],地震研究,2001,24(2):146-149.
    [104]余跃心,刘汉龙,王兰民,黄土孔压增长模式研究[A],土动力学与岩土地震工程[C],北京:中国建筑工业出版社,2002,225-229.
    [105]佘跃心,刘汉龙,高玉峰.饱和黄土孔压增长模式与液化机理的试验研究[J],岩土力学,2002,23(4):395-399.
    [106]袁中夏,王兰民,Susumu Yasud黄土液化机理和判别标准的再研究[J],地震工程与工程振动,2004,24(4):164-169.
    [107]李兰,王兰民,石玉成.粘粒含量对甘肃黄土抗液化性能的影响[J],世界地震工程2007,23(4):102-106.
    [108]刘红玫,王兰民.饱和黄土液化的孔隙微结构特征[J],西北地震学报,2002,24(2):135-139.
    [109]刘汉龙,余跃心,王兰民.强夯黄土地基液化试验研究,土动力学与岩土地震工程,pp.218~224.北京:中国建筑工业出版社,2002.
    [110]Gonghui Wang. Pore-pressure generation and movement of rain-fall-induced landslides Effects of grain size and fine-particle content [J].Engineering Geology,2001,69:109-125.
    [111]杨振茂,赵成刚,王兰民.饱和黄土的液化特性与稳态强度[J],岩石力学与工程学报,2004,23(22):3853~3860.
    [112]杨振茂,赵成刚,王兰民.黄土与砂土液化特性的对比——土液化与减灾防灾[J],中国安全科学学报,2004,14(11):3-7.
    [113]杨振茂,赵成刚,王兰民.饱和黄土液化及其理论研究现状[J],土木工程学报,2003,36(11):38-43.
    [114]杨振茂,赵成刚,王兰民.饱和黄土液化的试验研究[J],岩石力学与工程学报,2005,24(5):864-871.
    [115]王峻,王兰民,李兰.黄土场地地震液化研究[J],地震研究,2006,29(4):392-395.
    [116]何开明,王兰民,曾国熙.饱和黄土地基的液化数值分析[J],工业建筑,2002,31(7):29-31.
    [117]王志刚.碎石桩—黄土复合地基的抗液化性状数值分析[J],高原地震,2001,13(2):58-61.
    [118]廖胜修,程菊红.黄土场地震动液化实例[J],西北地震学报,2007,29(1):54-57.
    [119]Dexuan Zhang, Gonghui Wang. Study of the 1920 Haiyuan earthquake-induced landslides in loess [J], Engineering Geology 2007,94:76-88.
    [120]陈永明,石玉成,刘红玫等,黄土地区地震滑坡的分布特征及其影响因素分析[J],中国地震,2005,21(2):235-243.
    [121]Terzaghi K, Peck R B. Soil Mechanics in Engineering Practice[M]. New York:John Wiley,1948:
    [122]Seed H B. Landslides during earthquakes due to soil liquefaction [J]. Journal of the Soil Mechanics and Foundations Division,1968,94(SM5):1053-1122.
    [123]Sladen JA, D Hollander R D, Krahn J, et al. Back analysis of the Nerlerk berm liquefaction slides[J].Canadian Geotechnical Journal,1985,22:579-588.
    [124]Sladen J A, D Hollander R D, Krahn J., The liquefaction of sands, a collapse surface approach[J].Canadian Geotechnical Journal,1985,22:564-578.
    [125]Sasitharan S, Robertson PK, SegoD C,etal. Collapse behavior of sand[J].Canadian Geotechnical Journal,1993,30:569-577.
    [126]Lade P V, Static instability and liquefaction of loose fine Sandy slopes [J] Journal of Geotechnical Engineering, ASCE,1992,118(1):51-71.
    [127]Yamamuro JA, Lade P V. Steady-state concepts and static liquefaction of silty sands[J]Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9): 868-877.
    [128]Hutchinson JN. General Report Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology [C]//5th International Symposium on Landslides. Switzerland Lausanne,1988:3-35.
    [129]Sasaa K. The mechanism starting liquefied landslides and debris flows[C]//4th International Symposium Landslide.1984:349-354.
    [130]Sassa K. The mechanism of debris flows[C]//11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco,1985:1173-1176.
    [131]Wang Lanmin et al., Analysis of loess seismic landslides under irregular seismic loading, proceedings of the First International Conference on Seismology and Earthquake Engineering, vol.1, pp.511-518 (Tehran, Iran),1991.
    [132]Wang Lanmin et al., Prediction of earthquake disaster in loess areas, Proceedings of the Second International Conference on Earthquake Resistant Construction and Design, vol. 2, pp.1077~1084 (Germany),1994.
    [133]Wang Lanmin, Sun Chongshao, Yuan Zhongxia, Zonation on seismic geotechnical hazards in loess areas of China, Manual for Zonation on Seismic Geotechnical Hazard (Revised Version), Technical Committee for Earthquake Geotechnical Engineering, TC4, ISSMGE,1999.
    [134]Yuan, Z.X., Wang, L.M., Collapsibility and seismic settlement of loess, Engineering Geology (2009), doi:10.1016/j. enggeo.2008.12.002.
    [135]王家鼎.高速黄土滑坡的一种机理——饱和黄土蠕动液化[J].地质论评,1992,38(6):532-539.
    [136]王家鼎,刘悦.高速黄土滑坡、蠕滑动液化机理的进一步研究[J].西北大学学报:自然科学版,1999,29(1):79-82.
    [137]汪发武.高速滑坡形成机制:土粒子破碎导致超孔隙压力的产生[J].长春科技大学学报,2001,31(1):64-69.
    [138]Hutchinson J N, Bhandari R K. Untrained loading a fundamental mechanism of mud slide and other mass movements[J].Geotechnique,1971,21(4):353-358.
    [139]邹谨敞、邵顺妹,古浪-海原地区滑坡分布规律的模糊综合判断,地震学刊,No.1,1994.
    [140]邹谨敞、邵顺妹,海原地震滑坡及其分布特征探讨,内陆地震,Vol.10,No.1,pp:1-6,1996.
    [141]黄雅虹,土坡最危险滑裂面的随机搜索法在地震滑坡灾害预测中的应用,第四届全国土动力学学术会议论文集,杭州:浙江大学出版社,1994.
    [142]刘忠玉,慕青松.饱和黄土边坡的动力失稳机制研究[J],岩土工程学报,2005,27(9):1016-1019.
    [143]刘忠玉,魏建东.饱和黄土边坡的动力稳定性分析[J],岩土力学,2005,26(2):198-202.
    [144]卢育霞,石玉成,陈永明.地震诱发黄土滑坡的滑距估测[J],西北地震学报,2006,28(3):248-251.
    [145]孙崇绍,蔡红卫,我国历史地震时滑坡崩塌地质灾害的发育及分布特征,自然灾害学报,Vol.6,No.1,1995.
    [146]秦红玉,地震诱发高速黄土滑坡问题研究探讨,土动力学与岩土地震工程,pp.236-246,北京:中国建筑工业出版社,2002.
    [147]石玉成,王兰民,张颖.黄土场地覆盖层厚度和地形条件对地震动放大效应的影响[J],西北地震学报,1999,21(2):203-208.
    [148]石玉成,王兰民,林学文,黄土场地的爆破地震振动效应[J],岩石力学与工程学报,2003,22(11):1933-1938.
    [149]许领,戴福初,闵弘.黄土滑坡研究现状与设想[J],地球科学进展,2008,23(3):236-242.
    [150]李忠生.黄土斜坡地震动时程分析[J],西北地震学报,2004,26(2):126-130.
    [151]龚成明,刘争平,杨丹.黄土路堑边坡在振动作用下的动力响应分析[J],铁道工程学报,2008,NO.7:1-5.
    [152]祁生文,伍法权,刘春玲.地震边坡稳定性的工程地质分析[J],岩石力学与工程学报,2004,23(16):2792~2797.
    [153]袁丽霞.宁夏地震诱发黄土滑坡[M],银川:宁夏人民出版社.,2005.
    [154]Mononobe N, Takata A and Matumura M. Seismic stability of the earth dam[C], Section and Congress on Large Dams,1936,435-442.
    [155]Hatanaka M.3-Dimensional consideration on the vibration of earth dams[J], J Jap Soc Civ Engrs,1952:37.
    [156]Hatanaka M. Fundamental consideration on the earthquake resistant properties of the earth dams [J], Bull Disaster prevention research,1955, Inst, No.11.
    [157]Seed H B, Martin G R. The seismic coefficient in earth dam design[J], J Geotech Engrg ASCE,1966,92,SM3:25-58.
    [158]Gazetas G.2-Dimensional lateral and longitudinal seismic stability of earth and rockfill dams[C], Proc 7th World Conf Earthq Engrg Instanbul,1980,8:109-116.
    [159]Gazetas G. A new dynamic model for earth dams evaluated through case histories[J], Soil and Foundations,1981,21:67-68.
    [160]Gazetas G. Vertical oscillation of earth and rockfill dams [J], Soil and Foundations, 1981,21:265-277.
    [161]Gazetas G Shear vibration of vertically inhomogeneous earth dams [J], Int J for Num and Anal Methods in Geomech,1982,6(1):219-241.
    [162]Gazetas G, Dakoulas P. Seismic analysis and design of rockfill dams-state of the art [M], Soil Dyn Earthq Engrg,1992,11:27-61.
    [163]Oner M. Shear Vibration of inhomogeneous earth dams inrectangular canyons [M], Soil Dyn Earthq Engrg,1984,3(1):19-26.
    [164]Newmark N M. Effects of earthquakes on dams and embankments [J], Geotechnique, 1965,15(2):139-160.
    [165]Franklin A G, Chang F K. Earthquake resistance of earth and rock-fill dams, rep.5: permanent displacements of eath embankments by Newmark sliding block analysis [J], Waterways Experimental Station, Vicksburg, Misc,1977.
    [166]Makdisi F I, Seed H B. Simplified procedure for evaluating embankment response [J], J Geotech Engrg ASCE,1979,105,GT12:1427-1434.
    [167]Sarma S K. Seismic stability of earth dams and embankments [M], Geotechnique, 1975,25(4):743-761.
    [168]Sarma S K. Response and stability of earth dams during strong earthquakew [M], Waterways Experiment Station,1979, Vicksburg:paper GL.79-13.
    [169]Seed H B. Consideration in the earthquake design of earth and rock-fill dams [M], Geotechnique,1979,29(3):215-263.
    [170]Constantinous M C, Gazetas G A, Tadjbakhsh I. Stochastic seismic sliding of rigid mass supported through nonsymmetric friction [J],Earthq Engrg and struct Dyn, 1985,12:777-793.
    [171]Kramer S L, Smith M W. Modified Newmark for seismic displacement of compliant slopes [J], J Geotech Engrg ASCE,1997,123(7):635-644.
    [172]Seed H B, Idriss I M, Leek L. Dynamic analysis of the slide in the Lower San Fernando Dam during the earthquake of February 9.1971[J],Proc,ASCE,1975, Vol.101,No.GT9.
    [173]Castro G. Liquefaction and cyclic mobility of saturated [J], J Geotech Engrg ASCE, 1975,101,GT6:551-569.
    [174]Dobry R et al. Liquefaction evaluation of earth dams-a new approach [C], Proc 8th World Conf Earthq Engrg San Francisco,1984, Ⅲ:330-340.
    [175]Yegian M K, Harb J N. Dynamic response analysis procedure for landfills with geosynthetic linears [J], J Geotech Engrg,1998,124(10):1027-1033.
    [176]Yegian M K, Marciano E A,Ghahraman V G. Seismic risk analysis for earth dams [J], J Geotech Engrg,1991,117(1):18-34.
    [177]Halatchev R V. Probabilistic stability analysis of embankment and slopes [C], Proceeding of the 11 international conf on ground control in mining,1992,432-437.
    [178]Al-homoud A S. Reliability analysis of three dimensional dynamic slope stability and earthq induced permanent displacement [J], Soil Dyn and Earthq Engrg,2000,1:136-144.
    [179]孔宪京,韩国城.土石坝与地基地震反应分析的波动-剪切梁法[J],大连理工大学学报,1994,34(2):173-179.
    [180]徐志英,周建.奥罗维尔土坝三维排水有效应力分析[J],水利学报,1991,22(6):19-27
    [181]徐志英,周建.奥罗维尔土坝三维简化动力分析[J],岩土工程学报,1996,18(7):82-87.
    [,182]黄文熙.土的工程性质[M],北京:水利电力出版社,1983.
    [183]沈珠江,理论土力学[M],北京:中国水利水电出版社,2000.
    [184]顾淦臣.土石坝地震工程[M],南京:河海大学出版社,1989.
    [185]钱家欢,殷宗泽.土工原理与计算第二版[M],北京:中国水利水电出版社,1996.
    [186]徐志英,沈珠江.地震液化有效应力二维动力分析方法[J],华东水利学院院报,1981,9(3):1-14.
    [187]徐志英,沈珠江.土坝地震孔隙水压力产生扩散和消散的有限元动力分析[J],华东水利学院院报,1981,9(4):1-16.
    [188]徐志英,沈珠江.尾矿高坝地震反应的综合分析与液化计算[J],水利学报,1983,(5):30-39.
    [189]徐志英,周建.土坝地震孔隙水压力产生、扩散和消散的三维动力分析[J],地震工程与工程振动,1985,5(4):57-72.
    [190]周建,吴世明,曾国熙.土石坝三维两相动力分析[J],岩土工程学报,1991,13(5):64-69.
    [191]周建,董鹏,戚佩江.灰渣坝抗震稳定性的三维有效动力分析[J],水利学报,2000,31(7):44-48.
    [192]周建,徐志英.土尾矿坝的三维有效应力动力分析[J],地震工程与工程振动,1984,4(3):60-70.
    [193]龚晓南.土工计算机分析[M],北京:中国建筑工业出版社,2000.
    [194]吴世明.土动力学[M]北京:中国建筑工业出版社,2001.
    [195]黄茂松,钱建固,吴世明.土坝送礼应变局部化与渐进破坏的自适应有限元分析[J],岩土工程学报,2001,23(3):306-310.
    [196]张克绪.饱和非粘性土坝坡地震稳定性分析[J],岩土工程学报,1980,(3):1-9.
    [197]张克绪.饱和砂土的液化条件[J],地震工程与工程振动,1984,(1):99-109.
    [198]程国兴,王忆,谢君斐.场地液化势及其危害性评价[J],岩土工程师,1993,(2):7-12.
    [199]程国兴,谢君斐,张克绪.土坝地震性能二维随机分析方法[J],地震工程与工程振动,1994,(3):81-90.
    [200]王思敬.岩石边坡动态稳定性的初步探索[M],地质科学,1977,(4):372-376.
    [201]王思敬,张菊明.边坡岩体滑动稳定的动力学分析[M],地质科学,1982,(2):162-170.
    [202]王思敬,薛守义.岩体边坡楔形体动力学分析[M],地质科学,1992,(2):177-182.
    [203]Ling H I, Cheng A D. Rock Sliding induced by seismic force[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(6)1021-1029.
    [204]Ling H I, Leshchinsky D. Seismic stability and peimanent displacement of landfill cover system[J], J Geotech Engrg,1997,123(2):113-122.
    [205]Kumsar H, Aydan O, Ulusay R. Dynamic and static stability assessment of rock slopes against wegde failures [J], Rock Mechanics and Rock Engrg,2000,33(1):31-51.
    [206]Crawford A W, Curran J H. The influence of shear velocity on the frictional resistance of rock discontinuities [J], Int J Rock Mech Min Sci & Geomech Abstr,1981,(18):505-515.
    [207]Barbero M, Barla G, Zaninetti A. dynamic shear strength of rock joints subjects to impulse loading [J], Int J Rock Mech and Min Sci,1996,33(2):141-151.
    [208]Lee H S. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading [J], Int J Rock Mech and Min Sci,2001,38:967-980.
    [209]Fox D J, Kana D D, Hsiung S M. Influence of Interface roughness on dynamic shear behavior in jointed rock [J], Int J Rock Mech and Min Sci,1998,35(7):923-940.
    [210]Li N et al. Fatigue properties of cracked, saturated and frozen sandstone samples under cyclic loading [J], Int J Rock Mech and Min Sci,2003,40(1):145-150.
    [211]Clough R W, Chopra A K. Earthquake stress analysis in earth dams [J], J Engrg Mech, 1966,ASCE 92, EM2,66-82.
    [212]Chopra A K. Earthquake respone of earth dams [J], J Soil Mech and Found Div ASCE,1967,93:SM2,66-82.
    [213]国家地震局兰州地震研究所,宁夏回族自治区地震队.一九二0年海原大地震[G],北京:地震出版社,1980.
    [214]国家地震局兰州地震研究所.陕甘宁青四省(区)强震目录[G],西安:陕西科学技术出版社,1985.
    [215]陕甘地震记略,地学杂志,第1期,1921年.
    [216]霍福臣等.宁夏地质概论[M],北京:科学出版社,1989.
    [217]袁丽霞.宁夏海原地震诱发黄土滑坡的形成机制研究[D],西安:西北大学,2005.
    [218]樊计昌,李松林,张先康等.海原断裂在地壳深处的几何形态及其动力学意义[J],地震学报,2004,26(Supp):42-50.
    [219]李小军.工程场地地震安全性评价工作及相关技术问题[J]],震灾防御技术,2006(1):15-24.
    [220]李玉龙,侯珍清,康哲民.中国西北陕甘宁青地震区划[M],兰州:甘肃人民出版社,1986.
    [221]《工程场地地震安全性评价》宣贯教材[S],GB17741-2005.
    [222]中国地震局,监测预报司预报管理处.中国强地震目录(公元前23世纪—公元2005年6月)[G],2005.
    [223]陕西省地震局,长安大学.陕西分区地震动衰减关系研究[R],2009.
    [224]章在墉.地震危险性分析及其应用[M],上海:同济大学出版社,1996.
    [225]胡聿贤.地震安全性评价技术教程[M],北京:地震出版社,1999.
    [226]陈达生,刘汉兴.地震烈度椭圆衰减关系[J],华北地震科学,1989,7(3):31-42.
    [227]陈达生.地震烈度衰减关系[G],//国家地震局编.中国地震烈度区划图(1990)概论.北京:地震出版社:137-144.
    [228]汪素云,俞言祥,高阿甲等.中国分区地震动衰减关系研究[J],中国地震,2000,16(2):99-106.
    [229]雷建成,高孟潭.四川及邻区地震动衰减关系[J],地震学报,2007,29(5):500-511.
    [230]汪素云,石振梁.有感半径与震级的关系及其应用,国家地震局震害防御司编《中国地震区划文集》,北京:地震出版社,179-184.
    [231]胡聿贤,张敏政.缺乏强震观测资料地区地震动参数的估算方法[J],地震工程与工程振动,1984,4(1):1-11.
    [232]Chandra, U. Attenuation of intensities in the United States[J], Bull. Seism. Soc. Amer, 1979,69(6):2003-2024.
    [233]Gutenberg, B. And Richter, C. F. Earthquake magnitute, intensity, and acceleration [J], Bull. Seism. Soc. Amer,1956,46(2):105-145.
    [234]刘瑞丰,陈运泰,Bormann P等.中国地震台网与美国地震台网测定震级的对比(Ⅱ):面波震级[J],地震学报,2006,28(1):1-7.
    [235]霍俊荣,胡聿贤.地震动峰值参数衰减规律的研究[J],地震工程与工程振动,1992,12(2):1-11.
    [236]胡聿贤,周克森,阎秀杰.缺乏地震动加速度记录地区地震动估计的映射法[J],地震工程与工程振动,1996,16(3):1-10.
    [237]Taniguchi E, Whitman R V and Marr W A. prediction of earthquake induced deformation of earth dams[J], Soils & Foundations,1983,23(4):126-132.
    [238]Seed H B, Martin P P and Lysmer J, Pore water pressure changes during soils liquefaction[J], J.GED, ASCE,1976,102(gt4):323-346.
    [239]Fin W D L et al. Cyclic Pore pressure under anisotropic condition[J], Earthquake engineering and soil dynamics, Proc. ASCE Geot. Eng. Div. Specialty,1978,1.
    [240]Shen zhu jiang. A visco-elastic model for liquefaction of sand [J], Proc,11th Int. Conf. Soil Mechanics and Foundation Engineering, San Francisco,1985.
    [241]张建明,谢定义.饱和砂土振动孔隙水压力的试验方法[J],水利学报,1991,(8):45-51.
    [242]陈国兴,刘雪珠.南京粉质粘土粉砂互层土及粉细砂的振动孔压发展规律研究[J],岩 土工程学报,2004,(1):83-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700